
Scientific Data Analysis using Neural Networks 

Lecture Notes by David Horn 

Tel Aviv University, July 2019 

 

 

 

1. Introduction 

2. Muti-Layer-Perceptron 

3. Preprocessing with PCA or SVD. Feature Filtering. 

4. The Bias-Variance Problem, and averaging over networks. 

5. Support Vector Machines 

6. Support vector Clustering 

7. Novel Formulation of Parzen Data Analysis 

8. Weight Shape Decomposition (WSD) and Quantum Clustering 

(QC) 

9. Shape Analysis of Images 

10. From Shallow to Deep Networks 

11. The DL Paradigm and its Supremacy 

12. Examples of Applications 

13. ML of ML Architectures 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 1. Introduction: The discplinarity gap 

The Big Data buzz of recent years has led to public interest in data analysis and to a 

flood of books and articles in the professional literature as well as in the general 

media. As a physicist, I was brought up – and later I preached the same dogma – on 

the understanding that we test the world around us through experimental observations, 

and we try to extract from them their essential features, and thus formulate the laws 

that govern natural phenomena. This tradition, which may be traced back to Galileo 

Galilei, is the foundation of modern science. Hence I find myself surprised from time 

to time when people talk about the new field of Data Science: haven't we done it all 

along in our scientific quests for centuries? 

The common answer is that never before have we had to analyze such vast amounts of 

data, and never before have we had the computational capabilities to do so. I wish to 

add another important aspect putting it into the perspective of disciplinarity.  The 

importance of large scale data analytics has entered into the commercial domain and 

into social sciences and humanistic studies. They have turned to experts in computer 

science and statistics to help them make sense of these new challenges. This has led to 

the birth of data scientists, data engineers and data managers, in different regimes of 

science and technology. 

Having had multidisciplinary experience in neural computation and in bioinformatics, 

and collaborating with colleagues and students from other disciplines, I have learned 

that disciplinarity leads to a deep-rooted bias in the process of analysis and 

understanding of data. This may sound odd to the general public, but the truth is that 

tapping different experts one may get different answers as to what to do, and what is 

interesting, based on the disciplines they were trained in. Hence the new task force of 

data experts should be familiar with different approaches and different disciplinary 

attitudes leading to the search paths that they choose. 

This collection of lectures, which were originally aimed toward an audience of 

physicists, tries to cover some gaps among disciplines which I have encountered 

during my studies with many students and collaborators. One example of a question 

which often comes up in conversations is "what is it that a neural network learns"? 

The technical details are well explained by Machine Learning, a field which becomes 

a pillar of data science. But the question is still an ongoing source for research in this 

field. In chapter 2 we discuss a point of view presented in 1987, when neural 

computation was making its first steps as a sub-discipline. Since this period lies in the 

past, well beyond the birth of deep networks in 2012, it is hardly mentioned in 

modern texts.  

This example may explain the effort underlying this set of lecture notes. It should be 

viewed as complimentary to standard modern texts, some of which will be quoted in 

the different chapters. It is not intended to serve as an exhaustive coverage of the 

newly developing data science transdiscipline1.  

 

 

 



Warning and Apologies. 

This set of lectures started as a course for practicing High Energy physicists. You may 

find it biased toward specific topics which I have been personally involved with. I 

have not made efforts to present an extensive list of references, and therefore many 

important contributions to neural networks and deep learning are missing. I took 

liberty of using many texts and figures from existing publications. This set of lectures 

should be regarded as an informal collection of insights rather than a novel textbook. I 

hope it will be valuable to scientists from different fields who strive to understand and 

use neural networks for data analysis. 

 

 

 

 

 

Footnote 1. The concept of transdisciplinarity has developed in humanities and social 

sciences. A recent philosophical and historical summary is provided by [Osborne 

2015], where it is described how and why practical studies require the collaboration 

across different disciplines. 

Reference 

Peter Osborne, 2015. Problematizing Disciplinarity, Transdisciplinary Problematics. 

Theory, Culture & Society 2015, Vol. 32(5–6) 3–35. 

https://doi.org/10.1177/0263276415592245 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 2. Multi-Layer-Perceptron: The Feed Forward Neural Network: how does it learn? 

Lessons from the 80s. 

 

A neural network is defined in terms of layers of simple computational elements (dubbed as 

neurons, a.k.a. perceptrons) in an architecture which is exemplified by Fig. 1. Our 

discussion follows [Hertz, 1991]. This structure, which is also known as a multi-layer 

perceptron (MLP) contains an input vector ξ, which is 5-dimensional in this case, a 2-

dimensional output vector O, and a hidden layer whose three outputs form the vector V. In 

addition, there exist many weights denoted by w and W, which are crucial in transferring the 

outputs of one layer to the inputs of the following one. In this description the conventional 

bias, or threshold, is absent. It can be retrieved by replacing ξ1 by -1 and identifying its 

connecting weights with thresholds. 

 

 

Fig. 1. A multi-layer perceptron (MLP). Reproduced from Hertz (1991). 

V is calculated in terms of ξ as 

𝑉𝑗 = 𝑔(∑ 𝑤𝑗𝑘 ξ𝑘 𝑘 )                                                                              (1) 

where 𝑔 is a non-linear function, such as the sigmoid 𝑔(𝑥) = (1 + 𝑒−𝑥/ 𝜎)−1, applied to the 

linear sum of inputs multiplied by the weights. The sigmoid has a strong non-linear behavior 

near x=0, depending on the parameter 𝜎, while for asymptotic x it turns into a binary decision 

function.  

If one considers a set of N different input vectors 𝛏𝜇 the network will produce a set of N 

different output vectors 𝐎𝜇 related through all weights: 

𝑂𝑖
𝜇

= 𝑔(∑ 𝑊𝑖𝑗𝑗  𝑉𝑗
𝜇

) = 𝑔(∑ 𝑊𝑖𝑗𝑗  𝑔(∑ 𝑤𝑗𝑘 ξ𝑘
𝜇

𝑘 ) )                          (2) 

The basic idea of constructing a MLP as a learning tool, is to use a set of N examples 𝛏𝜇 for 

which the outputs 𝜽𝜇are well-known, and change the sets of all weights w (meaning both w 

and W) so that the desired output equals as much as possible to the output that the network 

calculates. For this purpose, one defines the Least Mean Squares (LMS) function 

𝐹[𝐰] = ∑ (𝜇 𝜽𝜇 − 𝑶𝜇)2                                                                          (3)  



and reduces it to a minimum through a procedure known as back-propagation [Rumelhart 

1986], moving consecutively from the upper to the lower layer of the network, changing the 

weights through gradient descent. 

This procedure of learning from examples is the basic tool of supervised learning. Running 

time and again over all N examples one modifies the set w until the lowest values of F is 

reached. To get a feeling of what this implies, let us consider the case of a simple rule, like 

addition, applied to integers represented by binary inputs, leading to integers represented by 

binary outputs. With integers smaller than 2𝑛 one can represent the problem as a network 

with 2n binary inputs and n+1 binary outputs. The questions which arise are will such a 

network learn the addition rule, and, if it does, how many examples does it have to be trained 

on until it generalizes for all test cases, i.e. until it performs addition correctly on all examples 

on which it has not been trained. 

Let us first consider the question if the network can cope with such a problem. For each one 

of the 2n binary inputs (of the two numbers which should be added) it has to assign one 

specific output. This amounts to choosing one out of 2𝑛+1 possible Boolean rules. The 

number of available parameters, i.e. elements of w, in the setup of a MLP with an 

intermediate layer of size m is m(4n+1) which, for large n, lags far behind the number of 

possible Boolean rules, unless m is allowed to grow considerably. Thus a network is limited 

by what it can do, just as a single perceptron cannot cope with the XOR problem1 [Minsky 

and Papert 1969]. Nonetheless chances are that the addition rule is doable by a network with 

moderate m. In a related problem, where the layered MLP was replaced by a set of 

interconnected logical gates, [Paternello and Carnavali 1987] have shown that only a small 

subset of all 22𝑛 examples was needed to train such a network to perform addition correctly.  

For a network to perform such a task there exist two conditions. First that the architecture of 

the network enables the accommodation of the task. The second is that there should be many 

configurations of w which enable it. In terms of gradient descent dynamics one needs minima 

of F[w] which satisfy F[w]=0, providing a strict adherence to the rule which we want the 

network to learn. Only if there are many such minima in w space, one can hope that the 

training procedure will easily converge into one of them, rather than keeping to search for a 

suitable minimum until it exhausts all possible examples. 

For a large enough hidden layer, a neural network can approximate any function to a desired 

accuracy, as was proved by [Hornik 1989] and [Cybenko 1989]. Nonetheless, for practical 

purposes it is useful to have additional hidden layers. Thus [Siu and Roychodhury 1993] have 

shown that multiplication of integers can be optimally represented by a MLP with two hidden 

layers. 

As you may recall, the inability of the perceptron to solve the XOR problem hindered the 

advancement of neural networks. The backpropagation algorithm, as applied to MLP, has led 

to a blooming of neural networks since the mid-1980s. But only recently, the increase in 

computational power, and the realization of the versatility of novel configurations, have led to 

the surge of Deep Neural Networks (DNN) in research and in commercial applications.  

 

 

Footnote 1. 

The single perceptron, e.g. the neuron V2 in  Figure 1, is limited by what 𝑉2
𝜇

= 𝑔(∑ 𝑤2𝑘 ξ𝑘
𝜇

𝑘 ) 

can represent. Since the input of 𝑔 is a linear function in ξ space, 𝑔 becomes a decision 

hyperplane in this space such that it leads to two different binary values for all inputs which 



lie, with distances larger than 𝜎, below or above it. This property of the single neuron is 

known as linear separability. Thus the XOR function, corresponding to the following 

Boolean truth table, cannot be implemented in the two-dimensional vector space.  

 

input output 

(0,0) 0 

(0,1) 1 

(1,0) 1 

(1,1) 0 

The XOR function 

 

 

References 

Hertz, J., Krogh, A., Palmer, R. G. Introduction to the Theory of Neural Computation. 

Addison-Wesley, Redwood City, CA, 1991. 

K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal 

approximators”, Neural Networks 2, 359 (1989). 

Cybenko, G. Approximation by superposition of a sigmoidal function. Math. of Control, 

Signals, and Systems 2 (1989), 303-314. 

Minsky, M. L., Papert, S. A.  Perceptrons: An Introduction to Computational Geometry. The 

MIT Press, Cambridge, MA, 1969 (expanded edition 1988). 

Rumelhart, D. E., Hinton, G. E., Williams, R. J. "Learning internal representations by error 

propagation". In "Rumelhart, D. E., McClelland, J. L., et al. (eds.) Parallel Distributed 

Processing: Explorations in the Microstructure of Cognition, Vol. 1. The MIT Press, 

Cambridge, MA, 1986." pp. 318-362 

Rumelhart, D., Hinton, G. & Williams, R. Learning representations by back-propagating 

errors. Nature 323, 533–536 (1986). 

Siu, K.-Y., Roychowdhury, V. Optimal depth neural networks for multiplication and related 

problems. In: Advances in Neural Information Processing Systems 5 (ed. S. J. Hanson, J. D. 

Cowan, C. L. Giles). Morgan Kaufmann, San Mateo, CA, 1993. Pp. 59-64. 

 

 

 

 

 

 

 

 

 



Chapter 3.  Preprocessing with PCA or SVD. Feature Filtering. 

 

Given a set of N data points in high dimensions 𝐱𝑖 ∈ ℝ𝑑  one is faced with various problems 

such as easy visualization and noise reduction, which can be solved by performing a linear 

transformation to a new set of coordinates which is determined by characteristics of the data. 

This can be achieved by Principal Component Analysis (PCA), applied either to the 

correlation matrix 𝑪𝒐𝒓 = ∑ 𝐱𝑖𝑖𝑗 𝐱𝑗 or the covariance matrix 𝑪𝒐𝒗 = ∑ (𝐱𝑖 − 𝝁)𝑖𝑗 (𝐱𝑗 − 𝝁) 

where  𝝁=
1

𝑁
∑ 𝐱𝑖𝑖  is the average of all data points. These symmetric matrices can be 

diagonalized by unitary transformations whose eigenvalues have the meaning of contribution 

to the variance of the data, conventionally ordered from largest to smallest. The eigenvectors 

are referred to as Principal Components (PCs). Data visualization is then allowed by selecting 

a reduced set of PCs, which also serves the role of noise reduction. 

When the data is presented by an nxm matrix M, whose n rows specify n instances (data-

points) and m columns specify the features of all instances, we are no longer dealing with a 

Euclidean space. Different features may have completely different meanings, but a reduction 

of these features by linear combinations into some low dimensional correlation space may 

still be very desirable1. This can be achieved by the Singular Value Decomposition (SVD)  

𝑴 = 𝑈𝑆𝑉𝑇 

where both U and V are unitary matrices (whose relevant dimensions are dictated by n and m 

respectively) and where S (with dimensions nxm) has positive non-vanishing elements only 

on its diagonal, conventionally ordered from the largest to the smallest eigenvalue. It follows 

then that  

 𝑴𝑴𝑇 = 𝑈𝑆𝑆𝑇𝑈𝑇  and  𝑴𝑇𝑴 = 𝑉𝑆𝑇𝑆𝑉𝑇 

i.e., SVD leads to two different PCA realizations, applied to the correlation matrices of 

instances and of features correspondingly, sharing the same set of eigenvalues. 

The SVD procedure is presented diagrammatically in Fig. 1. In this example, where m=9 

features are involved, we present only the first 9 columns of U and the first 9 rows of S. The 

other rows of S contain only zeros; hence other columns of U do not matter in this calculation. 

 

 

 

 

 

 

 

 

 

Fig.1 Illustration of SVD, in which the matrices U and S are trimmed to show only 9 columns 

and 9 rows correspondingly. Since all other rows of S contain only zeros, all the non-shown 

entries do not contribute to the illustrated calculation. Following [Varshavsky 2007] 

M 

S 



Dimensional reduction can be achieved by approximating 𝑴 with  𝑿 = 𝑈𝑆𝑟𝑉𝑇 where 𝑆𝑟 is a 

reduced version of 𝑆 keeping only the first r leading eigenvalues. This turns out to be the 

best approximation of 𝑴 by an r-dimensional matrix in the LMS sense, i.e. it minimizes the 

sum of squared differences of all 𝑴 and 𝑿 entries. 

As a first example of the use of dimensional reduction let us look at a very recent result from 

the UK biobank, displayed in Fig. 2. It demonstrates how very large data can be simply 

ordered through their PCs which follow from an ancestral background analysis. The authors 

[Bycroft 2018] note that "the first two principal components separate out individuals with 

sub-Saharan African ancestry, Europe ancestry and east Asian ancestry. Individuals who self-

report as mixed ethnicity tend to fall on a continuum between their constituent groups. Further 

principal components capture population structure at subcontinental geographic scales" 

Fig. 2. Taken from the UK Biobank analysis of [Bycroft 2018]. Each point represents a UK Biobank participant 

(n=488,377 samples) and is placed according to their principal component (PC) scores in each of the top four 

principal components. Colours and shapes indicate the self-reported ethnic background of each individual. 

As a second illustration of dimensional reduction we look at results of applying SVD to a 

gray image, whose pixel entries can be regarded as a data matrix 𝑴.  In the example of Fig. 

3a, we have a 200x320 pixel representation, thus 𝑴 has rank 200. Approximating it with 10 

eigenvalues one gets a recognizable image. With 50 eigenvalues the match seems perfect (see 

https://math.byu.edu/~schow/clown_svd.htm). 

 

 

 

 

 

 

 



Fig. 3 A. Image leads to a matrix with rank=200. B. Image reconstructed with a reduced 

matrix having just the 10 leading eigenvalues. Source: 

https://math.byu.edu/~schow/clown_svd.htm 

 

 

Feature Filtering 

 

In the example of Fig. 3, all entries of the matrix have the same meaning, i.e. gray scale image 

values. This is not the case for general data matrices. In order to have a measure of the 

different importance of different features let us introduce the concept of SVD-Entropy [Alter 

2000, Wall 2003] defined in term of all eigenvalues 𝑆𝑘 appearing on the diagonal of 𝑆  

𝐸 = −
1

log 𝑁
∑ 𝑃𝑘

𝑁
𝑘=1 log 𝑃𝑘      where   𝑃𝑘 = 𝑆𝑘

2 / ∑ 𝑆𝑙
2

𝑙 . 

This allows us to introduce the concept of CE, defining the contribution of some feature j (out 

of the m features) by comparing 𝐸(𝑀) with 𝐸(𝑀′), the entropy of an nx(m-1) matrix which 

lacks this feature j:  𝐶𝐸(𝑗) = 𝐸(𝑀) − 𝐸(𝑀′) . The results lead to an understanding which 

features should be kept for an SVD analysis in the problem at hand. This is exemplified in 

Fig. 4, reproduced from [Varshavsky 2006]. The problem analyzed here is clustering of cells 

extracted from 72 Leukemia patients, classified into four groups, whose measured features are 

expression values of 7129 genes [Golub 1999]. Evaluating CEs of the features, they are 

presented here in a ranked order. One clearly observes three general groups of features: high 

CE values, which turn out to be the most relevant contributions for our discussion, many 

neutral CEs and a few negative CEs which are due to noisy features. [Varshavsky 2006] have 

demonstrated that clustering the data on the basis of only 100-200 leading CE features, leads 

to much better results than employing all features. 

The reasoning behind this selection is the following: SVD entropy is low when one or a few 

features are dominant. In this case it suffices to use these features to label the data and no 

further SVD decomposition is needed. On the other hand, large SVD entropy indicates that 

retaining the relevant features we expect the instances (data points) to be more evenly spread 

in the truncated SVD space. It is then expected that clustering algorithms will be useful to 

catch the non-linear grouping which exists in such data. Hence the general recommendation is 

to apply feature filtering before reducing dimensionality through SVD. 

For other methods of feature selection see, e.g., [Guyon and Elisseeff, 2003]. 



 

Fig. 4. Unsupervised Feature Filtering (UFF) evaluates CE for each feature. Results 

[Varshavsky 2006] apply to the data set of [Golub 1999]. The green points in the inset 

correspond to an alternative feature filtering which proceeds with gradual removal of the 

highest feature when selecting the next one. 

 

References 

Alter, O., Brown, P.O. and Botstein, D. (2000) Singular value decomposition for genome-

wide expression data processing and modeling, PNAS, 97, 10101-10106. 

Wall, M., Rechtsteiner, A. and Rocha, L. (2003) Singular Value Decomposition and Principal 

Component Analysis. In Berrar, D., Dubitzky, W. and Granzow, M. (eds), A Practical 

Approach to Microarray Data Analysis. Kluwer, 91–109. 

Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P., Coller, H., 

Loh, M.L., Downing, J.R., Caligiuri, M.A., Bloomfield, C.D. and Lander, E.S. (1999) 

Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene 

Expression Monitoring, Science, 286, 531-537. 

Guyon, I. and Elisseeff, A. (2003) An Introduction to Variable and Feature Selection, Journal 

of Machine Learning Research, 3, 1157--1182. 

Roy Varshavsky, Assaf Gottlieb, Michal Linial and David Horn. "Novel Unsupervised 

Feature Filtering of Biological Data" Bioinformatics 2006, 22(14):e507-513.  

Roy Varshavsky, PhD thesis 2007.  

Clare Bycroft et al. 2018. The UK Biobank resource with deep phenotyping and genomic 

data. Nature 562, 203-209. 

 

 

Footnote 1:  When the different entries have very different numerical ranges, one should normalize 

them to similar scales so that dissimilarities will not adversely affect the resulting analysis 



Chapter 4: The Bias-Variance Problem, and averaging over networks. 

 

One of the things you learn when you deal with data is that you have to deal with errors, 

handle them correctly, and accept their existence as part of the game you play. A physics 

student learns in the lab to distinguish between systematic and statistic errors in the 

measurements which s/he performs. The analogs of these concepts in machine learning were 

introduced by [Geman 1992] as bias and variance, where the first refers to the computational 

tools one employs and the second to inherent properties of the data. The mathematical 

definition which they have suggested, can be written in the language of statistical inference as  

ED[(fD(x) − E[y|x])2] = (ED[fD(x)] − E[y|x] )2
 + ED[(fD(x) − ED[fD(x)])2] 

Here ED represents expectation with respect to all possible training sets D. fD(x) is the function 

which is the desired output of data x within the set D, with ED[fD(x)] representing the "ground-

truth" which should be derived from all data-sets D. We try to estimate it by using a 

computational statistical tool (e.g. a neural network), predicting the distribution of output y 

given input x: y|x. The first term on the right-hand side is the bias of our estimator, and the 

second is the variance of the data. Together they contribute to the error of our result. 

A bias/variance tradeoff appears in training neural networks for many epochs. Conventionally 

one divides data sets into training sets and test sets. As training of the network continues for 

increasing number of epochs, the training error decreases, but the generalization error, as 

measured on the test set, reaches a minimum and then increases. The decrease of the training 

error corresponds to decrease of bias, but the increase of the generalization error reflects an 

increase due to variance. Stopping at the minimum of the generalization error strikes a 

balance between the two. In the absence of a declared test set, the developer should reserve 

some fraction of the training set to serve as a cross-validation set, to extract from it when the 

desired balance is reached. 

For one given data set, one may apply the same formalism to the set of all initial conditions of 

the neural network, using as predictor the average outputs of these sets. One may then argue 

[Naftaly 1997] that this average reduces the variance of the predictor. This was applied to a 

study of the time series of sunspot activities. This popular time series served as a challenge to 

neural networks initiated by [Weigend 1990]. The purpose was predicting the lowest average 

relative variance (ARV) of the test set 

 𝐴𝑅𝑉𝑡𝑟𝑎𝑖𝑛,𝑡𝑒𝑠𝑡 =
∑ (𝑦𝑡𝑡∈𝑡𝑟𝑎𝑖𝑛,𝑡𝑒𝑠𝑡 −𝑝𝑡)2

∑ (𝑦𝑡𝑡∈𝑡𝑟𝑎𝑖𝑛 −𝐸{𝑦])2   

 

where yt is the yearly sunspot activity, and pt is the result of the predictor at time t. The 

denominator is the observed variance of the data in the training set.  The training set 

contained the period between 1701 and 1920, for which one minimizes ARV train , and the test 

set contained the measurements during the years 1921 to 1955 on which one tests the 

prediction ARV test . The yearly sunspot activity is demonstrated in Fig. 1. 

 

 

[Naftaly 1997] employed a set of Recurrent Neural Networks (RNNs), with an architecture of 

12 inputs, a hidden layer of 4 sigmoidal neurons, and one output. The 12 inputs contained the 

measured sunspot activities at years t-1, t-2, t-3 , t-4 , t-9 and t-10, and also the activities of 

the four neurons of the hidden layer at time t-1. Employing Q networks, the predictor was 

defined as the average of all Q outputs. 



 

Fig. 1. The yearly sunspot activity recorded between 1701 and 1955. Reproduced from 

[Naftaly 1997]. 

 

 

 

 

 

 

 

 

 

Fig.2. Plots of the predictors of Q networks for (left) the training set and (right) the test set vs 

T, the number of training periods. The curves are shown for different choices of group sizes: 

Q = 1; 2; 4; 10; 20 from top to bottom. The lowest curve is the extrapolation to Q→ ∞. 

Reproduced from [Naftaly 1997]. 

The results are demonstrated in Fig. 2 for both the training and the test set. As expected one 

sees a decrease of both errors as function of the number of training periods t, due to decrease 

of the bias, as expected. But then one observes increase due to variance. The latter is however 

almost completely wiped out for large Q values. Thus one can continue to large epochs, 

further decreasing the bias and decreasing the ARV since the variance due to initial 

conditions has been eliminated. Note that one finds in this example an increase of variance for 

low Q values also in the training set, which happens because the networks employed here 

have recurrent elements in the hidden layer. 

References 

Geman S, Bienenstock E and Doursat R. 1992 Neural networks and the bias/variance 

dilemma Neural Comput.  4 1–58 

Naftaly U, Intrator N and Horn D. 1997. Optimal ensemble averaging of neural networks. 

Network: Comput. Neural Syst. 8 283–296. 

Weigend A S, Huberman B A and Rumelhart D 1990. Predicting the future: a connectionist 

approach Int. J. Neural Syst. 1 193–209 

T T 



Chapter 5.   Support Vector Machines. 

 

 

The perceptron, or single mathematical neuron, is a device which implements linear 

separation of data into two groups. In Fig. 1 we demonstrate this situation where the 

separating plane is defined in terms of its perpendicular vector w (defined by the perceptron's 

weights) and having bias b. Clearly many separating planes can be defined, but the one 

chosen here, together with the two end points associated with the blue group and the one edge 

point of the green group, is such that the margin separating these two groups is the largest, 

m=2/|w|.  

 
 
 

 

 

Fig. 1. Marginal decision boundaries in linear SVM. The widest margin between two 

separable classes of data points is obtained by the configuration exemplified here. 

Reproduced from datascience.stackexchange.com. 

  

Obviously a perceptron cannot solve a non-linear separation task, such as presented in Fig. 2. 

This can however be provided by a Support Vector Machine (SVM) using the kernel trick 

[Boser, Guyon, Vapnik 1992]. This formalism [Vapnik 1995] has led to many applications in 

the following decade, allowing for the development of Machine Learning (ML) into a new 

direction. 

 

https://www.google.co.il/imgres?imgurl=https%3A%2F%2Fi.stack.imgur.com%2FagvlL.png&imgrefurl=https%3A%2F%2Fdatascience.stackexchange.com%2Fquestions%2F19359%2Fwhy-do-we-use-1-and-1-for-marginal-decision-boundaries-in-svm&docid=H65qliJ9imHcJM&tbnid=t4dC4sEL1KvhxM%3A&vet=10ahUKEwjQm_G-jZreAhVI_aQKHTx2AAAQMwhxKAkwCQ..i&w=835&h=419&bih=768&biw=1414&q=SVM&ved=0ahUKEwjQm_G-jZreAhVI_aQKHTx2AAAQMwhxKAkwCQ&iact=mrc&uact=8
https://www.google.co.il/imgres?imgurl=https%3A%2F%2Fi.stack.imgur.com%2FagvlL.png&imgrefurl=https%3A%2F%2Fdatascience.stackexchange.com%2Fquestions%2F19359%2Fwhy-do-we-use-1-and-1-for-marginal-decision-boundaries-in-svm&docid=H65qliJ9imHcJM&tbnid=t4dC4sEL1KvhxM%3A&vet=10ahUKEwjQm_G-jZreAhVI_aQKHTx2AAAQMwhxKAkwCQ..i&w=835&h=419&bih=768&biw=1414&q=SVM&ved=0ahUKEwjQm_G-jZreAhVI_aQKHTx2AAAQMwhxKAkwCQ&iact=mrc&uact=8
https://www.google.co.il/url?sa=i&source=images&cd=&ved=0ahUKEwjQm_G-jZreAhVI_aQKHTx2AAAQMwhxKAkwCQ&url=https%3A%2F%2Fdatascience.stackexchange.com%2Fquestions%2F19359%2Fwhy-do-we-use-1-and-1-for-marginal-decision-boundaries-in-svm&psig=AOvVaw023--FfOxEZ6xGRCnm02O7&ust=1540299653981805&ictx=3&uact=3
https://www.google.co.il/url?sa=i&source=images&cd=&ved=0ahUKEwjQm_G-jZreAhVI_aQKHTx2AAAQMwhxKAkwCQ&url=https%3A%2F%2Fdatascience.stackexchange.com%2Fquestions%2F19359%2Fwhy-do-we-use-1-and-1-for-marginal-decision-boundaries-in-svm&psig=AOvVaw023--FfOxEZ6xGRCnm02O7&ust=1540299653981805&ictx=3&uact=3


Fig. 2. A non-linear separation task (left), can be solved by an SVM employing a quadratic 

kernel projecting the data onto a 2-dim manifold in a 3-dim space. Reproduced from 

Wikipedia. Origin: By Shiyu Ji - Own work, CC B4.0, 

https://commons.wikimedia.org/w/index.php?curid=60458994 

 

A linear-SVM is identical to the perceptron. Using the configuration drawn in Fig. 1, also 

known as a hard-margin implementing linear separability, SVM refers to the extreme data 

points obeying |𝒘 ·  𝒙𝑖 + 𝑏| = 1 as support-vectors, since they support the two border hyper-

planes of the different sets of data points. In the hard-margin problem all data-points can be 

categorized by 𝑦𝑖 (𝒘 ·  𝒙𝑖 + 𝑏) ≥ 1  with 𝑦𝑖 = −1 for points in class 1 and 1 for points in 

class 2 (in Fig. 1). Equality (rather than inequality) holds only for SVs. Expressing these 

conditions with Lagrange multipliers 𝛼𝑖 one can seek the maximal margin through 

minimization of the Lagrangian 

𝐿 =
1

2
 ||𝒘||2 − ∑ 𝛼𝑖 (

𝑚
𝑖=1 𝑦𝑖 (𝒘 ·  𝒙𝑖 + 𝑏) − 1)                            (1) 

Taking the derivatives of L with respect to b and to w one finds that the minima should obey 

∑ 𝛼𝑖 
𝑚
𝑖=1 𝑦𝑖 = 0      and    𝒘 = ∑ 𝛼𝑖 

𝑚
𝑖=1 𝑦𝑖 𝒙𝑖 .                                (2) 

To solve for the support vectors one inserts these equalities back into L and searches for the 

points for which the dual Lagrangian W 

𝑊 = ∑ 𝛼𝑖 −𝑚
𝑖=1

1

2
 ∑ 𝛼𝑖 𝛼𝑗 

𝑚
𝑖=1,𝑗=1 𝑦𝑖 𝑦𝑗 (𝒙𝑖 ·  𝒙𝑗 )                           (3) 

reaches its maximum. All support vectors obey 𝛼𝑖 > 0 while for all other points 𝛼𝑖 = 0. 

The kernel trick allows one to move from data space where all points 𝒙𝑖 located to a Hilbert 

space reached by a feature map Ф(𝒙𝑖 ) where distances can be expressed in terms of kernels: 

||Ф(𝒙1 )- Ф(𝒙2 )||2=𝑘(𝒙1 , 𝒙1 ) +  𝑘(𝒙2 , 𝒙2 ) − 2𝑘(𝒙1 , 𝒙2 )            (4)   

Polynomial, sigmoidal and Gaussian maps allow for such kernel representations. Thus, for a 

Gaussian one may choose 𝑘(𝒙1 , 𝒙2 ) = exp(−𝑞(𝒙1 −  𝒙2  )
2). Thus solving an SVM after 

mapping to such a Hilbert space, amounts to replacing the dot product of data points in Eq. 

(3) by their kernel function 

𝑊 = ∑ 𝛼𝑖 −𝑚
𝑖=1

1

2
 ∑ 𝛼𝑖 𝛼𝑗 

𝑚
𝑖=1,𝑗=1 𝑦𝑖 𝑦𝑗 𝑘(𝒙𝑖 , 𝒙𝑗 ).                                   (5) 

https://commons.wikimedia.org/w/index.php?curid=60458994


Thus the problem described in Fig. 2 may be resolved by projecting the 2-dim plane onto a 3-

dim feature space, such as 

𝑧1 = 𝑥1
2         𝑧2 = 𝑥2 

2         𝑧3 = √2 𝑥1 𝑥2   

where the indices refer to axis labels. This performs a projection of the 2-dim x space onto a 

2-dim manifold in the 3-dim z space. A 2-dim plane in z can cut the manifold along a circle 

providing the desired separation of the two classes. 

 

A soft margin can be introduced when the data cannot be strictly separated into two classes. 

This amounts to replacing the boundary conditions with 𝑦𝑖 (𝒘 ·  𝒙𝑖 + 𝑏) ≥ 1 − 𝜉𝑖   where  

𝜉𝑖 ≥ 0,  while adding to the Lagrangian of Eq. (1) a term  𝐿 →  𝐶 ∑ 𝜉𝑖 
𝑚
𝑖=1 . This, in turn, leads 

to a new constraint on the Lagrange parameters  0 ≤ 𝛼𝑖 ≤ 𝐶.  In the next chapter we will see 

how this soft margin allows us to declare points as outliers in a clustering problem. 

 

 

 

 

 

 

References 

Vapnik, Vladimir N.; The Nature of Statistical Learning Theory, Springer-Verlag, 

1995. ISBN 0-387-98780-0 

Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992, July). A training algorithm for optimal margin 

classifiers. In Proceedings of the fifth annual workshop on Computational learning theory (pp. 144-

152). ACM. 

Corinna Cortes,  Vladimir Vapnik. Support-Vector networks. Machine Leaming, 20, 273-297 

(1995) 

 

Fig. 1 reproduced  from Wikipedia. Origin: By Larhmam - Own work, CC BY-SA 4.0, 

https://commons.wikimedia.org/w/index.php?curid=73710028 

Fig. 2   reproduced from Wikipedia. Origin: By Shiyu Ji - Own work, CC BY-SA 4.0, 

https://commons.wikimedia.org/w/index.php?curid=60458994 

 

 

 

 

 

 

https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-387-98780-0
https://commons.wikimedia.org/w/index.php?curid=73710028


Chapter 6. Support Vector Clustering (SVC) 

 

So far we have dealt with classification methods of data. This falls into the realm of 

supervised learning, i.e. machine learning based on labelled data. The labels are being 

learned by the machine, and should generalize well when new data are being tested on it. 

Another branch of ML is unsupervised learning, where unlabeled data are provided to the 

machine, and it succeeds to put some order into it. This is often referred to as clustering, i.e. 

separating data into different clusters; when such clusters coincide with known classes, i.e. all 

data-points share some known property which has not been known to the clustering 

algorithm, this is considered as a worthy achievement. 

These two different learning categories are sometimes described by referring to how children 

learn languages. Teaching words to babies coincides with the paradigm of supervised 

learning. Hence the semantics of a language, i.e. the meaning of it, may be viewed as 

acquired by supervision. On the other hand, the syntax of a language, i.e. the grammar rules 

to be used for proper construction of sentences, are often assumed to be acquired by 

unsupervised learning, i.e. by listening to many examples of speech and absorbing implicitly 

the correct rules.1 These statements may be subject to debate among linguistic experts, and are 

just intended to exemplify the two ways of learning without claiming that this short paragraph 

describes the full truth on this topic.   

 

 

Following our demonstration of the SVM, we discuss here Support Vector Clustering (SVC) 

[Ben-Hur 2001]. Presented with data points x j in a Euclidean space, we seek a transformation 

into Hilbert space such that for every data point its projection fits into the inside of a sphere 

||Ф(𝒙𝑗)-𝒂 ||𝟐 ≤ 𝑅2 

where R is the radius of the sphere whose center is a. Requiring the minimization of R subject 

to the existence of the constraints that all projections of data points are enclosed by this 

sphere, can be performed through applying the SVM formalism to the Lagrangian 

𝐿 = 𝑅2 − ∑ ( 𝑅2 − ||Ф(𝒙𝑗) − 𝒂 ||𝟐)𝛽𝑗 
𝑚
𝑗=1  

where    1 ≥ 𝛽𝑗 ≥ 0 are Lagrange multipliers.  Minimizing L with respect to R and to a one 

finds the conditions 

∑ 𝛽𝑖 
𝑚
𝑖=1 = 1  and  𝒂 = ∑ 𝛽𝑗 Ф(𝒙𝑗)𝑚

𝑗=1  . 

Introducing them into L one is lead to the dual Lagrangian 

𝑊 = ∑ 𝛽𝑗 
𝑚
𝑗=1 Ф(𝒙𝑗)2 − ∑ 𝛽𝑖 𝛽𝑗 

𝑚
𝑖=1,𝑗=1 Ф(𝒙𝑗) · Ф(𝒙𝑗)     

= ∑ 𝛽𝑗 
𝑚
𝑗=1 𝐾(𝒙𝑗 , 𝒙𝑗 ) − ∑ 𝛽𝑖 𝛽𝑗 

𝑚
𝑖=1,𝑗=1 𝐾(𝒙𝑖 , 𝒙𝑗 ), 

where we have employed the kernel trick. 

Applying this analysis to an artificial data set one gets the results shown in Fig. 1 for different 

values of the parameter q in a Gaussian kernel 

𝐾(𝒙𝑖 , 𝒙𝑗 ) = 𝑒−𝑞||𝒙𝑖 −𝒙𝑗 ||
2
 . 



The different contours in data space delineate the inverse projection from the surface of the 

sphere in Hilbert space. As q is being increased, the surface area decreases, and this is 

reflected in data-space by tighter binding of data points within the contours. Thus clustering is 

provided by SVC through boundaries which group the data-points. 

 

Fig. 1. Clustering of an artificial set of data points by SVC. Small circles are SVs. Different 

clusters are differently colored. The four different clustering choices shown here are obtained 

by choosing q = 1, 20, 24, 48 for sub-figures a, b, c, d, accordingly. Reproduced from [Ben-

Hur, 2001]. 

 

Moving from strict to soft boundary conditions is tantamount in the clustering formalism to 

allowing for outliers, i.e. points which lie outside cluster boundaries. This can be 

implemented through declaring an upper bound on the Lagrange multipliers 

1 > 𝐶 ≥ 𝛽𝑗 ≥ 0.  

For large number of points N, the number of outliers turns out to be  1/𝐶 . It is useful to 

consider the fraction of outliers 𝑝 = 1/𝑁𝐶, as a parameter which we can have at our disposal 

in this analysis. This is particular useful in problems where the clusters of data points are not 

well separated. By declaring some of the points to be outliers, the formalism will allow for 

clustering the remaining points.  

An interesting example is provided in Fig. 2, where one attempts the clustering of a data-set 

of crabs (4 classes of 50 subjects each, whose 5-dim physical measurements are analyzed with 

PCA and projected on the 2d plane of PC2 and PC3) which is one of the examples in the text 

book of [Ripley 1996]. 

 



 

Fig. 2. SVC of the crab data for q=4.8, p=0.7. This provides 4 core-clusters with many (70%) 

outliers, which may be associated with their nearest cores by geometric inspection.  

Reproduced from [Ben-Hur 2001].  

The topographic map in Fig. 2 is that of the Parzen window estimator of the density function 

(in d dimensions) 

𝑃𝑞(𝒙) =
1

𝑁
(

𝑞

𝜋
)𝑑/2 ∑ 𝐾𝑞(𝒙𝑖 , 𝒙 )

𝑁
𝑖=1   

demonstrating that the clusters lie at the peaks of P for this choice of q=4.8. 

References 

B.D. Ripley. Pattern recognition and neural networks. Cambridge University Press, Cam-

bridge, 1996. 

B. Schőlkopf, R.C. Williamson, A.J. Smola, J. Shawe-Taylor, and J. Platt. Support vector 

method for novelty detection. in Advances in Neural Information Processing Systems 

12: Proceedings of the 1999 Conference, Sara A. Solla, Todd K. Leen and Klaus-Robert 

Muller eds., 2000. 

 

A.Ben-Hur, D. Horn, H.T. Siegelmann, and V. Vapnik. Support Vector Clustering. Journal of 

Machine Learning Research 2 (2001) 125-137. 

 

A. Ben-Hur, D. Horn, H.T. Siegelmann, and V. Vapnik. A support vector clustering method. 

in Advances in Neural Information Processing Systems 13: Proceedings of the 2000 C 

ference, Todd K. Leen, Thomas G. Dietterich and Volker Tresp eds., 2001. 

 

 
Footnote 1. Chomsky has claimed that the language ability of human beings indicates that the human 

brain contains a "language organ" providing a "universal grammar" capability. 

Chomsky, N. (1986)  Knowledge of Language: Its Nature, Origin, and Use (Praeger, New York). 

Pinker, S. (2013) Language, Cognition, and Human Nature. Print ISBN-13: 97801993287 Published to 

Oxford Scholarship Online: January 2014 DOI:10.1093/acprof:oso/9780199328741.001.0001 

Pinker, S. and Jackendoff, R. (2005). The faculty of language: what’s special about it? Cognition 95 

(2005) 201–236 

 



Chapter 7.   Novel Formulation of Parzen Data Analysis 

This chapter is based on my papers https://arxiv.org/ftp/arxiv/papers/1808/1808.08776.pdf  

2018, and https://www.intechopen.com/online-first/novel-formulation-of-parzen-data-analysis 

2019. 

The Parzen window density is a well-known technique, associating Gaussian kernels with 

data points. It is a very useful tool in data exploration, with particular importance for 

clustering schemes and image analysis. The Parzen-window distribution [1], has been 

introduced in 1965, and still serves the goal of pattern recognition [2]. Given a set case of data 

points within some Euclidean data - or feature - space of dimension d, with possible positive 

attributes (e.g. intensities) Ii, described by an experimental distribution 

      𝑄(𝐲) =
1

𝑁
∑ 𝐼𝑖𝛿(𝐲 − 𝛍𝑖)𝑖        (1) 

where 𝑁 = ∑ 𝐼𝑖𝑖  . In doing so, we assume that the measurement errors are small by 

comparison to the distances between the points and to the resolution with which we wish to 

study the data (otherwise replace the delta-functions by Gaussians with appropriate widths). 

The Parzen-window distribution can be represented in the following (not normalized) fashion 

𝜓𝑞(𝐱) = ∫ 𝑑𝐲 𝑄(𝐲) 𝐾𝑞(𝐱 − 𝐲)       (2) 

where we employ the Gaussian kernel 

𝐾𝑞(𝐱 − 𝐲) = exp(−𝑞 (𝐱 − 𝐲)𝟐)    (3) 

where 𝑞 =
1

2𝜎2  is the resolution, with 𝜎 being the Gaussian width, or standard-deviation. 

Following [3] we define a relative probability weight 

   𝑝𝑞(𝐱|𝐲) =
𝐾𝑞(𝐱−𝒚)

𝜓𝑞(𝐱)
       (4) 

which represents the influence of point y in Q(y) on point x in ψ(x), and is normalized at any 

point x through 

∫ 𝑑𝐲 𝑄(𝐲) 𝑝𝑞(𝐱|𝐲) = 1 .    (5)  

This formulation allows us to generalize the conventional Parzen-window formulation and 

introduce new concepts. We start by defining the potential function 𝑉𝑞(𝐱) through 

𝑉𝑞(𝐱) = −𝑞
𝜕

𝜕𝑞
log𝜓𝑞(𝐱) = 𝑞 ∫ 𝑑𝐲 𝑄(𝐲)(𝐱 − 𝐲)𝟐𝑝𝑞(𝐱|𝐲) ≡ 𝑞 < (𝐱 − 𝐲)𝟐 >       (6) 

where the last equality serves as the definition of an expectation value under the probability 

defined by Eqs. (4) and (5). In the mathematical appendix we discuss several examples of 

manipulations of such expectation values. It is now quite straightforward to derive the relation 

−
1

4𝑞
∇2𝜓𝑞 + 𝑉𝑞𝜓𝑞 =

d

2
𝜓𝑞     (7) 

which is a Schrődinger equation obeyed by 𝜓 with the potential 𝑉𝑞(𝐱) in a d-dimensional 

Euclidean space of 𝐱. This coincides with the formalism of Quantum Clustering (QC) [4] to 

which we will return later. 

Another interesting concept one may define is the entropy function 

𝐻𝑞(𝐱) = − ∫ 𝑑𝐲 𝑄(𝒚) 𝑝𝑞(𝐱|𝐲) log  𝑝𝑞(𝐱|𝐲) = −< log 𝑝𝑞(𝐱|𝐲) >          (8) 

https://arxiv.org/ftp/arxiv/papers/1808/1808.08776.pdf
https://www.intechopen.com/online-first/novel-formulation-of-parzen-data-analysis


which may also be rewritten as 

𝐻𝑞(𝐱) = log 𝜓𝑞(𝐱) +  𝑉𝑞(𝐱) .      (9) 

Eq. (9) has an analog in statistical mechanics [5], where H is the entropy, V is the average 

energy of a canonical ensemble, and ψ is its partition function. Note, however, that the scalar 

fields ψ, V and H are functions of space, rather than constants of a physical system. 

Examples of the behavior of  log 𝜓 and of V  are demonstrated in Fig. 1 for a data set of 9000 

observed galaxies (with red-shift in the domain 0.47 ± 0.005) regarded as points in spherical 

angles θ and φ within some limited range. The set of galaxies downloaded from the Sloan 

Digital Sky Server DR12. 

Whereas for 𝜎 =
1

√2𝑞
= 2  (in angle degree units) the two fields exhibit many extrema, there 

exist clear differences for larger sigma, e.g. σ=10, where log 𝜓  has one maximum whereas V  

maintains several minima. The different structures can be employed to formulate different 

clustering methods to which we return in the next chapter. 

 

Fig. 1a. Loci of 9000 Galaxies within some range of θ and φ 

 

Fig. 1b. log 𝜓 (top) and V  (bottom) are displayed over the data plane for σ=2. 



 

 

Fig. 1c. Surfaces of V and log 𝜓  for increased values of the Gaussian width. 

 

Extrema of the different scalar field occur when their derivatives vanish. This calls for the 

definition of appropriate vector fields 

𝐃 = 2𝑞 < 𝐱 − 𝐲 >     (10) 

𝐄 = 2𝑞2 < (𝐱 − 𝐲)3 >     (11) 

obeying the relations 

∇log𝜓𝑞(𝐱) = −𝐃     (12) 

∇𝑉𝑞(𝐱) =  𝐃 + V𝐃 − 𝐄     (13) 

∇𝐻𝑞(𝐱) = ∇𝑉𝑞(𝐱) + ∇log𝜓𝑞(𝐱) = V𝐃 − 𝐄. (14) 

Local maxima (and minima) of the probability function occur at D=0, maxima (and minima) 

of entropy occur where 𝐄 =  V𝐃 and minima (and maxima) of the potential occur where  𝐄 =
 V𝐃 + 𝐃. All extrema coincide if both D=0 and E=0 at the same value of x. Otherwise, one 

finds at maxima of the Parzen probability that ∇𝑉𝑞(x) = −𝐄. 

An interesting conclusion from these equations is that 

𝑞
𝜕

𝜕𝑞
𝐃 = 𝐃 + 𝑉𝐃 − 𝐄 = ∇𝑉 .   (15) 

This implies that maxima of 𝜓𝑞 , where 𝐃 = 0, change with q in a direction determined by 

−∇𝑉, i.e. toward  close-by minima of V. Eq. (15) leads to a new interpretation of QC: 

clustering based on minimization of V may be interpreted as clustering based on stationarity 

of D with respect to changes in the scale-parameter q.  



Information regarding the different extrema of 𝜓 and 𝑉 can be united into one equation by 

considering another scalar function 

𝑈𝑞(𝐱) ≡ 𝐃2 = (2𝑞 < 𝐱 − 𝐲 >)𝟐 .    (16) 

Using the relations spelled out above, it follows that the condition 

𝑞
𝜕

𝜕𝑞
𝑈𝑞(𝐱) = −2∇log𝜓𝑞(𝐱) ∙  ∇𝑉𝑞(𝐱) =0   (17) 

implies that either 𝜓 or 𝑉 (or both) reach their extrema at the x values for which Eq. (17) 

holds. U is non-negative, therefore U=0 is a minimum of q. It corresponds to extrema of  𝜓  

which are associated with 𝐃 = 0. Other values of U which obey eq. (17) are associated with 

extrema of  𝑉 which occur whenever 
𝜕

𝜕𝑞
𝐃𝑞 = 0.  

Eq. (17) is a concise statement regarding the points of interest in our data-analysis method. In 

analogy with statistics, one may view this equation as an inference method finding the correct 

parameter q which leads to points of interest at given values of x. 

An interesting comparison can be made with the score function [6] in statistics, defined by 

 𝑢(𝜃)=
𝜕

𝜕𝜃
log 𝑓(𝐱|θ)      (18) 

for a probability function f(x) which depends on the parameter 𝜃. The average of u vanishes 

and its variance is known as Fisher's information [7]. The analogy of 𝑓 with 𝜓 and u with 𝑉 is 

incomplete, because the integral of 𝜓 is not normalized to 1. As a result, whereas the 

expectation value of u vanishes, the analogous statement in our analysis becomes 

(
𝑞

𝜋
)

d

2 ∫ 𝑑𝐱 𝜓𝑞(𝐱)𝑉𝑞(𝐱) =
d

2
 .     (19) 

Although all extrema may be regarded as points of interest, some are of more interest than 

others: extrema that remain fixed in x for a range of q values which is large compared with 

that of other points of interest. This criterion, introduced by Roberts [8], allows for searching 

for scales which correspond to important properties of the data. Thus it sub-serves the search 

for good clustering of the data [3,4,10].  

 

 

 

Appendix:  Mathematical Relations 

From the various definitions we can derive the following relations 

𝑞
𝜕

𝜕𝑞
 

1

𝜓
= −

1

𝜓
𝑞

𝜕

𝜕𝑞
log 𝜓 =

𝑉

𝜓
             ∇

1

𝜓
=

𝐃

𝜓
 

∇< 𝑓 >=  𝐃 < 𝑓 > +< ∇𝑓 > −2𝑞 < (𝐱 − 𝐲)𝑓 >   

𝑞
𝜕

𝜕𝑞
< 𝑓 > = 𝑉 < 𝑓 > +< 𝑞

𝜕

𝜕𝑞
 𝑓 > −𝑞 < (𝐱 − 𝐲)2𝑓 >  

Thus 

∇𝑉𝑞(𝐱) = 2𝑞2 < (𝐱 − 𝐲)𝟐 >< 𝐱 − 𝐲 > +2𝑞 < 𝐱 − 𝐲 > −2𝑞2 < (𝐱 − 𝐲)3 >  

which leads to Eq. (13). 



Low resolution limits. 

Expanding the Gaussian kernel in q, one may express 𝜓𝑞(𝐱) in terms of a Taylor series of 

weighted moments of the data, 

𝜓𝑞(𝐱) = ∑
(−𝑞)𝑛

𝑛!𝑛 ∫ 𝑑𝐲 𝑄(𝐲) (𝐱 − 𝐲)𝟐𝒏,    

which, for the explicit data representation of Eq. (1) becomes 

𝜓𝑞(𝐱) =
1

𝑁
∑

(−𝑞)𝑛

𝑛!
∑ 𝐼𝑖   𝑖𝑛 (𝐱 − 𝛍𝑖)2𝑛   .                                        

In particular, in the asymptotic limit of low q one finds 

𝜓𝑞(𝐱) ≈ 1 −
𝑞

𝑁
∑  𝐼𝑖   (𝐱 − 𝛍𝑖)2

   𝑖   

 

References 

[1] E. Parzen, On estimation of a probability density function and mode, The annals of 

mathematical statistics 33 (3) (1962) 1065-1076. 

[2] D. Xu, Y. Tian, A comprehensive survey of clustering algorithms, Annals of Data Science 

2 (2) (2015) 165-193. 

[3] L. Deutsch and D. Horn: The Weight-Shape Decomposition of Density Estimates: A 

Framework for Clustering and Image Analysis Algorithms. Pattern Recognit. 81 (2018) 190-

199. 

[4] D. Horn and A. Gottlieb. Algorithm for data clustering in pattern recognition problems 

based on quantum mechanics. Phys. Rev. Lett. 88(1) (2001) 018702. 

[5] E. T. Jaynes. Information theory and statistical mechanics. Phys. Rev. 1957, 106(4):620.  

[6] D. R. Cox, and D. V. Hinkley (1974). Theoretical Statistics. Chapman & Hall.  

[7] R. A. Fisher. Theory of Statistical Estimation. Math. Proc. Philos. Society 22 (1925) 700-

725. 

[8] S. J. Roberts, Parametric and non-parametric unsupervised cluster analysis, Pattern 

Recognition 30 (2) (1997) 261-27 

 

 

 

 

 

 

 

 

 



 

Chapter 8. Weight Shape Decomposition (WSD) and Quantum Clustering (QC) 

 

In the previous chapter we have introduced the concepts of entropy and potential fields, 

obeying 

𝐻𝑞(𝐱) = log 𝜓𝑞(𝐱) +  𝑉𝑞(𝐱)  

where ψ is the un-normalized Parzen probability density. This relation can be rewritten as 

𝜓(𝐱) = 𝑊(𝐱)𝑆(𝐱)                                                                                  

using [1] the concepts of Weight 𝑊(𝐱) = 𝑒𝐻(𝐱)  and Shape  𝑆(𝐱) = 𝑒−𝑉(𝐱) . Since 𝑉(𝐱) ≥ 0 , 
it follows that 𝑆(𝐱) ≤ 1.  Moreover, both W and S are non-negative. S is integrable over x 

and, as such, can also serve as a distribution. 

To demonstrate the meaning of these functions we plot in Fig. 1 the results of an exercise in 

which 200 data points were generated around x= +3 and 100 around x=-3 from two random 

Gaussian distributions with σ=1. To these were added 25 random data points around x=0 with 

σ=0.25. The W function captures correctly the 200:100 ratio, but only the S distribution 

captures the three Gaussian features. This is made possible by factoring out W, with its 2:1 

bias, from the probability function.  This exercise demonstrates the potential power of S in 

anomaly detection. 

 

 

Fig. 1. Artifically generated random points, represented by short bars, lead to the Parzen 

probability function (blue) and its Weight and Shape components, represented by the green 

and red curves correpondingly. The W curve reproduces correctly the bias of about 100 points 

to the left and 200 points to the right, but only the S curve brings out the third Gaussian 

component of additional 25 points around x=0. I thank Lior Deutsch for generating this 

figure.  

 

 Deutsch and Horn [1] have used the WSD in order to establish three clustering mechanisms, 

which amount to MPC, MWC and MSC. These abbreviations stand for Maximal Probability 

(Weight and Shape) Clustering correspondingly. The algorithms are based on letting replicas 

of the data points move according to gradient-ascent up to the correponding maxima of the 

three different fields: 

𝐱𝑖
′ ← 𝐱𝑖

′ + 𝜂∇𝜒(𝐱𝑖
′)    

where χ ϵ {𝜓, 𝑊, 𝑆} for X= P, W or S in MXC. 𝐱𝑖
′ start out at the loci of the data 𝐱𝑖 and end 

up at the field maxima which are their closest attractors. η is a small parameter to be chosen 

by the user. For more technical details, and different variants of these algorithms, see [1].  



MPC is identical with the Mean Shift (MS) algorithm [2,3] and MSC coincides with the 

Quantum Clustering (QC) algorithm [4], where points were allowed to follow gradient 

descent to the attractors formed by minima of the potential V.  

It is quite illuminating to test these three clusering methods on the crab data investigated in 

Chapter 6 with SVC. The results [1] are displayed in Fig. 2. The x-axis represents the 

common parameter σ. The y-axis of Fig. 2a displays the quality of the data as represented by 

the Jaccard score  0 ≤ 𝐽 =
𝑛11

𝑛11+𝑛10+𝑛01
≤ 1  referring to the number of pairs of points in two 

classification schemes (expert classfication and clustering method) which belong together in 

both classifications, 𝑛11, and which belong together in one but not in the other, 𝑛10 + 𝑛01. 

Note that pairs of points which never belong in either the same class or cluster, 𝑛00, are not 

included in this score. MSC, which coincides with QC, does best according to this criterion. 

Fig. 2b displays the numbers of clusters as function of σ. Also here QC is singled out as 

indicating the true number, 4, for a large range of σ. Moreover, QC displays stable 

consistency, with #clusters=4 being a stable result for a large range of σ. This is the criterion 

for choosing a clustering solution proposed by Roberts [5]. 

 

 

Fig. 2. (a) Comparison of the three clustering methods with expert classification. (b) Predicted 

numbers of clusters according to the three schemes. Reproduced from [1].  MSC coincides 

with QC, and MPC coincides with the MS algorithm. 

 

In order to have a better understanding of these results we compare the data (colored 

according to expert classification) with topographic maps corresponging to the three different 

methods, for both σ=0.3 and 0.7, in Fig. 3. The first value correponds to a candidate correct 

solution for MPC (or MS), and may be compared with the SVC solution in Fig. 2 of Chapter 

6, with MS supplying the gradient-ascent mechanism allowing for the outliers of SVC to join 

their cluster-cores. The value σ= 0.7 leads to topological structures which end up in a single 

cluster for MPC and MWC, whereas MSC=QC has the structure leading to the correct result. 



  

 

Fig. 3. Topological maps for the three methods in the cases of (top) σ=0.3 and (bottom) 

σ=0.7.  Compare with Fig. 2 to understand the results of the former figure. Reproduced from 

[1]. 

 

References 

 

[1] L. Deutsch and D. Horn. The Weight-Shape Decomposition of Density Estimates: A 

Framework for Clustering and Image Analysis Algorithms. Pattern Recognit. 81 (2018) 190-

199. 

[2] Y. Cheng. Mean shift, mode seeking, and clustering, IEEE transactions on pattern analysis 

and machine intelligence 17 (8) (1995) 790-799. 

[3] D. Comaniciu, P. Meer. Mean shift: A robust approach toward feature space analysis, 

IEEE Transactions on pattern analysis and machine intelligence 24 (5) (2002) 603-619. 

[4] D. Horn and A. Gottlieb. Algorithm for data clustering in pattern recognition problems 

based on quantum mechanics. Phys. Rev. Lett. 88(1) (2001) 018702. 

[5] S. J. Roberts. Parametric and non-parametric unsupervised cluster analysis, Pattern 

Recognition 30 (2) (1997) 261-27 

 

 

 

 

 

 

 

 



Chapter 9. Shape Analysis of Images 

This chapter is based on my paper https://www.intechopen.com/online-first/novel-

formulation-of-parzen-data-analysis 2019 and on ref [3]. 

 

In the late 90s it has become fashionable to use the Parzen-window approach for image 

analysis. The framework of these studies was also known as "scale-space" [1], referring to the 

parameter q or σ used for the underlying Gaussian kernels. Varying the scale to discover 

different features has been introduced in the 80s [2]. It seems therefore reasonable to ask if 

the WSD can contribute novel insights to the scale-space approach of image analysis. 

The generalized formalism of the Parzen approach, as described in Chapter 6, allows for 

image analysis by viewing each pixel of an image as a data point with i on a grid in two 

dimensions, and assigning it a weight Ii which corresponds to the gray scale of the pixel. 

This allows for writing the Parzen probability function as a 2d convolution: 

𝜓[𝒊] = − ∑ 𝐼[𝒋]𝐾[𝒋 − 𝒊] ≡ (𝐼 ∗ 𝐾)[𝒊]𝑗      (1) 

Employing the formalism of WSD [3] one can then show that the potential function becomes 

𝑉[𝒊] =
(𝐼∗𝐿)[𝒊]

(𝐼∗𝐾)[𝒊]
       where    𝐿 =- 𝐾 log 𝐾.     (2) 

The Weight and Shape functions are defined by 𝑊(𝒊) = 𝑒𝐻(𝒊)  and 𝑆(𝒊) = 𝑒−𝑉(𝒊)  as before. 

As an example we reproduce in Fig. 1 the matrices K and L on a 7x7 grid employing σ=1.1 in 

pixel (or grid) units. 

 

 

Fig. 1 The matrices (a) K and (b) 𝐿 =- 𝐾 log 𝐾 on a 7x7 grid using σ=1.1. Reproduced from 

[3]. Convolution with the data is being used to evaluate the potential, as defined in Eq. (2). 

We have previously seen that V is a normalized second derivative of the probability function. 

Hence it can also serve as an edge detector. This property leads to the fact that the large 

components of Shape can serve as producing line-caricatures of images, as demonstrated in 

Fig.2. In these figures we have used a truncated Gaussian filter with σ = 1.1, such as in Fig. 

1a. Before applying the filter, the original image was rescaled to the range [0.1, 0.9]. For 

display purposes, the shape image pixel values were truncated at the image’s 1% and 99% 

percentiles, and the image is displayed inversely (high values are dark, low values are bright) 

[3]. 

 

https://www.intechopen.com/online-first/novel-formulation-of-parzen-data-analysis
https://www.intechopen.com/online-first/novel-formulation-of-parzen-data-analysis


 

Fig. 2. Line caricatures produced by plotting the high Shape-values derived from three gray-

scale figures. All images were thresholded at the same large shape value. (a) Image size: 254 

× 198. (b) Image size: 267 × 189. (c) Image size: 268 × 188. Reproduced from [3]. 

 

This methodology can be applied to 3d images, in imaging data which are of interest in bio-

med research and in technology. To demonstrate the third point we display in Figure 3 the 

results of an ansalysis of a  T2 MRI of the brain of a Macaque monkey [Fisher 2018]. 

Deriving both P and S, rescaling them, and limiting ourselves to large relative values 

(thresholded components) of Probability and Shape, we find that the latter peaks in cortical 

regions, whereas the former peaks in internal regions of the brain. This is demonstrated in 

Figure 3, exhibiting the occurrence of large Shape values in the outer brain structures, and 

large Probability values in the inner brain structures. Thus, a simple thresholding procedure 

allows one to easily segment the MR image, for the purpose of further analysis of the cortex 

by applying QC to the MRI input in the large S domain. In Figure 4 we follow these 

conclusions with a display of QC clusters projected onto the surface of the brain, leading to its 

parcellation into cortical omponents which are derived by just computational image analysis. 

 

 

Figure 3. Thresholded Shape (red) and thresholded Probability (blue) dominate different regions within 

the same MR image of a brain, projected onto its (side-view) y-z plane. This analysis used σ=3 in voxel 

units. Data outside the brain are due to artefacts and noise in the MR image. This result of a T2 MRI 

brain image of a macaque monkey indicates that large Shape components dominate external (cortical) 

regions of the brain, whereas large Probability compnents dominate internal brain regions. Reproduced 

from [5]. 



 

Figure 4.  Characteristic results of QC cortical clusters as mapped onto the surface of the brain, and 

projected on the (top view) x-y plane. This  figure displays a map of the largest clusters of Shape, each 

described by a different color. Reproduced from [5]. 

 

 

 

 

 

 

 

References 

 

[1] T. Lindeberg. "Scale-space theory: A basic tool for analyzing structures at different 

scales". Journal of applied statistics 1994, 21(1-2):225–270. 

[2] A. Witkin. "Scale-space filtering: A new approach to multi-scale description" . Acoustics, 

Speech, and Signal Processing, IEEE International Conference on ICASSP’1984, Vol. 9, pp. 

150–153. 

[3] Deutsch L, Horn D. The Weight-Shape Decomposition of Density Estimates: A 

Framework for Clustering and Image Analysis Algorithms. Pattern Recognit. 81 (2018) 190-

199. 

[4] Fisher I. Parcellation of Brain Images using Shape analysis [M.Sc. thesis]. Tel-Aviv 

University, 2018.  http://horn.tau. ac.il/publications/FisherThesis.pdf 

[5] D. Horn (2019). Novel Formulation of Parzen Data Analysis. 

https://www.intechopen.com/online-first/novel-formulation-of-parzen-data-analysis  

 

 

 

 

https://www.intechopen.com/online-first/novel-formulation-of-parzen-data-analysis


Chapter 10.  From Shallow to Deep Networks 

Classification of handwritten numerals was one of the important technical problems which 

has been investigated by neural networks. LeCun et al 1998 have investigated various 

architectures, achieving test error rates between 2.5% to 4.7%. In its modern incarnation, the 

relevant dataset is called MNIST, including a training set of 60000 examples and a test set of 

10000 examples. Modern deep networks achieve error rates of a few percent, as we shall see 

below. Another related data set is that of FASHION, which was constructed to serve the same 

task, by including the same numbers of train and test examples, and being also classified into 

10 classes, in analogy to the ten digits. 

Following LeCun 1998, many of the deep networks are constructed as Convolutional Neural 

Networks (CNN).  The architecture is demonstrated in Fig. 1, taken from LeCun 1995. The 

first convolutional operation was inspired by known structures in the human brain, where 

neurons are connected by a limited "visual field" to other neurons. The important step is 

therefore implementing a limited connectivity between layers, as well as allowing for 

subsampling, thus reducing layer sizes while increasing their numbers. The idea was that the 

different feature maps will lead to increasing feature hierarchies, thus understanding that the 

network leads from primitives (e.g. edge detection) to increasing conceptual understanding 

leading eventually to the required learning. 

 

 

Figure 1. The architecture of LeNet1 (LeCun 1995), which has led to the concept of CNN. 

ILSVRC has organized a competition of image classification in 2012, which was based on 

ImageNet, a dataset containing 15 million labeled images. ILSVRC used a subset of 1.2 

million images, containing 1000 images in each of 1000 categories. The winner was AlexNet  

(Krizhevsky, A., Sutskever, I., Hinton, G), which contains 5 convolutional layers, some of 

which are followed by max-pooling layers, ending with 3 fully connected layers.  

Figure 2. The architecture of AlexNet. The input-layer has a width of 3, corresponding to RGB colors. 

"Max-pooling" propagates the highest value in its visual field. "Dense" means fully connected 

coupling. Reproduced from Krizhevsky (2012). 



Containing altogether 650 K neurons, some 60M parameters and 630 M connections, AlexNet 

was trained with stochastic gradient descent (SGT) on two Nvidia GPUs for about a week, 

leading to winning the 2012 competition. The following figure describes the low-level filters 

of the first layer. AlexNet has also introduced the ReLU transfer function,  

ReLU(x)=0 if x<0,   

ReLU(x)=x if x>0,  

replacing the sigmoid to become the most popular transfer function in deep networks. 

AlexNet heralded the age of Deep Learning. It became evident that one can apply the CNN 

methodology to Big Data, which is a rising demand in modern science and technology.  

 

 

 

Figure 3. 96 learned low-level filters. Reproduced from Krizhevsky (2012). 

To explain the working of CNN, Zeiler and Fergus (2013) developed a deconvolutional 

algorithm, allowing for the demonstration of hierarchical feature abstraction. Given sets of 

activations in a given layer, it generates sets of input-pixels which can be regarded as the most 

favorable images which could lead to the observed patterns. Their results, for their own CNN 

trained on ImageNet, are displayed in Figure 4. Shown, for each layer, are the top 9 

activations in a random subset of feature maps, together with their corresponding generated 

pixel-space images by the deconvolutional network. Note the strong grouping of pixel-

images, which increases as the hierarchy of the layer increases. The aim of Zeiler and Fergus 

was put forward in their title as "Visualizing and Understanding Convolutional Networks". 

Clearly we, the readers, regard visualization as an important part of our understanding. Hence 

we may conclude that they achieved their aim. 



 

     

 

Figure 4, reproduced from Zeiler and Fergus (2013) 

. 

 

 



References 

The MNIST data-base of handwritten digits is described in http://yann.lecun.com/exdb/mnist/ 

Fashion MNIST (Zolando Research)  https://www.kaggle.com/zalando-research/fashionmnist 

Krizhevsky, A., Sutskever, I., Hinton, G.: Imagenet classification with deep convolutional 

neural networks. In: NIPS (2012) 

LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., Jackel, L.D.: 

Backpropagation applied to handwritten zip code recognition. Neural Comput. 1(4), 541–551 

(1989) 

Matthew D. Zeiler and Rob Fergus    Visualizing and Understanding Convolutional Networks 

ECCV 2014. https://cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf 

Y. LeCun, L. D. Jackel, L. Bottou, A. Brunot, C. Cortes, J. S. Denker, H. Drucker, I. Guyon, 

U. A. Muller, E. Sackinger, P. Simard and V. Vapnik: Comparison of learning algorithms for 

handwritten digit recognition, in Fogelman, F. and Gallinari, P. (Eds), International 

Conference on Artificial Neural Networks, 53-60, EC2 & Cie, Paris, 1995 

Introducing Deep Learning with MATLAB.  Mathworks 

Y LeCun: Deep Networks. Lecture at CERN, 2016. 

https://indico.cern.ch/event/510372/attachments/1245509/1840815/lecun-20160324-cern.pdf 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://yann.lecun.com/exdb/mnist/
https://www.kaggle.com/zalando-research/fashionmnist
https://cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf
https://indico.cern.ch/event/510372/attachments/1245509/1840815/lecun-20160324-cern.pdf


 

Chapter 11.  The DL Paradigm and its Supremacy 

 

With the obvious successes of Deep Learning (2015) it has turned into a technology that may 

be easily adapted to many applications. In order to popularize DL, Google has developed its 

open-system tool TensorFlow (TF), based on Python, within which all you have to do is to 

design the architecture of your model, and it will perform everything else, including sending 

the data to your system in batches for training and testing, adapting it to the hardware which 

best suits your computational needs (e.g., CPU or GPU), etc. The first example available on 

the website of TF tutorials is the MNIST problem. The TF code they propose is as follows: 

import tensorflow as tf 

mnist = tf.keras.datasets.mnist 

 

(x_train, y_train),(x_test, y_test) = mnist.load_data() 

x_train, x_test = x_train / 255.0, x_test / 255.0 

 

model = tf.keras.models.Sequential([ 

  tf.keras.layers.Flatten(input_shape=(28, 28)), 

  tf.keras.layers.Dense(512, activation=tf.nn.relu), 

  tf.keras.layers.Dropout(0.2), 

  tf.keras.layers.Dense(10, activation=tf.nn.softmax) 

]) 

model.compile(optimizer='adam', 

              loss='sparse_categorical_crossentropy', 

              metrics=['accuracy']) 

 

model.fit(x_train, y_train, epochs=5) 

model.evaluate(x_test, y_test) 

 

This program defines the data-set mnist by loading the data (images=x and assignments =y) 

from Keras, which is TensorFlow's high-level API for building and training deep learning 

models. The model is a sequential NN model, starting with a "Flatten" layer which flattens the 

input of 28X28 pixel gray-scale (between 0 and 255) images into a vector of 512 entries. 

They are connected to a Dense layer with all-to-all connectivity using the ReLU transfer 

function. This is followed by a dropout operation at a rate of 0.2, and densely connected to the 

output layer through a softmax activation function, leading to an output of probabilities of the 

expected 10 digits. The compiler is told which optimization and loss functions to use, and 

what metrics to evaluate.  Each epoch is automatically divided into many batches, running 

altogether over 60K data during each epoch. When completed, it runs over 10K test data to 

test its performance. This program achieves an accuracy of 0.98 within less than 1 minute. 

This short and successful implementation is a tribute to the long way Neural Networks have 

come since the early multi-perceptron days. Note that this program is not a convolutional 

network, hence the intuitive understanding of how AlexNet solves image classification does 

not apply here. Nonetheless it works. The sheer power of training on multitudes of data in a 

high-parameter space of NNs does it: it finds a manifold within the large parameter-space 

which embeds correct minima of the training set, and generalizes well to the test set. 



I recommend the Kadenze lecture referenced below as a general high-level course for 

interested beginners with programming experience in Python. 

To demonstrate the incredible power of the DL technology, I recommend watching the 

YouTube lecture of Demis Hassabis (2019) who describes the achievements of the DeepMind 

team in general reinforcement learning that masters chess and Go games through self-play 

(Silver et al 2018). This team became famous when its ZeroGo algorithm has succeeded to 

beat the human Go champion in 2015. Whereas the first algorithm started out by learning 

from human players, it then proceeded to learn from its own games. Eventually the DeepMind 

team developed AlphaZeroGo which, given the basic rules of the game, learns from scratch 

using an evolutionary development of players, all based on the same learning algorithm, 

playing against each other. Finally, this team developed the AlphaZero algorithm which can 

learn from scratch every board-game and master it. This is demonstrated in Silver (2018), 

based on matches between AlphaZero and the leading competitors in Chess, Shogi and Go. 

The AI index team publishes each year statistics of various kinds regarding AI activities and 

achievements. The 2018 issue contains a list of human performance milestones, including the 

following: 2016, object detection of ImageNet, with error of 3% while humans perform at the 

level of 5%. 2016, GO, beating human experts. 2017, Skin cancer classification, 

outperforming expert dermatologists. 2018, Chinese to English translation. 2018, Prostate 

Cancer Grading from prostatectomy specimens. 

 

Evolution of Intelligence 

It is interesting to note that the successes of DeepMind follow an evolutionary methodology. 

It behooves an analogy with molecular biology. The basic carriers of DNA, the chromosomes, 

are known to contain genes, as well as the needed programs to activate them into the 

structural proteins and RNA molecules which compose the functioning living cell. Yet a full 

comprehension of why and how the linear code of nucleotides in a chromosome does it, is not 

really available. Nonetheless there is one principle which is the acceptable paradigm, 

Darwin's Natural Selection. This is how Biology plays its evolutionary game, leading to 

selection of species which survive in a complex and changing world. 

The DL evolutionary methodology is being used to design complex architectures which can 

cope with complex problems. Google defines "intelligence" as "the ability to acquire and 

apply knowledge and skills". Clearly novel DL applications justify the statement that machine 

intelligence can outperform human's intelligence on various tasks. Naturally we expect the list 

of such tasks to grow with the present intensive activity of DL research. While many may 

strive for the classic AI goal, with machines replacing humans, Michael Jordan (2018) argues 

that this misses the real revolution which is now in its infancy: developing technologies which 

lead to societal world-wide intelligent infrastructures, which may hopefully empower 

mankind. 

 

 

References: 

Yann LeCun, Yoshua Bengio & Geoffrey Hinton:  Deep learning.  Nature 521 (2015) 436. 

doi:10.1038/nature14539 



Kadenze course: Creative Applications with TensorFlow 

https://www.kadenze.com/courses/creative-applications-of-deep-learning-with-

tensorflow/info 

AI index. https://aiindex.org 

Demis Hassabis: The Power of Self-Learning Systems. Lecture at MIT, 2019. 

https://youtu.be/cEOAerVz3UU 

D. Silver et al.: A general reinforcement learning algorithm that masters chess, shogi and Go 

through self-play.   Science 362, 1140–1144 (2018) 

M. Jordan: Artificial Intelligence — The Revolution Hasn’t Happened Yet. Medium 2018. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://www.kadenze.com/courses/creative-applications-of-deep-learning-with-tensorflow/info
https://www.kadenze.com/courses/creative-applications-of-deep-learning-with-tensorflow/info
https://aiindex.org/


Chapter 12.  Some Applications 

Protheomics 

Working independently, a team led by researchers at the Max Planck Institute of 

Biochemistry and Verily and a team led by researchers at the Technical University of 

Munich (TUM) developed deep learning tools for predicting patterns of ion fragmentation 

in mass spec-based proteomics. 

According to their developers, the tools could help boost the number of proteins 

confidently identified in proteomic experiments and could also streamline data-

independent acquisition mass spec work by allowing researchers to run such experiments 

without first generating sample-specific spectral libraries. 

The software packages, called DeepMass:Prism by the Max Planck team and Prosit by the 

TUM team, are the latest of several efforts to apply deep learning methods to the analysis 

of mass spec proteomic data. 

 

 

DeepMass:Prism discovered new chemical rules that determine how the peptides break into 

smaller fragments. Quoting Jurgen Cox in the MPG newsroom (2019): "This is a very exciting 

finding, it’s like a junk yard employee who understands where a certain part of the car is installed, 

even though he has never seen this type of car before. The predictions by DeepMass:Prism have 

led to the identification of a new kind of interaction within proteins. We believe that this discovery 

is only the beginning of what deep learning can do for research in life sciences.” 

ProteinNet 

ProteinNet is a standardized data set for ML of protein structure, i.e. relating the knowledge 

of the amino-acid sequence of the protein to its 3d spatial structure. It utilizes sensitive 

evolution-based distance metrics to segregate distantly related proteins, and additionally 

created validation sets distinct from the official CASP (Critical Assessment of protein Structure 

Prediction) sets. As stated in the paper, availability of such a data set can spur new algorithmic 

developments in protein bioinformatics and lower the barrier to entry for researchers from the 

broader machine learning community.  

DL models based on ProteinNet, show continuously improving results in the biannual CASP 

competitions. 



 

 

Neural Anatomy 

 

Schubert et al (2019) have developed a method based on convolutional neural networks that 

reconstructs entire nerve cells with all their elements and connections almost error-free from 

image stacks. The data are obtained by a Serial Block-Face Scanning Electron Microscope 

(SBEM). The following figure, taken from Schubert (2019), shows the reconstructed labeling of 

neuron's dendritic tree by their cellular morphology neural network (CMN). 

 

Fig. 5a from Schubert (2019). Cellular morphology neural network (CMN) prediction of 

subcellular compartments.  The 3909 rendering locations of the reconstruction were predicted 

as axon, dendrite, or soma. Local errors are indicated by asterisks. 

 

References 

S. Tiwary, R. Levy, P. Gutenbrunner, F.S. Soto, K. Palaniappan, L. Deming, M. Berndl, A. 

Brant, P. Cimermancic and J. Cox, 2019. High-quality MS/MS spectrum prediction for data-

dependent and data-independent acquisition data analysis. Nature Methods, May 2019 

Learning from spectral experience: Deep learning algorithms facilitate the analysis of mass 

spectrometry data. MPG newsroom MAY 27, 2019. 

Mohammed AlQuraishi. ProteinNet: a standardized data set for machine learning of protein 

structure. BMC Bioinformatics (2019) 20:311 https://doi.org/10.1186/s12859-019-2932-0 

Winfried Denk & Heinz Horstmann: Serial Block-Face Scanning Electron Microscopy to 

Reconstruct Three-Dimensional Tissue Nanostructure PLOS Biology, October 2004:  

Schubert P J, Dorkenwald S, Januszewski M, Jain V, Kornfeld J, 2019.  Learning cellular 

morphology with neural netwroks. Nature communications 10, 2736 (2019) 

 

 

https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.0020329
https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.0020329


Chapter 13. ML of ML Architectures 

We have learned in chapter 2 how a neural network adjusts its parameters trough the 

backprop algorithm. But which network should one use to solve a given problem? This choice 

is conventionally done by experts who try various models in order to generate the best one. It 

has recently been proposed that the network architecture can also be learned through a DL 

algorithm. Zoph and Le (2017) propose an iterative scheme, pictured in Fig. 1, where one 

generates randomly several networks, trains them for a while, and uses the loss of these 

models in a reinforcement learning procedure 

 

 

 

The next figure, reproduced from Zoph (2018) demonstrates how a controller can be used to 

construct a basic element of the neural network. 

 

 

Testing this methodology on the ImageNet ILSVRC challenge of 2012, it outperforms all 

previous handcrafted models.  The red squares in the next figure are the results of Zoph 

(2018) and are currently known as AuotoML. Further information is given in the you tube 

lecture by Jeff Dean. 



 

Comparison of top performing CNN efforts on the ImageNet 2012 challenge. Reproduced 

from Fig. 5 of Zoph (2018).  

These novel results of the Google Brain research team, demonstrate that automatic generation 

of DL models is a reachable goal. Together with the evolutionary schemes mentioned in 

chapter 11, the future may still surprise us, discovering what else DL models can achieve. 

 

References 

 

Jeff Dean, Google Senior Fellow (20.09.2018, ETH Zurich): Deep Learning to Solve 

Challenging Problems. YouTube lecture. https://youtu.be/ljBOzdKuX7A 

Zoph B, Le Q V: Neural architecture search for neural reinforcement learning.  ICLR 2017. 

Zoph B, Vasudevan V, Schlens J, Le Q V. Learning transferrable architecture for scalable 

image recognition. CVPR 2018. 

 


