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We propose a novel clustering method that is based on physical intuition derived from quantum me-
chanics. Starting with given data points, we construct a scale-space probability function. Viewing the
latter as the lowest eigenstate of a Schrodinger equation, we use simple analytic operations to derive a
potential function whose minima determine cluster centers. The method has one parameter, determin-
ing the scale over which cluster structures are searched. We demonstrate it on data analyzed in two
dimensions (chosen from the eigenvectors of the correlation matrix). The method is applicable in higher
dimensions by limiting the evaluation of the Schrodinger potential to the locations of data points.
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Clustering of data is a well-known problem of pattern
recognition, covered in textbooks such as [1-3]. The prob-
lem we are looking at is defining clusters of data solely by
the proximity of data points to one another. This problem is
one of unsupervised learning, and is in general ill defined.
Solutions to such problems can be based on intuition de-
rived from physics. A good example of the latter is the
algorithm by [4] that is based on associating points with
Potts spins and formulating an appropriate model of sta-
tistical mechanics. We propose an alternative that is also
based on physical intuition, this one being derived from
quantum mechanics.

As an introduction to our approach we start with the
scale-space algorithm by [5] who uses a Parzen-window
estimator [3] of the probability distribution leading to the
data at hand. The estimator is constructed by associating
a Gaussian with each of the N data points in a Euclidean
space of dimension d and summing over all of them. This
can be represented, up to an overall normalization, by

Ylx) = D e O (M

where x; are the data points. Roberts [5] views the maxima
of this function as determining the locations of cluster
centers.

An alternative, and somewhat related, method is support
vector clustering (SVC) [6] that is based on a Hilbert-space
analysis. In SVC, one defines a transformation from data
space to vectors in an abstract Hilbert space. SVC pro-
ceeds to search for the minimal sphere surrounding these
states in Hilbert space. We will also associate data points
with states in Hilbert space. Such states may be repre-
sented by Gaussian wave functions, whose sum is (x).
This is the starting point of our quantum clustering (QC)
method. We will search for the Schrodinger potential for
which ¢(x) is a ground state. The minima of the potential
define our cluster centers.

The Schrodinger potential.—We wish to view ¢ as an
eigenstate of the Schrodinger equation
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Here we rescaled H and V of the conventional quantum
mechanical equation to leave only one free parameter, o.
For comparison, the case of a single point at x; corre-
sponds to Eq. (2) with V = #(x —xy)?and E = d/2,
thus coinciding with the ground state of the harmonic os-
cillator in quantum mechanics.

Given ¢ for any set of data points we can solve Eq. (2)
for V:
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Let us furthermore require that minV = 0. This sets the

value of
2

T Vi

E = —min @
and determines V(x) uniquely. E has to be positive since
V is a non-negative function. Moreover, since the last term
in Eq. (3) is positive definite, it follows that

O0<E= é (5)
2

We note that ¢ is positive definite. Hence, being an eigen-
function of the operator H in Eq. (2), its eigenvalue E is the
lowest eigenvalue of H, i.e., it describes the ground state.
All higher eigenfunctions have nodes whose numbers in-
crease as their energy eigenvalues increase. (In quantum
mechanics, where one interprets |¢|2 as the probability dis-
tribution, all eigenfunctions of H have physical meaning.
Although this approach could be adopted, we have chosen
¢ as the probability distribution because of the simplicity

of algebraic manipulations.)
Given a set of points defined within some region of
space, we expect V(x) to grow quadratically outside this
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region, and to exhibit one or several local minima within
the region. We identify these minima with cluster centers,
which seems natural in view of the opposite roles of the
two terms in Eq. (2): Given a potential function, it attracts
the data distribution function ¢ to its minima, while the
Laplacian drives it away. The diffused character of the
distribution is the balance of the two effects.

As an example we display results for the crab data set
taken from Ripley’s book [7]. These data, given in a
five-dimensional parameter space, show nice separation
of the four classes contained in them when displayed in
two dimensions spanned by the second and third principal
components [8] (eigenvectors) of the correlation matrix of
the data. The information supplied to the clustering algo-
rithm contains only the coordinates of the data points. We
display the correct classification to allow for visual com-
parison of the clustering method with the data. Starting
with o = 1/+/2 we see in Fig. 1 that the Parzen proba-
bility distribution, or the wave-function ¢, has only a
single maximum. Nonetheless, the potential, displayed in
Fig. 2, already shows four minima at the relevant locations.
The overlap of the topographic map of the potential with
the true classification is quite amazing. The minima are the
centers of attraction of the potential, and they are clearly
evident although the wave function does not display local
maxima at these points. The fact that V(x) = E lies above
the range where all valleys merge explains why (x) is
smoothly distributed over the whole domain.

As o is being decreased more minima will appear in
V(x). For the crab data, we find two new minima as o
is decreased to one-half. Nonetheless, the previous
minima become deeper and still dominate the scene. The
new minima are insignificant, in the sense that they lie
at high values (of order E). Classifying data points to
clusters according to their topographic location on the
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FIG. 1. Ripley’s crab data [7] displayed on a plot of their sec-

ond and third principal components with a superimposed topo-
graphic map of Roberts’ probability distribution for o = 1/+/2.
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surface of V(x), roughly the same clustering assignment
is expected for a range of o values. One important
advantage of quantum clustering is that E sets the scale
on which minima are observed. Thus, we learn from
Fig. 2 that the cores of all 4 clusters can be found at V
values below 0.4E. In comparison, the additional maxima
of ¢, which start to appear at lower values of o, may lie
much lower than the leading maximum and may be hard
to locate numerically.

Principal component analysis (PCA).— In our example,
data were given in some high-dimensional space and we
analyzed them after defining a projection and a metric,
using the PCA approach. The latter defines a metric that is
intrinsic to the data, determined by second order statistics.
But, even then, several possibilities exist, leading to non-
equivalent results.

Principal component decomposition can be applied both
to the correlation matrix Cog = (x,xg) and to the covari-
ance matrix

Cap = A(xa = (x)a) (xg = (X)p)) = Cap = (X)alX)p -
(6)

In both cases averaging is performed over all data points,
and the indices indicate spatial coordinates from 1 to d.
The principal components are the eigenvectors of these
matrices. Thus we have two natural bases in which to
represent the data. Moreover, one often renormalizes the
eigenvector projections, dividing them by the square roots
of their eigenvalues. This procedure is known as “whiten-
ing,” leading to a renormalized correlation or covariance
matrix of unity. This is a scale-free representation that
would naturally lead one to start with o = 1 in the search
for (higher order) structure of the data.
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FIG. 2. A topographic map of the potential for the crab data
with o = 1/+/2, displaying four minima (denoted by crossed
circles) that are interpreted as cluster centers. The contours of
the topographic map are set at values of V(x)/E = 0.2, 0.4, 0.6,
0.8, 1.
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The PCA approach that we have used in our example
was based on whitened correlation matrix projections.
Had we used the covariance matrix instead, we would get
similar, but slightly worse, separation of the crab data.
Our example is meant to convince the reader that once a
good metric is found, QC conveys the correct information.
Hence we allowed ourselves to search first for the best
geometric representation, and then apply QC.

QC in higher dimensions.— Increasing dimensionality
means higher computational complexity, often limiting the
applicability of a numerical method. Nonetheless, here we
can overcome this “curse of dimensionality” by limiting
ourselves to evaluating V at locations of data points only.
Since we are interested in where the minima lie, and since
invariably they lie near data points, no harm is done by
this limitation. The results are depicted in Fig. 3. Here
we analyzed the crab problem in a three-dimensional (3D)
space, spanned by the first three PCs. Shown in this fig-
ure are V /E values as functions of the serial number of the
data, using the same symbols as in Fig. 2 to allow for com-
parison. Using all data of V < 0.3E, one obtains cluster
cores that are well separated in space, corresponding to the
four classes that exist in the data. Only 9 of the 129 points
that obey V < 0.3E are misclassified by this procedure.
Adding higher PCs, first component 4 and then component
5, leads to deterioration in clustering quality. In particular,
lower cutoffs in V/E, including lower fractions of data,
are required to define cluster cores that are well separated
in their relevant spaces.

One may locate the cluster centers, and deduce the clus-
tering allocation of the data, by following the dynamics of
gradient descent into the potential minima. By defining
yi(0) = x;, one follows the steps of y; (r + Ar) = yi(¢) —
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FIG. 3. Values of V(x)/E are depicted in the crab problem
with three leading PCs for o = 1/2. They are presented as a
function of the serial number of the data, using the same symbols
of data employed previously. One observes low lying data of all
four classes.
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n(t)VV (y;(2)), letting the points y; reach an asymptotic
fixed value coinciding with a cluster center. More sophis-
ticated minimum search algorithms (see, e.g., chapter 10
in [9]) can be applied to reach the fixed points faster. The
results of a gradient-descent procedure, applied to the 3D
analysis of the crab data shown in Fig. 3, are that the three
classes of data points 51 to 200 are clustered correctly with
only five misclassifications. The first class, data points
1-50, has 31 points forming a new cluster, with most of the
rest joining the cluster of the second class. Only 3 points
of the first class fall outside the 4 clusters.

We also ran our method on the iris data set [10], which is
a standard benchmark obtainable from the UC Irvine (UCI)
repository [11]. The data set contains 150 instances, each
composed of four measurements of an iris flower. There
are three types of flowers, represented by 50 instances each.
Clustering of these data in the space of the first two princi-
pal components, using o = 1/4, has the amazing result of
misclassification of 3 instances only. Quantum clustering
can be applied to the raw data in four dimensions, leading
to misclassifications of the order of 15 instances, similar
to the clustering quality of [4].

Distance-based QC formulation.— Gradient descent
calls for the calculation of V both on the original data
points as well as on the trajectories they follow. An alter-
native approach can be to restrict oneself to the original
values of V, as in the example displayed in Fig. 3, and
follow a hybrid algorithm to be described below. Before
turning to such an algorithm let us note that, in this case,
we evaluate V on a discrete set of points V(x;) = V;.
We can then express V in terms of the distance matrix
Dij = |Xi - le as

Vi=E— -+ =" (7
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with E chosen appropriately so that minV; = 0. This type
of formulation is of particular importance if the original
information is given in terms of distances between data
points rather than their locations in space. In this case we
have to proceed with distance information only.

By applying QC we can reach results such as in Fig. 3
without invoking any explicit spatial distribution of the
points in question. One may then analyze the results by
choosing a cutoff, e.g., V < 0.2E, such that a fraction
(e.g., one-third) of the data will be included. On this sub-
set we select groups of points whose distances from one
another are smaller than, e.g., 20, thus defining cores of
clusters. Then we continue with higher values of V, e.g.,
0.2E <V < 0.4E, allocating points to previous clusters
or forming new cores. Since the choice of distance cutoff
in cluster allocation is quite arbitrary, this method can-
not be guaranteed to work as well as the gradient-descent
approach.

Generalization.— Our method can be easily generalized
to allow for different weighting of different points, as in
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with ¢; = 0. This is important if we have some prior in-
formation or some other means for emphasizing or deem-
phasizing the influence of data points. An example of the
latter is using QC in conjunction with SVC [6]. SVC has
the possibility of labeling points as outliers. This is done
by applying quadratic maximization to the Lagrangian

Wo=1-= Bije XX ©)
i,j

over the space of all0 = B, = pLN subject to the constraint
> Bi = 1. The points for which the upper bound of S3; is
reached are labeled as outliers. Their number is regulated
by p, being limited by pN. Using for the QC analysis
a choice of ¢; = N T B; will eliminate the outliers of
SVC and emphasize the role of the points expected to lie
within the clusters.

Discussion.—QC constructs a potential function V(x)
on the basis of data points, using one parameter, o, that
controls the width of the structures that we search for. The
advantage of the potential V over the scale-space proba-
bility distribution is that the minima of the former are
better defined (deep and robust) than the maxima of the
latter. However, both of these methods put the empha-
sis on cluster centers, rather than, e.g., cluster boundaries.
Since the equipotentials of V may take arbitrary shapes,
the clusters are not spherical, as in the k-means approach.
Nonethelss, spherical clusters appear more naturally than,
e.g., ring-shaped or toroidal clusters, even if the data would
accommodate them. If some global symmetry is to be ex-
pected, e.g., global spherical symmetry, it can be incorpo-
rated into the original Schrodinger equation defining the
potential function.

QC can be applied in high dimensions by limiting the
evaluation of the potential, given as an explicit analytic
expression of Gaussian terms, to locations of data points
only. Thus the complexity of evaluating V; is of order N2
independent of dimensionality.
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Our algorithm has one free parameter, the scale o. In all
examples we confined ourselves to scales that are of order
1, because we have worked within whitened PCA spaces.
If our method is applied to a different data space, the range
of scales to be searched for could be determined by some
other prior information.

Since the strength of our algorithm lies in the easy se-
lection of cluster cores, it can be used as a first stage of
a hybrid approach employing other techniques after the
identification of cluster centers. The fact that we do not
have to take care of feeble minima, but consider only ro-
bust deep minima, turns the identification of a core into an
easy problem. Thus, an approach that drives its rationale
from physical intuition in quantum mechanics can lead to
interesting results in the field of pattern classification.

We thank B. Reznik for a helpful discussion.
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