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We incorporate local threshold functions into the dynamics of the Hopfield model. These func-
tions depend on the history of the individual spin (= neuron). They reach a maximal height if the
spin remains constant. The resulting one-pattern model has ferromagnetic, paramagnetic, and
periodic phases. This model is solved by a master equation and approximated by simplified systems
of equations that are substantiated by numerical simulations. When several patterns are included as
memories in the model, it exhibits transitions —as well as oscillations —between them. The latter
can be excluded by known methods. By introducing threshold functions which afFect only spins
which remain positive, thus mimicking fatigue of the individual neurons, one can obtain open-ended
movement in pattern space. Using couplings which form pointers from one pattern to another, our
system leads to self-driven temporal sequences of patterns, resembling the process of associative
thinking.

I. INTRODUCTION

Neural-network models for associative memory are
dynamical systems with attractors that represent cogni-
tive events such as memory contents. A well-known ex-
ample is the Hopfield model' which is based on the Ham-
iltonian

0= —
—,'gJ,~S;S

this paper we will work with equations of motion rather
than with a Hamiltonian.

Clearly this paradigm has to be enlarged in order to ac-
count for the richness of cognitive processes which evolve
continuously and do not stop once a memory pattern is
reached. One possibility for such a generalization is to
add a set of pointers to the couplings:

The binary vectors g are the input patterns (memories)
of the model which, under appropriate conditions, form
the fixed points into which the spin variables flow under
the dynamical equations

S,.(t+ 1)=Fr 'g'J, ,S, (t) (1.3)

where the prime designates the fact that j Wi Here Fr i.s
the conventional statistical choice for temperature T

Fr(x)=+1 with probability (1+e
and the updating is performed either sequentially or in
parallel. The dynamical flow process is identified with
memory retrieva1. Generally one should also view the
couplings J, as dynamical degrees of freedom which
evolve on a much longer time scale representing the pro-
cedure of learning. Many algorithms for their construc-
tion were suggested, deviating from the simple factorized
form of Eq. (1.2). They may also be asymmetric, in
which case an energy function cannot be defined but the
equations of motion (1.3) are still applicable. Throughout

~hose dynamical degrees of freedom are X classical spin
variables S; =+1 which interact with one another
through the couplings J, -. The latter are constructed by
the factorized Hebbian rule

PJ =—g (tJPIJ ~ I J

In particular, if the couplings d„have only one nonvan-
ishing element for each v and they are chosen to have a
built-in time delay such as in

S,(t+1)=F, QJ,,S, (t) 0,(t)—(1.7)

As we will see, they generate motion in pattern space.
There are two choices of threshold functions which we

consider. Both depend on an accumulated spin variable

they can drive the system in a predetermined temporal
sequence moving from one attractor to another. Using
such structures one can account for counting processes
and recognition of temporal sequences. Similar behavior
can be obtained without time delay by relying on an
external oscillating field or internal noise of the system.

%'e propose a difI'erent generalization in which pointers
are not used as the cause for moving out of an attractor.
Pointers may be present but the destabilizing efFect is due
to new degrees of freedom, threshold parameters. The
importance of dynamic threshold parameters in regulat-
ing cognitive functions was pointed out by Braitenberg.
%e will assume that the local threshold parameter 0,
changes with time in a fashion which depends on the his-
tory of the spin variable S; at the same location. The
equations of motion of our system are
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defined iteratively by

R;(t+1)=R;(t)/c+S;(t+1) . (1.8)

II. PERIODIC BEHAVIOR IN THE SINGLE-
PATTERN MODEL

We investigate the dynamical system defined by

S;(t +1)=Fr(h;(t) bR;(t)), h; =pm —"P (2.1)

This is an effective integration of the spin variable over
time which saturates at the value +c/(c —1) if the spin
stays constant at +l. c will be chosen to be slightly
larger than 1. If the threshold parameter is chosen pro-
portional to R, it destabilizes the tendency of the system
to stay in a fixed point and may lead to oscillatory behav-
ior. This can be easily demonstrated by Monte Carlo
runs in which we choose for simplicity the factorized
form (1.2} for the J; . Using a single-pattern scheme we
solve the problem in Sec. II in terms of a master equation
and several simplified equations of motion for the overlap
and the threshold function. Similar sets of equations are
known to describe dilute models. A11 compare well with
one another and agree with simulation calculations exhib-
iting the existence of a periodic phase in this problem.

In Sec. III we discuss the dynamics of models which
contain several memories. This is studied by employing a
generalization of the simplified equations of motion
developed in Sec. II and compared with the results of
simulation calculations. The problem of two patterns ex-
hibits continuous interchanges between them with or
without sign lip of the overlap. This type of behavior is
observed also in bigger sets of input patterns. Our
simplified analytic models provide an understanding of
this behavior.

We consider it interesting to investigate another
threshold function which vanishes for all negative R.
This version mimics the effects of fatigue in a system in
which S; ( t) = 1 is interpreted as neuron number i firing at
time t. The more it fires the higher is the threshold for
firing again at the next round. This version is studied in
Sec. IV. Here we observe how, when the attractor is des-
tabilized by the threshold function, the system flows into
another temporary fixed point. The inversion of a pat-
tern, which plays a dominant role in the periodic behav-
ior discussed in Sec. II, may be avoided by using patterns
with negative activity, i.e., negative average magnetiza-
tion. We present simulation calculations of such systems
and discuss the variation of the active memory duration
(the relative time the system spends in the input patterns)
with the number of input patterns. The phenomenon of
motion from one pattern to another can be assisted by
adding pointers of Eq. (1.5) into the couplings. We let
the parameters d„connect various patterns thus defining
relations between memories and forming a variety of
routes which the system may choose to wander in. We
demonstrate the creation of families of patterns by this
procedure. Some implications of our results are dis-
cussed in Sec. V.

with pattern p. h, is the local field acting on spin i. This
represents the modification of the factorized Hopfield
model by a dynamical threshold proportional to the accu-
mulated spin variable R defined in Eq. (1.8). We will
concentrate first on the case of a single pattern because it
lends itself to an algebraic investigation which unravels
the important characteristics of the new phenomena.
With a single input pattern we have a ferromagnetic
model modified by the threshold term. Using the nota-
tion m =m ' we obtain the equation

h, (t) bR,—(t)
m(t+1) =—gg", tanh

1V,. T (2.2)

from (2.1) through multiplication by g' and statistical
averaging. The factor g,', being +1, can be moved into
the argument of the tanh on the right-hand side. Let us
denote the value of g,'R; at the location i by r and assume
that its value is described by a distribution function
P(r, t) This .allows us to turn Eq. (2.2) into the integral
equation

m(t+1}=)dr P(r, t)tanh
m (t) br—

T (2.3)

The value of r at location i changes in one iteration to
r jc+1 with probabilities

+( ( t) ) ( 1 ~ + 2[m(t) —br]/T) —I (2.4)

The factor c guarantees the proper normalization. Thus
we obtain a master equation describing the one-pattern
case.

We will present below numerical solutions of the mas-
ter equation as well as results of simulations of such sys-
terns. We find it useful to study also sirnplified approxi-
mate versions of the system of equations (2.3) and (2.5) in
order to develop an intuitive understanding of the mecha-
nism through which the dynamics evolve. Since the most
important features of a probability distribution are its
average p and standard deviation o, let us replace P(r, t)
by an expression which has these values and is easy to
manipulate,

P(r, t)= —,'5(r p(t) o(t))+——,'5(r —p(t)+—o(t)) . (2.6)

Replacing (2.5) (which cannot be satisfied with this
choice) by its first two moments, i.e., expectation values
of r and r, we are led to a closed set of three equations

m (t) bp(t) bo (t)— —
2' ""

T

h
m(t}+b p(t)+b~(t)+2 T 7 (2.7)

Therefore the probability obeys the recursion relation

P(r, t+ l)=ca (m(t), cr —c)P(cr c,t)—
+crt (m(t), cr+c)P(cr+c, t) . (2.5)

where m" designates the overlap of the spin configuration
p(t+1)= +m(t+1),p(t)

c
(2.8)
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o(t .+1)= cr (t)
C2

+ tanh
o(t) m (t) b—p(t) b—o(t)

C T

+ h
m(t) bp—(t)+bo(t)+tanh

T

+1—m (t+1) . (2.9)

The last equation follows from evaluating the expectation
value of r on both sides of (2.5) and using the previous
equations for m and p. We will call this set of equations
the m —

p —o. set.
Our system depends on three parameters: b, c, and T.

The combination of b and c which is most relevant to our
problem is

g =bc j(c—1), (2.10)

which represents the height which the threshold 0; =bR;
can reach if the spin 5; stays constant in time. Varying
these parameters we find different qualitative behavior in
different regions. We observe the existence of three
phases: a ferromagnetic phase characterized by finite-m
values, a paramagnetic one in which m ~0, and a period-
ic phase.

Let us start our discussion with the new feature of our
model, the periodic phase. An example of the behavior
of the variables m„p, and o is shown in Fig. 1(a). This
figure displays the solution to Eqs. (2.7)—(2.9) (the m-p-o.
set) at the point ' T=0.35, c = l. 5, g =0.545 and for the
initial conditions m =1 and p=o. =0. To compare the
oscillations of m with the results of simulations we
display in Fig. 1(b) the behavior observed in a system of

0
0

FIG. 1. (a) Graphical solutions of Eqs. (2.7)—(2.9) (the m-p-o.

set) for T=0.35, c=1.5, g=0. 545 and initial conditions m =1
and p=a=0. The three curves represnt m, bp, and bo. vs time
(number of iterations). (b) Results for overlaps m at the same
values of parameters from two simulations of a network of
N=400 spins, one using sequential (dashed curve) and the other
synchronous (solid curve) updating procedures.
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FIG. 2. The probability distribution P(r) is plotted vs r for
solutions to the master equations (2.3)—(2.5) at the same poin-t in
parameter space as in Fig. 1. The two dashed curves depict sit-
uations in which the average r is maximal or minimal. The solid
curve corresponds to the case in which the average vanishes.
These curves show that when the distribution is peaked at the
external values of r it is also the narrowest, thus substantiating
results of Fig. 1.

400 spins at the same value of the parameters. The solid
curve describes the results of a synchronous updating
mechanism which are practically identical with the solu-
tion of the m-p-o. set. The dashed curve is the outcome
of a sequential (asynchronous) updating procedure. It is
to be expected that the synchronous and asynchronous
systems show different behavior: The first corresponds
indeed to an iterative set of equations such as the m-p-o.
model, while the latter should be described by differential
equations. We observe empirically that the main
difference is the time scale of the process; the other
features are quite similar.

While m oscillates between the values 1 and —1 bp
varies between +0.45. There is a small phase shift be-
tween m and p corresponding to the fact that p is being
built up by the values of m. The distribution develops a
width o. which oscillates together with m and p around
some finite constant value which is significantly smaller
than the extrema of p. The width grows when the state
undergoes a transition (m crosses zero), and it decreases
when m reaches its extrema. To test our approximation
we solve numerically the master equation, i.e., (2.3)—(2.5),
using the same parameters. We obtain again a periodic
motion of m which drives —and is in turn driven by —a
probability distribution which is shown in Fig. 2. Shown
here are three distributions depicting the situation when
the average r is maximal, crosses zero, and becomes
minimal. We see again that at the extrema the width is
narrow and it widens in between. This example shows
that the simplified equations (2.7)—(2.9) describe correctly
the general features of the master equation.

The periodic motion observed in Figs. 1 and 2 is in-
dependent of the initial conditions of the system. Even if
we start with m =0 and a random distribution P(r), we
observe a quick Bow into the dynamical attractor which
is the limit cycle which we described above.
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FIG. 3. Graphical solutions of Eqs. (2.7)—(2.9) (the m-p-0)
for T=0.35, c=1.5, g=0. 5 and initial conditions m =1 and
p=a=0. The three curves of m, bp, and bo vs time display
damped oscillations which settle into a fixed point characteristic
of the ferromagnetic phase.
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Reducing g slightly to g =0.5 we move into the fer-
romagnetic region, as seen in Fig. 3. Now we observe
that the solutions of the m-p-0. set undergo damped oscil-
lations after which they settle into a fixed point. The
phase boundary at T=0.35 and c =1.5 has therefore to
lie in between g =0.545 and g =0.5. On one side we find
a limit cycle, i.e., a periodic phase, and on the other side
a nontrivial fixed point, i.e., a ferromagnetic phase. To
reach the third phase, characterized by m =0, one has to
increase the temperature T. The general structure of the
phase space is shown in Fig. 4. Using c =1.5 we have
searched for the boundaries in three different ways: by
solving the m-p-o. set, by solving the master equation
(2.3)—(2.5), and by numerical simulations in a network of
2000 spins. All agree pretty well with one another.

Varying c we find that the only qualitative change is that
the phase boundary between the periodic phase and the
paramagnetic one moves to higher T values. The dot-
dash line represents the results of the master equation for
c =1.2.

A further simplification of the model equations sug-
gests itself by the fact that o has values smaller than the
extrema of p. This raises the possibility of using o. =0,
i.e., assuming the probability distribution to be extremely
peaked. We will mimic the effect of the distribution by
introducing a small random Auctuation 5 into the equa-
tion otherwise obtained from the first moment of (2.5)

m (t + 1)=tanh m (r) bp—(t)
T

p

Together with

p(t+ 1)=p(t)/c +m (t + 1)

(2.11)

(2.12)

it forms a simplified set of equations which we call the
m-p set. Apart from the stochastic element 6 it could be
derived from (2.2) with the simplifying assumption
R; =p,'. , i.e., complete dominance of the one pattern in the
threshold factor.

This set will be generalized in Sec. III for the purpose
of investigating models with many patterns. Let us show
here that it displays the correct characteristics of our
model. We begin with 5=0 and very low temperatures,
~here the tanh turns into a sgn function. Starting from
n = 1, p =0 the parameter p increases as

p(t) = [c/(c —I)](1—c ') . (2.13)

The threshold function is important if b is of order
(c —1)/c or more. This causes m to flip its value. It
leads to a periodic motion of the type shown in Fig. 5.
This simple example shows the relevance of the combina-
tion g =bc/(c —I) in our problem.

Staying with the same values of b and c while increas-
ing T we And that the oscillations get smoother until they
reach an almost sinusoidal form, as shown in Fig. 6. At
this point in parameter space we find that ~m bp~ &0.2—
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FIG. 4. The phase space of the single-pattern model has

three different phases, ferromagnetic, paramagnetic, and period-
ic. The solid curve represents the results of simulations in a net-
work of %=2000 spins. The dashed curves correspond to re-
sults of the master equation and the dotted curves are the re-
sults of the m-p-o. set. All these were calculated using c =1.5.
For other c values we find that the border line between the fer-
rornagnetic and periodic phases shows the same universal
dependence on g =bc /{c —1), whereas the transition between
the periodic to paramagnetic phases changes with c. The dash-
dot curve is the corresponding result of the master equation for
c =1.2.
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FIG. 5. graphical solutions of Eq. {2.11) and {2.12) {the m-p
set) for T=O, c =1.2, b =0.2. The amplitudes of the overlap m

and the threshold function bp are plotted vs the number of
iterations (time). The p curve has the behavior of Eq. {2.13).
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III. BYNAMICS OF SEVERAL PATTERNS
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A solution to these equations is presented in Fig. 7 to-
gether with the results of a simulation with %=400 spins.
We chose parameters lying inside the periodic phase:
T=0.6, g=0.4, c=1.5, and A, =0.05. For the m-p set
we have used stochastic noise of 5' =0.04X(arandom
number between +1 and —1). Both figures show the ex-
istence of beats due to the two different frequencies
caused by the (1+1,) factor in Eq. (3.6). We observe clear
alternations of strong and weak oscillations of the two
patterns as in a system of coupled oscillators. The simu-
lation displayed in the lower half of this figure was per-
formed with sequential (asynchronous) updating, using
two orthogonal patterns. It displays the same charac-
teristics as the m-p set but different frequencies. This
difference is due to the asynchronous updating procedure,
as explained in the discussion of Fig. 1. Replacing it with
a synchronous one we obtain similar frequencies to the
ones seen in the m-p set of equations.

Next we move to the neighborhood of the border line
between the periodic and ferromagnetic phases in the
one-pattern phase space. Figure 8 shows the results for
the values T=0.6, g =0.28, c =1.5 and A, =O. 1. Now we
observe completely different characteristics: continuous
interchange between the two patterns with the overlap
keeping the same sign. This can be easily explained by
the m-p model equations. We have already observed that
the + and —combinations evolve independently. At the
border line they will have different characteristics. The
equation for the + combination will be in the ferromag-
netic phase, while the —combination will find itself in
the periodic phase because of the different weights of
1+1, appearing in them. The result is the observed
m '+ m cycle. By proper tuning of g we can obtain such
results even for very small A, .

We observed such cyclic behavior even for A, =O. In
general, however, the X=O case shows random motion
between the two patterns due to random phase shifts be-
tween m —.

Figures 7 and 8 present characteristic attractors of our
system. In general, we see interchanges between the two

patterns. Even if we start with the initial condition
m'=m =

—,
' the system moves quickly to a situation

where one pattern dominates the other. In the m-p set
this comes about by the effect of the noise which destabi-
lizes the m+=1, m =0 solution. This is a reAection of
the fact that in the Hopfield model this is an unstable
solution.

For p & 2 the system (3.4) does not decompose into in-
dependent equations. Still we can find solutions in which
two patterns oscillate as in the p =2 case while the other
patterns remain inactive. As an illustrative example let
us look at the case p=3 and discuss the stability of a
solution with m =p =0. We choose the set of equations
(3.4) with no pointers, i.e., A, =O. The equation for m is

T

m =
—,
' tanh + tanh

T

m —bp +a+tanh

+tanh m —bp —a
T

(3.7)

T ' & —,
' [cosh (a+ /T )+cosh (a '/T ) ] . (3.8)

As long as either a+ or a have an absolute value larger
than 0.59 this equation is satisfied for a11 T. If both are
equal it suSces for them to reach 0.45 to have a stable
solution for all T. This means that there exist domains in
parameter space where such stability will be found.

In practice we indeed observe such behavior. It is
quite common for a pair of patterns to dominate the
scene, interchanging roles as in Fig. 7 if the parameters
are in the periodic phase. After a while, one of them may
pick a different pattern to serve as its partner while all
others remain relatively inactive. We find this type of be-
havior to be quite common in simulations which we have
run with 3, 4, and more patterns.

where

a*=m'+m —(bp'+bp ) .

To find if m =p =0 is a stable fixed point we take the
derivative with respect to m and require that the slope
of the right-hand side be smaller than 1. This leads to the
condition

~ ~ I I i t I ~ I I ~ ~ 1 ~ f I ~ ~ I I I r I ~ r I r I r0
0 iOO 200 500 IV. MOTION IN PA'I I'ERN SPACE AND LOCAL

FATIGUE

I

Lj
I I y I I ~ g $ pp I I ~ g ~ ~ Iv

50 F00 ~50

FIG. 8. {a) Same as Fig. 7 but at the point T=0.6, g =0.28,
c=1.5, A, =0.1. The T, g, c point lies on the border line be-
tween the ferromagnetic and periodic phases of the one-m-p set.
This is the reason for the observed behavior. (b) Same charac-
teristics are obtained from the simulation calculation. The
difference in time scale was already noted in Fig. 1.

In this section we limit ourselves to motion in pattern
space in which only positive overlaps with the patterns
are obtained. When a large overlap with an input pattern
occurs we will refer to it as being activated. We are in-
terested in the phenomenon of transitions between the ac-
tivated patterns. We wish to cause the motion in pattern
space by a threshold function which may be interpreted
as a local-fatigue effect

(4.1)

as explained in the Introduction. The physiological term
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effect causes sign reversal of pattern overlaps. To avoid
the latter one can utilize a mod 1

' h' h he in w ic the inverse
patterns are not attractors. We will k f
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e w ic accommodates memories w thwi negative activi-
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model is defined by the Hamiltonian
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(4.3)
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and 6 is a coefficient enforcing the constr t Addain . ing to

(4.1

t e ynamics of this Hamiltonian our thre h ld fs o unction
) we obtain transitions without sign reversals. The

sign reversal is avoided because the inertial effect men-
tioned above operates on a small number of spins and be-
cause the inverse of a pattern is no longer an attractor.

taying within the periodic phase we get the wanted
eature of self-driven temporal sequence of patterns.

Our results are displayed in Figs. 9 and 10. Figure 9 is
the result of simulation calculations f N =500
four ran om

or = spins and
andom memories with average activity a = —0.6.

We used the parameters c=1.2 T=0.05, =1.2,, g= . , and

FIG. 10. Same display as Fig. 9 for a system based on the
asymmetric dynamics of (4.4). The parameters are the same as
those of Fig. 9 but for g =0.9.

G=2. The overlap of the spin configuration of our sys-

tem with four different memories is shown in four frames,

s ins '(1/X
with the fifth displaying the average fati ue fa t f ll

spins t )+,. 0, ] on the same time scale. The panora-

ma of overlaps includes plateaus at 1 as well as intermedi-

ary peaks of smaller magnitudes.
A slightly different picture is shown in Fig. 10. This is

ased on dynamics of the same type in which we use for
the couplings an asymmetric structure

1.0 J =—g p(p —tt) .
@=1

(4.4)
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0. 5
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0.0+
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0. 5

o. ot
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FIG. 9. Results of a simulation calculation of a system of
%=500 spins and four random memories with avera t 'tage ac ivity
a= —. . e used dynamics based on the Hamiltonian (4.2)

(4.3) and tan the fatigue factor (4.1) with sequential updating. The

parameters are c=1.2, T=0.05 g=1.2, 6=2. The first four
frames display the overlap of the spin configuration of our s s-

e our difFerent memories as a function of time (num-
our sys-

ber of iterations). The fifth frame displays the average fatigue
factor of all spins [(1/X)g 9, ] on the same time scale.

Smce we solve dynamical equations of the type (1.3) rath-
er than a Hamiltonian problem we can handle the asym-
metric choice as well. The results shown in Fig. 10 were
obtained for the parameters c=1.2, T=0.05,
and 6=2.

=0.9
The activity was also chosen as a = —0.6.

7

The main difference between the two figures is that the
latter does not have intermediary peaks. The
configuration of the system tends to stay for some time in

one pattern and after being destabilized it moves to
another pattern in a random fashion. We see here the
chain 1~4~1~2~4~1~4~2~3 and so on, con-
tinuing indefinitely. Within the time period of 400 updat-
ings of the system we observe only one occurrence of ne-
ative overlaps, in which a major fraction of all spins
turne positive. The fatigue factor rose quickly t ty o revert

InFi. 10g. we see that the system spends most of its
time in one of the original patterns. We will refer to this
fact as an active memory. For quantitative purposes let
us call the memory active when one of the overlaps is
arger than 0.9. The fraction of the time in which the

memory is active, which will be called the active memory
duration, is a dynamical order parameter of our system.
Clearly it varies with all the parameters we have specified
before. ForFor example, increasing T decreases the active
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memory duration. An interesting question is how does
the number of input patterns affect it. It is well known
that memory models have a critical value of p after which
the patterns lose their basins of attraction. In the
Hopfield model it is p„=0.14N. Clearly our model can-
not have temporary fixed points beyond the critical point
of the version without dynamic thresholds. It seems logi-
cal to expect the active memory duration to decrease as p
increases, vanishing as the basins of attraction shrink to
zero.

The active memory duration must be closely related to
the question of coverage capacity" in the Hopfield mod-
el: We expect that when the basins of attraction of the
memories cover the configuration space in a model
without threshold parameters then the introduction of
dynamical thresholds will lead to motion from one attrac-
tor to another without being lost for long periods in re-
gions which are not associated with any memory. The
active memory duration must be proportional to the re-
gion of configuration space covered by the basins of at-
traction. One should then expect the active memory
duration to be much higher in multiconnected models"
which are characterized by coverage capacities larger
than the bilinear models we use in this paper. Moreover,
it is worthwhile noting that odd interactions avoid also
the problem of sign reversal of the overlaps.

The behavior of the active memory duration in a model
governed by the fatigue factor (4.1) and the asymmetric
couplings (4.4) is displayed in Fig 11. .We work here at
the same point in parameter space as in Fig. 10. We use
systems of 500 and 1000 spins and measure the fraction
of the active memeory duration on 300 random trial runs
for each p. In spite of the statistical fluctuations one can
observe a clear trend. We use linear fits to the curves to
determine the critical points where the memory becomes
inactive. In this range of N this point may be fitted by
p„=33+0.054N.

The models discussed so far did not contain any

(1,2, 8): 8~2, 8~1, 1~2,
(3,4, 5, 6, 7): 3~5, 7~3, 7~5, 3+-+4,

4~5, 4~6, 6—+3, 6-+5 .

(4.5)

All pointers were given equal strength A, =0.09. Other-

8
7-

pointers. The transitions from one pattern to another oc-
curred in a stochastic fashion. By introducing an ap-
propriate set of pointers into the couplings one can ob-
tain predetermined temporal sequences. The pointers do
not cause the exit from an attractor; this is due to the
threshold functions. The pointers help, however, to
direct the movement in pattern space, i.e., they assist the
entry into certain attractors. By allowing more than one
pointer d„ for the pattern v we reach a situation in
which there exists competition between the various possi-
ble transitions. The pointers may be thought of as
defining associations between patterns, which by them-
selves can be built in a learning process which develops
on a long time scale. Thus the pointers define families of
patterns which are related dynamically. This dynamical
relation does not depend at all on the Hamming distance
between the related patterns. Families are naturally
defined as groups of attractors with high connectivity be-
tween them. When one runs a system like this, one ob-
serves that the spin configuration travels in pattern space
between memories which belong to the same family and
moves from one family to the next according to the vari-
ous pathways which are given by the net of pointers or in
some stochastic fashion.

As an example let us look at a system with eight pat-
terns which we divide into two disconnected families with
the following pointers:

1.0

0 ~ 8-
X
Ci

0.6-

0
0 4

CL
4J
CQ
K

z
Lij

)—

CL

4-
3-

100
I

200 300 400 500

0.2-

60 80 100

FICr. 11. The active memory duration (i.e, the relative
amount of time the system has an overlap greater than 0.9 with
one of the input patterns) is measured as a function of the num-
ber of memories p. We have used the same point of phase space
as in Fig. 9 and performed 300 random trial runs for every value
of p. We show results for %=500 and 1000 spins and linear fits
which we use to estimate the critical point.

FIG. 12. A system of N=2000 spins and eight memories
with the pointers defined in Eq. (4.5) was run at the point
c =g = 1.2, T=0.2, G =2 using the dynamics of Eqs. (4.1), (4.2),
and (4.4). The eight input patterns were generated randomly
with the constraint that the average activity should be
a = —0.5. The actual activities were —0.485, —0.472,—0.494, —0.486, —0.502, —0.465, —0.506, —0.533 for the
patterns 1 —8. The figure shows the activation of the patterns
{numbered along the y axis) as a function of the number of itera-
tions. When the spin configuration does not have an overlap
greater than 0.9 with one of the memories, it is regarded as
forming a transition between two patterns. It spends most of
the time staying inside the families of (4.5).
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wise we have used the same model discussed above with
N=2000 and c=g=1.2, T=0.2, 6=2, and average ac-
tivity a = —0.5. We display the results of 500 simulation
steps in Fig. 12. In this example we observe 25 transi-
tions within the first family, 18 within the second, and 5
transitions between the families. Clearly the latter do not
stem from predetermined input, but also some of the
former were not initiated by the pointers, e.g. , the 1~8
transitions which did not exist in the input. We suspect
that in this particular example this is due to the fact that
pattern 8 happens to have the lowest activity. Using the
fatigue factor we find that the spin system is mostly nega-
tive when it leaves the attractor, hence patterns with
lower activity have a higher chance to become the next
attractor. In any case, even if the system moves from
pattern 1 to 8 because of the big number of negative spins
in the latter, it moves back because of the original
pointer. The net result is the observed motion within
families. This type of motion in pattern space has simi-
larity to an associative thinking process.

V. SUMMARY AND DISCUSSION

The Hopfield model and its generalized dynamical sys-
tems are based on simplifications of the biological sys-
tems. They serve to demonstrate that in complexity of
the networks lies the secret of their capacity to store
large amounts of information. One of the simplifying as-
sumptions made in these models is to neglect threshold
dynamics. We have demonstrated that by including sim-
ple dynamic threshold behavior one can create nontrivial
motion in the space of memory patterns.

Using a threshold function which depends on the histo-
ry of the local spin variable one introduces a non-
Markovian element of feedback into the dynamics of the
system. This leads to the possibility of obtaining periodic
behavior which is an interesting effect by itself. Clearly
one needs neural networks which have such possibilities
to serve as frequency filters for sensory functions which
depend on temporal sequences of signals. Using the local
threshold variables one could envisage an adaptive sys-
tem which develops the necessary ability through the re-
gulation of the relevant parameters in the threshold func-
tion as well as in coupling space. We have seen in Sec. II
examples of periodic motion which this system can
create. In Sec. III we saw that a system of two patterns
can behave like coupled oscillators. All these elements
can be usefu1 for the purpose of analyzing signals or pro-
viding natural clocks.

In our models we encounter different parameters which
could have an adaptive character i.e., change dynamically

in a fashion which is connected to the development of the
system under the inhuence of external interactions. Thus
we could envisage a corrective procedure for obtaining
the best choice of couplings to increase the capacity of
the model, including some selective procedure for
pointers by demanding dynamical correlations between
patterns. We have concentrated on understanding the
effect of the threshold functions only. For this reason we
have employed in our simulation calculations the sim-
plest algorithm for the couplings, Eq. (1.2), and have not
opted for maximal capacity or efficiency.

In Sec. II we have solved the one-pattern model and
shown the existence of the periodic phase. Moreover, us-

ing simplified model equations, we were able to give
correct characterizations for some of the important
features of the model such as estimating the frequency in
Eq. (2.14). The simplified one-pattern approximation
served as a guide in our discussion of multiple pattern
structures in Sec. III. Thus we were able to explain the
phenomenon of interchange among patterns, the appear-
ance of beats, and the existence of regions dominated by
positive overlaps only.

The threshold functions which we chose to deal with
depended on the accumulated spin variable R in a specific
linear fashion. Clearly the choice of this particular vari-
able as well as the functional dependence on it are quite
arbitrary. We have chosen them because they seem to be
the simplest and most natural ones. In spite of being so
simple they led to interesting and complicated dynamics.

We have seen in Sec. IV that using the threshold func-
tion (4.1), which we associated with fatigue of the single
neuron, one obtains self-driven temporal sequences of
patterns under appropriate conditions. One is then
tempted to make the statement that fatigue drives the
thinking process. One should, however, keep in mind
that we have discussed a simplified model whose biologi-
cal or neurological relevance has still to be demonstrated.
In the meantime one should accept it for what it is, a
mathematical neural-network structure with new degrees
of freedom. Its importance, in our opinion, lies in the
fact that these local degrees of freedom drive global
changes of the system; their destabilizing effect causes the
complex system to move from one attractor to another
thus creating a nontrivial motion in pattern space.
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