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" We develop a Hamiltonian formalism for Z(N) lattice gauge theories. Duality is expressed by algebraic
operator relations which are the analog of the interchange of electric and magnetic fields in D = 3 space
dimensions. In D = 2 duality is used to solve the gauge condition. This leads to a generalized Ising

- Hamiltonian. In D = 3 our theory is self-dual. For N—o the theory turns into “periodic QED” in
appropriate limits. This leads us to propose the existence of three phases for N > N, ~6. Their physical
properties can be classified as electric-confining, nonconfining, and magnetic-confining.

I. INTRODUCTION

Z(N) gauge theories have been the subject of in-
tensive investigations during the last year. These
theories are interesting on several accounts. The
foremost reason is their possible relevance to
the question of confinement. ’t Hooft' and Polya-
kov? argued that the center Z(3) of the SU(3) color
gauge group can play a crucial role in the con-
finement of quarks (or any object with nonzero
color triality). Regardless of whether this is true,
the Z(N) models are interesting theoretical labora-
tories because they exhibit confinement for large
enough couplings. Moreover, these models pro-
vide a realization of 't Hooft’s algebra of order
and disorder operators which characterize the
different possible phases of the SU(N) gauge
theories.™? ‘

One way in which Z(N) gauge theory can emerge
is a limiting case of an SU(N) lattice gauge theory
with Higgs fields which belong to an SU(N)/Z(N)
representation; this is the limit in which all Higgs
modes together with all gauge degrees of freedom
apart from those which belong to the center Z(N)
are frozen.*

A different interesting aspect of the Z(N) gauge
theories on the lattice is that they can be formally
related to “periodic QED” (PQED) in the N~
limit. Periodic (or compact) QED is a theory
which is of interest by itself,® because in 3 +1
dimensions it is known to have a confining as well
as a nonconfining phase. We will use the relation
between the two models to learn about the phase
diagram of the Z(N) theories. Finally, there is
a close connection between the Z(N) gauge theor-
ies and spin-glass models® which are of con-
siderable interest in statistical mechanics.

In Sec. II we present for the sake of complete-
ness a short review of the connection between the
Z(N) gauge theories and the confinement problem.
We discuss the ’t Hooft algebraic approach and its
realization. We demonstrate the emergence of
Z(N) configurations as solutions to the lattice
SU(N) equations of motion which was recently
noted by Yoneya.” We compare the Hamiltonian
approach which we use throughout the paper with
the Euclidean action formulation. Section III is
devoted to our Hamiltonian formulation of the
Z(N) gauge theories with particular emphasis on
their gauge invariance. In Sec. IV we discuss the
duality transformation in two space dimensions
and its role in solving the gauge constraints. The
connection with the Ising model and spin-glass
problems is explained. The nature of the phases
of the two-dimensional Z(N) systems is discussed
in Sec. V. The analogous discussions of the three-
dimensional models are presented in Secs. VI and
VII. In analyzing the phase diagram we make use
of the connection between PQED and the large-N
limit of the Z(N) theories. Arguments based on
this connection as well as on a renormalization-
group approach lead to the conclusion that for
N>N, =6 these theories possess three phases.
These phases can be characterized as electric-
confining, nonconfining, and magnetic-confining.

An interesting question that arises from our
work concerns the interrelation between asymp-
totic freedom and confinement. The common be-
lief is that the SU(N) gauge theories, which are
asymptotically free, have only one confining
phase. On the other hand SU(N) has as a subgroup
its center Z(N). ’t Hooft has argued that the
large-distance properties of SU(N) are dominated
by its Z(N) part. Our work reveals that for large
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enough N the Z(N) gauge theories have three
phases and the critical point of the electric-con-
fining phase grows as N%. This, then raises the
question of whether the SU(N) gauge theory may
have more than one phase for large enough N.

II. Z(N) GAUGE THEORIES AND CONFINEMENT

It is generally believed that quantum chromo-
dynamics (QCD) is the theory underlying the struc-
ture of hadrons. The short-distance behavior of
QCD can be analyzed perturbatively because this
theory is asymptotically free.® However, the
large-distance structure of QCD is much more
difficult to handle. To understand the spectrum
of hadrons and quark confinement we have to de-
velop nonperturbative methods. Much progress
has been made during recent years towards under-
standing the infrared structure of the theory. The
methods that have been developed can be classi-
fied as belonging to either a lattice approach or a
semiclassical approach to QCD. )

In the lattice approach one regards QCD as the
continuum limit of certain field theories formu-
lated on lattices.® The lattice field theories are
well defined and strictly conserve local gauge
invariance.’® It is a common belief that the latter
is essential to achieve confinement. On a large
lattice the theory is in a strong-coupling regime
and exhibits confinement. Here one calculates
the spectrum and then continues to the weak-coup-
ling limit by using the Padé approximation to the
strong-coupling expansion*! or renormalization-
group'? and variational®® techniques. The success
of this approach depends critically on the absence
of any phase transition which will prevent the
continuation to weak coupling where the continuum
field theory is recovered.

Another approach to the problem is to start
with the classical QCD action and to try to identify
the most important field configurations which
saturate the functional integral. Once these are
singled out one can check their stability by per-
forming small oscillations around these configura-
tions and one can calculate their contributions to
physically significant quantities. This investiga-
tion is usually carried out within the gluon sector
in which the quarks are regarded as external
classical charges.'® This approach can of course
also be used in the study of field theories on the
lattice. It was indeed within this context that
Wilson introduced the order parameter®

() = TrPexp(if; A“dx"‘)>

= [(DAe S Vexp(ip A, ax*). (2.1)
c 3

An area dependence of the Wilson loop
(@)~ ewe=© (2.2)

is generally accepted as the criterion for con-
finement within the Euclidean formulation of the
gluon sector of QCD.

’t Hooft! has recently suggested that field con-
figurations with nontrivial Z(3) topological charges
are important in bringing about confinement. He
introduced a disorder loop operator ®&(C) [in 2+1
dimensions it is a-local operator ¢ (x)] which to-
gether with the Wilson loop order operator @(C)
satisfies a Z(N) algebra:

aT(Cc)®(C)R(C) = B(C)et2™/N (2.3)

where 7 is the number of times the curve C winds
around the curve C’. In two space dimensions
the proposed commutation relations are

@' (C)p()@(C) = P (x)e'>™/¥ (2.4)

where now z is the number of times the curve C
winds around the point x.. The operator ®(C) is
associated with the topological excitations of the
system in much the same way that the operator
@(C) is associated with color-electric excitations.
An investigation of the algebra of Eq. (2.3) enabled
’t Hooft to characterize the various phases of the
system. In particular, the confining phase is the
disordered one where in addition to Eq. (2.2) he
finds

(B(C)) ~ e " ©) in 3+ 1 dimensions,
(2.5)
in 2+1 dimensions.

(p(x)) #0

In this phase the Z(N) topological configurations

are dominant.

This confinement is a confinement of triality
[the center of SU(3) of color|. A linear asymptotic
potential exists in this phase between triality-
nonzero sources. Although this is sufficient to
account for the nonobservation of quarks, the Z(3)
model cannot describe correctly the binding force
for low-mass hadrons: If the binding force had
been only triality dependent it would have led to
degenerate mesons in which the ¢g pair can be
either a singlet or an octet of color. This de-
generacy would be lifted by the short-distance
color-electric component of the QCD force and
result in a much richer spectrum than the one
observed. Hence one should regard this Z(3) ap-
proach as being a candidate only for the large-
distance behavior of the confining mechanism.

The Z(N) topological configurations are singular
in the absence of Higgs fields. Since we are any-
way interested in their effects on the large-dis-
tance component of the force we may study them
in lattice QCD theories. Moreover, the Z(N)
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gauge theories which provide the realization of
the ’t Hooft algebra do not have a continuum limit
since there are no infinitesimal Z(N) transforma-
tions. Let us present now an argument for the
emergence of the Z(N) components of the QCD
lattice theory in accordance with the observation
of Yoneya.” We start with Wilson’s action which
can be written as

1
§= EZ Tr(UIlUIZUggUp4+ H.c. - 2)
»

== T T, +Hec.-2), (2.6)
D .

where the U, are defined on the links of the lattice
and are assumed to be elements of the SU(N)
group. The summation in Eq. (2.6) is carried out
over all the plaquettes of the lattice and the no-
tation is explained in Fig. 1. The equations of
motion of this Euclidean field theory are obtained
by varying independently on each link both U; and
Ul subject to the constraint UJ U, =1. Self-con-
sistently we can diagonalize each NXN matrix
X,,

Xp)is=ap,i045 (2.7

and minimize TrX, subject to the constraint
N
detx,= ] a,:=1 (2.8)
iZ1
by introducing the Lagrange multipliers A,:

N
fp=TrX, =2, H“p.i P

0= -QIL 1- )\,H Ha,,, 2.9)

j=1 j=i+1l

Using the constraint (2.8) we find a, ; =2, and

a,,;=e2™'" (n,=integer) or X, & Z(N).
‘ (2.10)

If we restrict ourselves to the subgroup U; € Z(N)
then Eq. (2.10) is satisfied, i.e., we deal with
group elements which are extrema of the action
(2.6). As long as only a finite number of links
have U # 1, the resulting configuration has a finite
action. Yoneya’ carried out a detailed analysis

of the stability of such Z(N) configurations for
N=2,3,4.

At this point we have the option of using either
an action or a Hamiltonian formulation of the Z(N)
lattice field theory. There exists a well-defined
way of constructing the Hamiltonian out of the
Euclidean action formulation.® The idea is to
choose one of the Euclidean axes as the time axis
and construct a transfer matrix which is identi-
fied as e"#4f, Taking the lattice spacing in this

direction to zero and rescaling the appropriate
coupling constants accordingly leads to the con-

_ struction of the Hamiltonian in terms of quantum

operators defined on a lattice in space. The action
formulation is like the partition function forma-
lism in statistical mechanics and is defined over
classical variables. Thus all the Z(N) elements

in the action formulation of the lattice field theory
commute with one another. Going from the action
formulation to the Hamiltonian formulation the
dimension gets diminished by one unit; however,

the number of variables per link is doubled and

they obey nontrivial commutation relations.
Rather than starting with the action formulation
we will work directly with the Hamiltonian quan-
tum-mechanical formalism.

The phase diagrams of the Z(N) gauge theories
will be one of our main interests. A well-known
tool for analyzing the location of their phase-
transition points is the duality transformation.®
The Z(N) gauge theories which result from Wil-
son’s action (2.6) in the way discussed above are
known to be self-dual only for N=2,3,4.% In
Appendix A we present a simple explanation for
why that is so. Using our Hamiltonian formulation
we will construct Z(N) gauge theories which are
self-dual for every N in three space dimensions.
For N> 5 these theories deviate from the models
defined through Wilson’s action.. Our models
have, though, simple large-N properties which
allow us to make the connection with PQED in the
N = limit.

III. THE Z(N) MODEL AND ITS GAUGE INVARIANCE

Our Z(N) models are defined by a one-parameter
(A) family of Hamiltonians

H==3A) (P{+P,-2)
i

= 3(Q1,91,@:Qps + Heoc. - 2) . (3.1)
b

The unitary operators P; and @, are associated
with the links I of the lattice and obey the Z(N)
algebra:

=Q'=1, P[P,=Q]Q,=1, (3.2)
Pl Q,P,=¢"*Q,, 6=21/N. (3.3)

Operators which are associated with different
links commute with one another. The second term
in Eq. (3.1) involves a sum over all plaquettes of .
the lattice. For each plaquette p one defines the
links p1 and p4 to be parallel to the unit axes of
the lattice. The order 1 to 4 defines a closed loop
around the plaquette as shown in Fig. 1.

The Hamiltonian (3.1) is locally gauge invariant,
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Y p3
P4l P |P2
P! X

FIG. 1. Notation of links around a plaquette.

i.e., with each lattice site ¢ one can associate
a unitary operator G(Z) which commutes with the
Hamiltonian

[GG), H]=0 (3.4)

and has therefore to be simultaneously diagona-
lized. G(Z) is given by

ca)= IT 7}, II P._, (3.5)
1y I_3i

where the various links I which touch the vertex
¢ are defined to be positive or negative according
to whether they are parallel or antiparallel to the
basis vectors (see Fig. 2).

The Hilbert space is divided into sectors which
are classified by the eigenvalues of all G(7). One
special sector is the gauge-invariant one,

G@)|Yy=[v) for all 7. (3.6)

Other sectors, where at some point ¢ one has
G(@)=e~**" (n=integer), may be interpreted as
representing the physics involving a charge n
(modN) located at that point 4. This interpreta-
tion is warranted by the following representations
of the operators P; and Q;:

Pl =eiﬁE’ 5 Q; =e‘Al . ' (3.7)

E; and A; are dimensionless Hermitian operators
associated with the link ! which are the analogs
of the electric field and vector potential. To
justify this interpretation we have to demonstrate
that £ and A obey the commutation relation

>

FIG. 2. Classification of positive and negative links
around a point.

[E1sAn) =10, - (3.8)

Although formally Eq. (3.8) guarantees that (3.7)
is a solution to the Z(N) algebra, it cannot strictly
hold for finite N because the commutation relation
(3.8) cannot be represented on a finite norm set

of states. An example of anexplicit representation
of the Z(N) algebra is given by

Elny=nln), n=0,1,...,N-1 (3.9)
ety =|n+1) forn=0,1,...,N-2,

3.10
eAIN=-1=]0). (3.10)

If it were not for the last equation (3.10) E and A
would have obeyed

[E,e**4] =z e**4. (3.11)

The cyclic behavior of @ stands in the way of Eq.
(3.11). For large enough N and for appropriate
test functions this limitation can be discarded
and Eq. (3.11) as well as (3.8) can be retrieved.
This problem was discussed by Schwinger.” We
present a brief discussion of the E and A algebra
in Appendix B.

Inserting Eq. (3.7) in the definition of G in Eq.
(3.5) we find

G@)=e PVE, (3.12)

where V ¢ E is the obvious lattice definition of
the divergence of the electric field

VEG@)= ), Ey, - 2, Ey_. (3.13)
1424 1..54

The above-mentioned identification of the different

sectors of Hilbert space with fixed charges at

vertices where G(7) # 1 is the implementation of

the Gauss law

Ve E=p. (3.14)

In this paper we will not consider the more
general problem where the charges are carried
by quantum degrees of freedom. The various sec-
tors of Hilbert space will therefore remain sepa-
rated by superselection rules.

The Hamiltonian (3.1) can now be expressed in
terms of electromagnetic-type variables only.
We introduce the magnetic field B, as a plaquette
variable using the obvious lattice definition of
curl A:

By=(VXA),=Ay+Ap —Ap ~Ay,. (3.15)
This allows us to rewrite (3.1) in the form

H=1A2_ (1-cos0E;)+Y, (1-cosB,). (3.16)
1 P

A link on which E; # 0 will be said to carry elec-
tric flux and a plaquette on which B,+# 0 will be
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interpreted as carrying magnetic flux. This
nomenclature is consistent with that of the QCD
theory from which the Z(N) formalism can be
derived. These fluxes are defined modulo N, thus
for N=3, three unit electric flux lines can meet
at one point of the lattice. This is, of course,

a basic property of a string picture of the struc-
ture of baryons. The electric flux lines can be
interpreted as strings connecting quarks. We
will study the tension of such strings. The repre-
sentation of Eq. (3.16) is also the appropriate one
needed to demonstrate the connection to PQED in
the N— limit. )

IV. THE DUALITY TRANSFORMATION IN TWO SPACE
DIMENSIONS

We start our discussion of the model in D =2
space dimensions by restricting ourselves to the
gauge-invariant sector of the theory where G(i)
=1. Within each sector the variables of the theory
are interdependent. We propose to switch to a
new set of variables which are independent, i.e.,
to solve Eq. (3.6) in an operator language. This
is achieved by representing each link operator
P, as the product of two unitary operators which
are associated with the two plaquettes touching

that link:

Py :S:’Sp" (bt,p’ 151,p"3+ 51,»’261,1:”4) . (4.1)

The notation is that of Fig. 1. If the operators S
obey

S}s,=1, S¥=1, (4.2) -

then Eq. (3.6) is automatically satisfied. Let us
introduce another set of plaquette operators R,
defined by

RP = QnszQIaQL . (4-3)

These are evidently also unitary and the Nth root
of the identity. In order that the P; and @, obey
the Z(N) algebra of Eq. (3.3), also R, and S, have
to obey the same kind of commutation relations:

R[S,R,=¢"S,, [R,,S,]=0 ifp+#q. (4.4)

The consistency of (4.4) and (3.3) can be easily
checked. One can also see it from the following
explicit construction of S, in terms of a chain of
P, operators which is a solution to Eq. (4.1): With
each point of the two-dimensional lattice (Z,j), one
associates two link operators P, (i,j) and P,(z, )
as well as one plaquette operator S(i,j) as shown
in Fig. 3. The following substitution

j

’

SG, =11 PIG,j"), (4.5)
i'=o0

which involves a chain of PI operators extending

2 B2}
R S

I 2 3

FIG. 3. Notation of link and plaquette variables on a
two-dimensional lattice.

to the boundary of the lattice, is a realization of
the equation

P,(i,4)=S"(4,)S(,j - 1), (4.6)

which is contained in (4.1). The other part of that
set of equations, i.e.,

P,G,j)=5"(i = 1,5)8G, ) , (4.7)

is also satisfied, since in the gauge-invariant
sector one can express the P, operator in terms
of chains of P, operators:

J
P,j)= ] Pii-1,5)P1G,5). (4.8)
i"=0

Thus one could choose the P, operators to be the
independent ones and the P, operators to be the
dependent ones. The representation in terms of
S, operators does not necessitate such a gauge
choice.

Since the centers of the plaquettes may be re-
garded as the vertex points of the dual lattice,
one refers to the transformation from the set
of operators P; and @, to the set R, and S, as a

~ dual transformation. The number of operators

gets reduced by a factor of 2 since the number of
plaquettes is half the number of links in a two-
dimensional lattice. The Hamiltonian can be
written in terms of the dual variables as

Hy==$\D (SIS, +SIS, -2)
(P>

-3 Y (R,+R,-2), (4.9)
4
where the symbol (pq) denotes nearest neighbors.
Equation (4.9) is a generalized version of an Ising
model in a transverse field.'® '
H p is a correct representation of the volume
part of the original Hamiltonian. However, using
the explicit solution (4.5) one finds that there are

also boundary terms

HZHp -3\ ), (S]+S,-2). (4.10)

bound
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The sum includes all plaquettes which lie on the
boundary counting twice the four corner ones.
The important physical effect of the boundary
term is that it lifts the N-fold degeneracy of the
vacuum in the high-A region.

The dot over the equality sign in Eq. (4.10) is
there to remind us that this equality holds only
in the gauge-invariant sector. If there are points
where G(7)# 1, one cannot use Eq. (4.1). To ac-
count for all the sectors using a unified dual no-
tation one has to replace (4.1) with

Py =J,S}iSpn(dy,101 pms+ 0y p120y1 pma) 5 (4.11)

where J; is a classical variable which can be
assigned the values ei™ with integer n. The gauge
operator becomes

c@)= 11 71, IT 7._. (4.12)

1,21

Thus the set {J;} determines the sector of Hilbert
space to which the solution (4.11) applies. There
are, however, many {J,} sets which describe the
same sector. Suppose, for example, that the
sector has two opposite unit charges:

e® ati=b,
G@)=(e* ati=a, _ (4.13)
1 otherwise.

Let us define a path I"' on the lattice connecting
the points @ and . If we assign J;=1 to all links
which do not lie on I" the other J are determined
as in Fig. 4. Obviously there has to be electric
flux flowing between the points a and b. The path
of its flow will be determined by the dynamics of
the problem, and there is some probability that
it will coincide with the path I'. We can always
view I' as a path along which the electric flux is
returned in an equivalent configuration defined in
the gauge-invariant sector. This Dirac-string
interpretation is depicted in Fig. 5.

Using the new description of P, we rewrite the

d|dld| d
d d*
0 . 3
d
b

FIG. 4. .Choice of J variables in the sector defined by
Eq. (4.13) with a unit charge at @ and the opposite charge
at b. Here d=eif,

FIG. 5. An electric flux tube in the gauge-invariant
sector which has the flux returning along the same path
shown in Fig. 4. Regarding this path as a Dirac string
the rest may be viewed as the electric field due to
charges located at @ and b.

dual Hamiltonian as

Hpy==32)_ (,S]S, +H.c. - 2)
(ta) .

1> (BRI +R,-2). (4.14)
4

This is a generalization of a spin-glass Ising
model.® In the terminology of statistical mechan-
ics one refers to a situation in which G({)#1 as
representing a frustration.’®?° H , of Eq. (4.14)
is invariant under the local gauge transformation

S,=eS,, Jy—-eJ,, anygq, allp. (4.15)

This is yet another way of representing the gauge
invariance of the original Hamiltonian (3.1).

" Equation (4.9), which represents only one sector

of the theory, is invariant only under the global
transformation

S,~e%S,, allg (4.16)

which gets broken by the boundary term in Eq.
(4.10). '

Let us turn now to the physical interpretation
of the operators R and S. Using the electromag-
netic representation of Sec. III we see that R, is
the Wilson loop operator defined over one pla-
quette:

R, = ApitApa=Apg=Apd) (4.17)

The Wilson loop operator for any curve C on the
lattice is then defined by

a(C) = exp (Z}g A’-dT>= gR,. (4.18)

Using the algebra of R and S we find
a'(c)s,a (C)=e'"™s,, 4.19)

where m=0 if p lies outside the cturve C, m =1

if p lies inside the curve, and C is topologically
equivalent to a circle. This can be generalized to
more complicated curves with m representing
the number of times the loop C winds around the
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plaquette p. S, plays the role of the monopole
field ¢ (x) in ’t Hooft’s topological Z (N) algebra.
The monopole interpretation can be understood

in the following way: The Wilson loop operator is

Q(C);exp<i£fdoBZ> s (4.20)

and Eq. (4.19) implies that
eifpcc,

1 ifpdcC. (4.21)

@lsja(c)s,ly =<w|a(C)l¢>{
Hence S is an operator which creates one unit
(6 =2m/N) of magnetic flux flowing through the
plaquette p.

To summarize this section let us recall the im-
portant aspects of the duality transformations
in two space dimensions. These transformations
led, within the gauge-invariant sector, to a new
set of variables whose number is half that of the
original variables. The new operators are inde-
pendent, and the new Hamiltonian is a generaliza-
tion of an Ising model. All other sectors can be
recovered by changing to a spin-glass formalism.
Using the dual variables we reconstruct the topo-
logical operators of ’t Hooft.

V. THE PHASES OF THE Z(N) THEORY IN TWO SPACE
DIMENSIONS

Perturbative treatment of the Hamiltonian (3.1)
in the weak- and strong-coupling regimes reveals
two different phases. As A— the vacuum ap-
proaches the state characterized by

P,l0)=[0), S,[0)=]0) for every ! and p as A~w.
(5.1)

The second part of this equation follows from the
first part due to the explicit representation of Eq.
(4.5). Alternatively one can see the choice of S,
=1 as following from the boundary terms in Eq.
(4.10). The Hamiltonian H, of Eq. (4.9) which does
not have this boundary term has a degenerate
vacuum structure of an Ising model.

The other extreme limit A— 0 has a vacuum
characterized by

R,|0)=|0)for every p at A=0, (5.2)

as is easily seen from Eq. (4.9) of H,. Q, does
not acquire a vacuum expectation value because
it is not a gauge-invariant operator.'®
Alternatively one can consider the Wilson loop
(4.18) which has the following behavior in the two
limits:
1 fora—-0

@ (Cho~ for every C.

0 for A~ (5.3)

The vacuum expectation values of @(C) and S, have
opposite trends in the two extreme limits of A
and can be interpreted as order and disorder
parameters, respectively.!»> Moreover, in the
large-~coupling regime, the first nonzero con-
tribution to (@ (C)), is obtained in that order of
perturbation theory which is equal to the area of
the loop C; hence,
area

@(Ch o~ (%) @ =@M for A>>1. (5.4)
The high-X regime obeys the Wilson criterion
for confinement, Eq. (2.2). For small A a per-
turbative calculation reveals a perimeter law
behavior:

(@(C)y~ e=erZperimeer©)  gor y <1, (5.5)

Such arguments for the Z(2) theory were presented
by Fradkin and Susskind.® The Hamiltonian ap-
proach permits the discussion of the different
phases in terms of more direct physical quantities:
the electric string tension® in the high-) range
and the mass of the magnetic monopole in the low-
A range.

To define the tension of a string of electric flux
we study the sector of Hilbert space defined by

e atx=3L, y=0
G@)=(ePatx=-3L, y=0 (5.6)

1 otherwise.

L is supposed to be very large compared to the

(unit) size of the lattice link. The string state

is defined to be the ground state of this sector.
At A~ it consists of a straight line of electric
flux (E,=1) between the two charges. For finite
but large values of A its description will be com-
plicated but its energy will have a term propor-
tional to the extensive variable L. To be specific
the energy of this state can be written as

=AV+TL+B, (5.7)

Estring
where V is the number of plaquettes in the lattice,
L is the length defined in Eq. (5.6), and A, T,
and B are calculable coefficients. A is the same
constant appearing also in the energy of the vac-
uum (lowest state of the gauge-invariant sector)

E,. =AV+C (5.8)

vac

representing the volume effect of all disconnected
diagrams. The parameter T may then be defined
as

T = lim Estring — Lovac
L

L—>w

) (5.9)

and is known as the tension of the string. A value
of A at which T (or its derivative) shows a dis-
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continuous behavior is a phase-transition point.

The one of particular interest is where T vanishes.

This signifies the transition from an electric-con-
fining to nonconfining phase. At this point the
vacuum includes arbitrarily long electric flux
tubes. Below this point the tension stays at zero
and loses its meaning.

The calculation of T is a tedious but straight-
forward exercise in perturbation theory. For high
enough N (i.e., 6=21/N<1) we obtain

0.167  0.102
262 A366 °

T =~ 462 - (5.10)
To continue this perturbation series outside its
range of convergence we use the Padé approxima-
tion

=L - 0:82)(, 981y |
T—Z(AG -~ 367 ) 1—x264 . (5.11)
Note that to this order of perturbation theory T
vanishes at A, = 0.02N2,

In the weak-coupling regime we choose to study
the mass of the monopole which is created by the
operator S;. The monopoles are field configura-
tions which exist in every sector of H. In order
" to isolate them we restrict ourselves to H,
of Eq. (4.9). S}, creates a topologically stable
excitation in the theory defined by H,. The reason
is that the operator

a(Ww) = I;IR,,, (5.12)

which is the Wilson loop around the whole lattice,
commutes with H,. This quantum number counts
the total number of monopoles minus the total
number of antimonopoles. Note that the boundary
terms in Eq. (4.10) spoil the conservation of @ (W)
in the theory defined by H. To the extent that the
lattice is very large the boundary plays a negligi-
ble role. It is easy to see that to create a mono-
pole at the center of the lattice in the weak-
coupling vacuum one has to work to order WV
in perturbation theory.

We define the mass of the monopole as

Mp(V)=En() = E,, (), (5.13)

where E,, is the energy of the state which de-
velops with X out of the state 2,S}5|0) at A=0. Us-
ing perturbation theory it is easy to derive the
first few terms of the mass

M, = (1-cosb) -

which, for very high N turn into a series in A/62:

M, 162[1--?)—}+0(6 )2] . (5.14)

This will give positive results as long as A is in

a range of order N~2. Throughout this region
(S, must vanish. At the point where M,, vanishes
S, starts developing a vacuum expectation value.
We expect this first phase-transition point on the
A scale to decrease as N~2 for large N. This is
based on the perturbative expansion which can
be regarded as an indication but not a proof.

In the limit A= 0, N—=o, our model turns into
the XY model.?® To see this let us use the rep-

resentation
S,=ei®, R,=e "L, , (5.15)

where ¢ and L play the roles of angie and angular
momentum:

Ly b)) =-10,,. (5.16)

The remarks concerning the £ and A algebra in
Sec. III and Appendix B apply here as well. With
this identification Hj, becomes

HD“)‘Z —cos(¢, - ¢,)]

(Pa)
+ Z: (1 =cosdL,), (5.17)
which in the limit
A=0, 8-0, 06%/A=k? (5.18)
reduces to

H” ~Z[1—cos(¢p ®,)] +3K Z:L 2, (5.19)

This XY model has two phases®!: At very low A
(high «?) it is in the disordered phase which has
a unique vacuum and a mass gap (massive mono-
pole), whereas at high A (low «2), ¢ develops a
vacuum expectation value and the system moves
into an ordered Goldstone phase.

A question of prime importance is whether the
phase-transition point where M,, vanishes as one
increases X from below coincides with the point
where T vanishes as one decreases A from above.
A positive answer will mean that the theory has
two phases, whereas a negative answer implies
that this model has at least three phases. Per-
turbation theory indicates that for very high N
the lower critical point behaves like N2, whereas
the higher critical point increases like N°. We
will encounter a similar behavior in D=3 dimen-
sions and will argue there that it means that from
some critical N value the model turns from a
two-phase to a three-phase system. However, in
D =2 space dimensions it is known that such a
perturbative argument fails in a model which is
related to our problem. We have already men-
tioned that as N—« and A~ N? our model turns into
PQED.® This relation will be investigated in Sec.
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VII. Whereas perturbative arguments would lead
to the vanishing of the tension of PQED for a
finite coupling constant (i.e., finite value of AN"2),
it is known that the D =2 case has only one phase
due to nonperturbative effects.® 22

V1. SELF-DUALITY OF THE Z(N) MODEL IN THREE
SPACE DIMENSIONS

We turn now to the self-dual properties of our
Hamiltonian in three space dimensions. The dual
transformations replace link variables by plaquette
variables and vice versa. Since the link variable
in Eq. (3.16) is E; and the plaquette variable is
B, their physical reinterpretation will be the in-
terchange of the electric and magnetic fields. We
started by defining our theory in terms of the link
variables P; and Q; whose algebraic properties
are defined by Eq. (3.2) and (3.3). As in Sec. IV
we now define a new set of operators R, and S,
associated with the plaquettes of the same lattice
and obeying the same set of algebraic conditions
as P; and @,. We require the following connection
between the two sets of operators:

RI = lengstQm s (6.1)
pt =S;r1s;2513514° (6.2)

Equation (6.1) coincides with Eq. (4.3) in the D=2
case. Equation (6.2) differs from the corres-
ponding Eq. (4.1) and involves four plaquette op-
erators. The notation used in Eq. (6.2) is ex-
plained in Fig. 6, which is the dual to Fig. 1. It
is clear by inspection that the Z(N) algebra rules
of the P;Q, set and the R,S, set are consistent
with one another. In Appendix C we describe an
explicit solution of the S, operators in terms of
the P, operators.

The gauge condition G(Z) =1 is automatically
satisfied by Eq. (6.2). This is therefore a solution
appropriate for the gauge-invariant sector only.

In contradistinction with the D=2 case we have
not obtained a set of independent operators. This
is indicated by the fact that the number of new
variables is the same as before (apart from the
surface terms discussed in Appendix C). Equation
(6.1) implies that for every cube the product over

v o

FIG. 6. Notation of plaquettes around a link.

its enclosing plaquette operators is constrained
as follows: ’

we)=I1 r} II B,=1. (6.3)
Py b_>c
The notation in Eq. (6.3) is the dual lattice varia-
tion of Fig. 2. What happened can be easily under-
stood in terms of the electromagnetic variables.
We note that Eq. (3.1) now takes the dual form

Hp==312 (S1,S7,5,5S:,+ Hoc. = 2)
1

-52;_‘, R} +R,-2), (6.4)

which suggests the identification
R,=eBr, 5,=cttr B, =(vx4),, (6.5)

where we now choose the quantum-mechanical
operators to be £, and e**#, This leads to the
following form of our Hamiltonian:

Hp=1D_ (L-cosB)+ 9 (1-cosdE,). (6.6)
1 b

Comparing Eq. (6.6) with Eq. (3.16) we find the
changes

E,~8"'B,, B,~8FE,." (6.7)

Since by definition B, is divergenceless we are in
the gauge-invariant sector. However, in order
for E, to represent the same physics as B, it
should obey the v+ =0 condition which is the
same as Eq. (6.3).

In the D =3 case the dual transformations lead
to a new interesting feature which is known as
self-duality. The Hamiltonian H, of Eq. (6.4)
has similar structure to H of Eq. (3.1).. The
plaquette operators in H, obey the same algebra
as the link operators in H and, therefore, the
physical contents of the theory defined by Hp(n)
are the same as those of AH(A™Y). In addition,
we know that Hp(A) is equivalent to H(A) in the
gauge-invariant sector. Therefore, every physi-
cal quantity which is linearly dependent on the
Hamiltonian must obey the self-duality relation

F()=xF(x"Y). (6.8)

In particular the phase diagram of this model
should exhibit a symmetry under the inversion
A—=A"L

We should remark that in the dual formulation
of the Hamiltonian we did not take proper care
of the boundary terms which appear once the in-
version of Eq. (6.2) is carried out. These terms
are exhibited and discussed in Appendix C. We
assume that they do not affect the phase structure
of the theory and have therefore kept only the
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volume terms in Eq. (6.4) and (6.6).

As for the D=2 case, we can identify the order
and disorder operators and check their algebra.
The order parameter is, as before, (@(C)),. It
obeys the area and perimeter laws at very large
and very small X values, respectively, as de-
scribed in Egs. (5.4) and (5.5). The definition
of the disorder loop operator ®&(C) is dual to that
of @(C) in Eq. (4.18):

ac)= II 7, - (6.9)
ppe Xl

The curve C is defined on the dual lattice. The
product is over all p , plaquettes on the dual lattice
whose union forms a surface X enclosed by the
curve C. In terms of the original lattice the p,
are links intersecting the surface Z.

Self-duality of the theory implies that (® (C)),
has the complementary behavior to @(C)),:

exp[—perimeter (C)], A>1
(@ (Cho~

exp[-area (C)], A<1. (6.10)

Using the Z(N) algebra of our operators we find
that @(C) and ® (C’) obey the ’t Hooft topological
algebra

e’ (o)®(c)e(C)=e'"a) (), (6.11)

where m =0 if C and C’ do not wind around one
another and m =1 if they do. This can be genera-
lized to complicated intertwining curves with m
‘representing the winding number. For this pur-
pose it is easier to replace Eq. (6.9) with a defini-
tion in terms of products of S and ST operators
along the curve C’ on the dual lattice. Using Eq.
(6.2) we find

ec)=II s I1 sf,

1,ec’ i.ec’

(6.12)

where /, and /_ are positive and negative links

on the dual lattice along the curve C’. This is
the analog of a line integral representation. It

is now easy to see that if C in Eq. (6.11) lies in a
plane one can recover the D=2 result, Eq. (4.19),
in this plane.

VII. PHASES OF THE Z(N) THEORY IN THREE SPACE
‘DIMENSIONS

The self-duality of our Hamiltonian in D=3 di-
mensions suffices to locate the phase-transition
point if it is assumed that the theory has two phases
only. The inversion symmetry under A= "' im-
plies that this point has to be A=1. This is be-
lieved to be the situation for N=2.* We will argue
that this cannot be the case for all N. In par-
ticular we will indicate that for high N more than

two phases exist. Once the two-phase assumption
is relaxed, self-duality by itself can no longer
determine the locations of the phase-transition
points.

The physical quantity which we investigate in
the strong-coupling (high-\) regime is the string
tension of the electric flux tube as defined in Eq.
(5.9). A phase transition occurs at that A, where
the tension vanishes. This point is also a zero
of the renormalization-group 8 function. Using
this concept together with self-duality we can
show that at least one such zero should occur.
For a lattice spacing a let us define the Hamil-
tonian H,: ‘

Hy==-%ar ) (P} +P,-2)=5a y, (R} +R,-2),
1 »
(7.1)

where o and A are the common scale factor and
the relative strength for the given scale a. The a
dependence of A determines the 8 function:

B=ad)r/da . (7.2)

This function appears in renormalization-group
equations which state that physical quantities stay
constant under changes of the scale of the under-
lying lattice. Such a quantity is the energy of a
string. Suppose the string has a dimensional length

- L. We define the string tension as

E E acoum = (L/a)T . (7.3)

string

L stays constant and T changes as q is being
changed. Requiring this energy difference to stay
constant we find

_ 9T oaT da
T—BBA e da (7°4)
The naive dimension of « is that of energy, i.e.,
a~'. Suppose its anomalous dimension is y, i.e.,
a~a~*"Y. Using this as well as the fact that «
appears asa simple multiplicative factor in 7', we

can rewrite Eq. (7.4) as

.

3T /on" (7.5)

B=(2+y)
This relation is valid for high A where the electric
flux tension is well defined. In the limit A—
perturbation theory tells us that T~ A, thus im-
plying that B~ A. We will show that self-duality
leads then to the conclusion that near A=0 one
obtains g~ -A.

The parameters « and A depend on a and on
initial values @, and A, chosen at some scale
a=a,

a=alag rg,a), A=X(ag Ay, a) . , (7.6)

Self-duality leads to the relations
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a(ao: Ags a)=7\1-1a(ao>‘o: Aoul, a) s (7.7
A= Moy Aoy @) = [M(@gho, Ao Y a@)] 7L (7.8)

Taking the derivative of Eq. (7.8) with respect
to a we are led to

lim B(A) = lim (=A2)B(A"Y). (7.9)
A—0 x—o0
Therefore if lim, _,..8(A) =cA then limy . BQA)=—-cA.
Clearly any continuous 8 function with such be-
havior at the end points of the A scale has to
vanish at least once in between. Hence this theory
possesses at least two phases. If there are only
two phases B vanishes at A,=1. That is also
where the electric tension vanishes. For A<1
one encounters magnetic tension which is the dual
phenomenon to electric tension. We will present
arguments that for large values of N the electric
tension vanishes at a high value of A,~ N?, and
return later to a discussion of the possible form
of the 8 function in our theory.

In Sec. V we have defined the electric string
tension. The same definition holds also in the
three-dimensional problem. Using simple per-
turbation theory we calculate the tension as a
series in A~! for very high N, i.e., 6=21/N<1.
The result is

0.333 0.290
TPt -~ e (7.10)
Rewriting it in a Padé form one obtains
1({ ., 1.537 0.870 \*
T3 ()\6 -5 )(1 -5 ) , (7.11)

which has a zero at A, =0.031N? for N> 27.

The argument for A,~ N? can be made stronger
by noticing the connection between the Z(N)
theories and PQED: In the limit

N-w, A=w, Ad2=¢%=const, (7.12)

the Hamiltonian (3.16) becomes

H =§e“zx:E,2+ ; (1 -cosB,)

+e%0 (622: E,""). (7.13)

Neglecting the 6%E,* and higher terms since 6~ 0,
" we are left with the PQED Hamiltonian

;%:%[2’: E,2+—3§; (l—coseB_p)]. (7.14)

E, and B, are canonical transformations of the
original electric and magnetic fields:

E,=eE,, B,=e™'B,. (7.15)
The PQED theory of Eq. (7.14) is known to have
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a phase transition for a finite value of ¢. For e
>e, it exhibits a confinement of electric charges
and a formation of electric flux lines. The per-
turbative equivalence between the high-N limit
of the Z(N) models and PQED leads tothe sug-
gestion that the high-a, value of Z(N) approaches
e,*0"% as N—w.

For e<e, PQED has a nonconfining phase. As
e~ 0 it looks more and more like normal QED.
Such a nonconfining phase follows also in the Z(N)
theories throughout the regions of constant A as
N=-. This can be simply seen by letting e—~ 0
in Eq. (7.14). However, if one goes into the other
extreme limit

N-w, A=0, 382/x=g*=const, © (7.16)

one finds that the theory is perturbatively equiva-
lent to : :

H _ 2
)\ga_ﬁ%[z B,2+?;(1—cong;)], (7-17)

where the new electric and magnetic fields are
E,=g/X E,, B,,: EL
gVx

Equation (7.17) is once again a PQED theory but
this time the electric and magnetic fields are
interchanged. This was to be expected in view of
the self-duality of the Z(N) theories. At a new
critical point whose value is A, =2,"!, we find

a transition between the nonconfining phase to a
magnetic-confining one. In this new phase mag-
netic flux is confined to flux tubes in much the
same way that the electric flux was confined in-
the high-A region. However, in view of the over-
all factor of A, the magnetic flux loops will in
fact have very low energies.

The considerations of the previous paragraphs
lead us to expect that the Z(N) theories have a
phase diagram of the type shown in Fig. 7. For
low N there are two phases. Above some N, a
three-phase structure develops. To estimate
the value of N, we return to the perturbative cal-

(7.18)

. culation of the electric tension. A calculation to

second order in A~ without any approximations

Ner
magnetic electric
conf. conf.

| A

FIG. 7. The phase diagram of Z(N) models.
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for small 0 leads to

T =x(1 = cosd)
1 (7.19)
~ 2x(1 - cos6) + A(1 - cos23) ’
This expression vanishes at A, =22, Our ex-

perience with Z(2) as well as with the large-N
approximation in Eq. (7.10) shows us that the
fourth-order estimate of the zero point is higher,
A9 >2? . Assuming this to be an indication that
2. >2A? we ask which N is the first to have A >1.
The answer is N=T7. We conclude, therefore, on
the basis of second-order perturbation theory,
that N, < 7.

The vacuum of the magnetic-confining (MC)
phase is a condensate of electric flux tubes.?®
Similarly the vacuum of the electric-confining
(EC) phase is a condensate of magnetic flux tubes.?*
In the nonconfining (NC) phase both kinds of flux
tubes exist in the vacuum and neither is confined.
In this region both the electric and magnetic de-
scriptions hold. Comparing Eq. (7.12) and (7.16)
we find the relation between the two coupling con-
stants

eg=2n/N. (7.20)

This is different from the Dirac quantization con-
dition. We can, however, identify magnetic mono-
pole configurations which do obey Dirac’s con-
dition. This is a configuration in which N magnetic
flux units emerge from a finite region on the lat-
tice, and therefore its total magnetic strength is
Ng=2n/e=gp,. This is possible since the flux is
conserved only modulo N. These flux lines have
to meet again either on the boundary or in some
other region of the lattice which can be identified
as an antimonopole (see an example in Fig. 8).

In the MC phase we can observe at most magnetic
monopole-antimonopole pairs. In the NC phase,
where the magnetic tension vanishes, the pairs
can have arbitrarily long strings, i.e., the mono-
poles are liberated. Similarly there exist electrie
monopoles with charge Ne which are possible ex-

FIG. 8. A monopole-antimonopole configuration. If
each line carries one flux unit the depicted configuration
is allowed for N=5.

"B

FIG. 9. Expected behavior of the g function defined in
Eq. (7.2) for N>N,.

citations in the gauge-invariant sector. They exist
only as bound states in the EC phase and are
liberated in the NC phase.

Using an analogy with superconductivity we may
speculate that at the transition point from the NC
to EC phase, the magnetic monopoles become
massless and the EC vacuum becomes their con-
densate.?®* This scenario is known to hold true in
PQED,?! and is very suggestive that it holds for
finite N, t00.?® Duality implies then that the MC
vacuum becomes a condensate of the electric mono-
poles of charge Ne, thus confining magnetic flux
units of charge g.

Finally we would like to discuss the form of the
B function in our model. We know its behavior
at the two end points of the A scale. If it is to
describe a system with three phases then the only
possible choice which reflects the self-dual char-
acter of the theory is the form depicted in Fig. 9.
In the nonconfining region =0 as in pure QED
because of the existence of massless photons in
this phase.

It is interesting to note that such a behavior was
found by Jose et al.?” in their investigation of
global Z(N) spin models in 1+ 1 dimensions using
the Migdal approximation. Other type of approxi-
mations also revealed this behavior.?® This is
relevant to our problem since Migdal has argued?®
that gauge theories in 3+ 1 dimensions have the
same behavior as their 1+ 1 counterpart spin
models.

Upon completion of our work we received a re-
port by Cardy®® proving that the global Z(N) spin
models in 1+1 dimensions have three phases for
N =z5. He has also obtained this form of the 8
function. We have been informed®® that a similar
proof using the action approach was obtained by
Elitzur et al.®! for both the 1+ 1 global Z(N) and
the 3+1 local Z(N) gauge theories.
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APPENDIX A: DUAL TRANSFORMATIONS IN
FOUR-DIMENSIONAL Z(N) MODELS 3

In this Appendix we will discuss the algebraic
aspects of the self-duality conditions within the
action approach.®® Using the statistical-mechan-
ics terminology we define a partition function on
a four-dimensional lattice:

= Al
z {5% exp [; f(U,,>], (A1)

where the Z(N) variables are defined as

Uy =U"Y=e®™/Mmi -y, = integer - (A2)
and the plaquette variable U, is
Up=UsiUsUniUsi - (A3)

with 4, j, k, I being the four vertices defining the
plaquette p. The function f(U,) is a finite power

series:
)=, ecUm™, > aum, (A4)
mée Z H(N)

me Z +(N)

SO =

where the summation is over integers mod N.

This follows of course from the fact that U € Z(N).
In four-dimensional Z(N) models one finds a

similar description of the same theory in terms

of dual variables V;; on the dual lattice:

zZ= {E} exp [z g(V,)] , v (AB)

Vij »

2. eV,

me Z *(N)

FV= D 4, V™. (A6)

me Z *(N)

gv)=

The connection between the two series of Eq. (A4)
and (A6), i.e., the duality relation, is™?*®

dp= D de@Mmn -, m,e Z*(N). (A7)
n

The interesting question is whether the Wilson
action

fw=U+U" (A8)
is self-dual or not. The function f(U) is both

Hermitian and real, i.e.,
f)=r*V), : (A9)
J@)=+U*. (A10)

Using these two properties in the duality relation,
Eq. (A7), we learn that they imply

gU)=g*U™, (A11)
gU)=gxU), C o (Aa12)

respectively. The set of the two conditions stays
therefore invariant under the duality transforma-
tion. In terms of the power-series coefficients
they mean

Cn=CX=C_p = Cp=C_p=Ck. (A13)

Without any loss of generality we may choose
¢,=0. - This leaves us with N -1 real parameters
on which we can impose the condition (A13). Ina
Z(2) model there exists only one free parameter
and the most general action is the Wilson one.
However, also in Z(3) these conditions leave only
one real parameter ¢,=c,. In other words the two
elements ¢*% ™3 have the same free energy. Once
again the only remaining term is the action (A8).

For higher N values the constraints of Eq. (A13)
are no longer sufficient to single out the Wilson
action of Eq. (A8). Nevertheless, for every N it
is possible to find a particular action structure
which stays self-dual, i.e.,

CpniCn=CpmiCpy, m, n#0. (A14)

This defines a specific line in the space of pa-
rameters (coupling constants) along which self-
duality holds. For N=4 it turns out that this line
still coincides with the Wilson action; however,
for N= 5 it involves more complicated terms,
i.e., m#t1.

APPENDIX B: THE E AND A ALGEBRA

The unitary operators P and @ which obey the
algebra defined by Egs. (3.2) and (3.3) can be re-
written in terms of Hermitian operators E and
A. Following Schwinger!” we start with the repre-
sentation

; 2r \/2
p:etnE’ Q:eiTlA’ n=ﬁ=(7) . (B1)
The spectrum of both E and A can be chosen as
Ek=nk, Ak=nk:
kE ["%(N_l); —%(N—Z),...,%(N—l)],

(B2)

and, therefore, as N—«
max(E)=max(A)=-», AE=AA=7n-0. (B3)

The representation (Bl) is the convenient one for
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obtaining noncompact operators E and A in the
limit N—~». This is the suitable choice for A
=const or e—~ 0 in Eq. (7.14).

In an explicit realization in which P is diagona-
lized @ serves as a step operator:

Plu®y = 2™/ N|y®y - Q) = [uF1) (B4)

where k belongs to the set defined in Eq. (B2).
Alternatively one may think of 2 as the set of all
integers (or half integers) and choose u =¢'® so
that there are only N states in the Hilbert space.
Similarly when @ is diagonalized P becomes a
step operator:

Qo™ =™ /¥|vf) | Pl =" ). (B5)

The cyclic property of Z(N) is reflected through
the operation of P and @ on the states which cor-
respond to the end points of the spectrum:

(N-1) /2y - —(N-1) /2
Ply Y=1v Y, (B6)
Q|u-(1v—1) /2) - lu(N' 1 /2> .

We use here Schwinger’s notation. He shows that
the two sets of states are related by

1
(uk|vl> =___ez1r£kl/1v (B7)
VN ’
and proceeds to define quantum-mechanical ‘wave
functions which we can represent as
1
v

This definition guarantees that

WE) = — |9 ¢<Ak>=7%-<v'=1w>. (B8)

@M=§Awmm%ghAWmW,(M)

where AE=AA =17. Going to the N- limit in a
proper way with suitable wave functions, one is
led to a representation which supports the operator
commutation relation

[E,A]=1. (B10)

For every finite N this is not strictly true. Even
the weaker relation .

[E, e*4]=¢*i4 (B11)

is spoiled by the periodicity property Eq. (B6).
However, as N—« we imagine the wave function
to be concentrated far from the end points so that
the periodic character drops out from the con-
sideration.

In most of our applications of this algebra we
use a representation which is different from Eq.
(B1). The limit A=~«, N—, A3%=const is best
described by using the representation

P=¢"F | Q=¢'4. (B12)

For every finite N this amounts to a canonical
transformation of the operators E and A. Their
range can now be chosen as

Ec [_%(N—l)’ —%(N_z))"°J%(N_1)]J

(B13)
AEG[_%(N_I); '—%(N_z),'°';é(N"1)] ’
and the N—-« limit leads to
EE [-w,o], AE=1
(B14)

A€ [-7,1], AA=6-0.

In this limit the operator A is bounded and has a
continuous spectrum, whereas the operator E is
unbounded and has a discrete spectrum. The
commutation relation (B10) will fail near the end
points of the support of A. In fact, since A ac-
quires the operator properties of an angle, it be-
comes ill defined because its basis is the set of
periodic wave functions. One should indeed con-
sider only e*4. Its commutation relation with E,
Eq. (B11), will be valid in the N—« limit for a
space of functions which are smooth in E and
vanish at infinity.

As an example let us calculate [E,A] using the
identification of Eq. (B12). E and A can now be
written as ' .

E= E B, A =EN1L Z RlVHWY . (B15)
3 %
Using Eq. (B7) we find that

lim  '|[E,A]lu™ =45, ,, —i(=1)'"". (B16)
(1=m) /N—>0

In defining wave functions which are normaliz-
able in the sense of Eq. (B9) we have to replace
(B8) by the new definitions

D(E) =t ¥), ¢(Ax)=0"YXv*|W) . (B17)

Here ¢ (E,) is defined for discrete values and
AE,=1. For every finite N it is, however, equal
to 5/ “W(E,) of Eq. (B8). It follows that in order

to be able to connect the compact QED formula-
tion with the noncompact one, ¢(E,) must be a
very slowly varying function of its argument. For
such a function we will find

W |[E,A]19) = 26" X(E,)b(E,) [15;,, — i(~1)}")

l,m
~ (W) . (B18)

We see that the Z(N) formalism is useful in giving
a meaning to the transformation between the com-
pact and noncompact versions of QED.
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APPENDIX C: CONSTRUCTION OF DUAL VARIABLES IN
THREE DIMENSIONS

We associate with each point of the lattice

(z,j, k) three links which are parallel to the basis
vectors. The P, variables which correspond to
these links are denoted by P, (3, j, k), P,(i,j, k), and
P,(i,j, k). Examples of this are shown in Fig. 10
which displays the cubic lattice in question. The
gauge condition which specifies the gauge-invari-
ant sector then takes the form

P,(i,j, WP} (G - 1,j, RP,G,j, RP] (i,j -1, k)
xP,(i,j, k)P} (,j,k=1)=1. (CI)

This is true everywhere inside the lattice but not
near the surface. Thus if we choose the planes
x=0, y=0, and 2=0 to be three out of the six sur-
face planes we find gauge conditions such as

P,(0,0,0)P,(0,0,0)P,(0,0,0)=1, (2)
P,(1,0,0)P}(0,0,0)P,(1,0,0)P,(1,0,0)=1, etc.,

i.e., whenever one of the links of Eq. (Cl) does
not exist the corresponding variable drops out
from the gauge condition. We may choose one P,
link variable at each vertex to be dependent on all
the other link variables. This is analogous to the
choice of a gauge. We will henceforth choose
P,(i,j, k) to be that dependent variable. The in-
dependent variables are therefore defined on the
z =const planes of the lattice.

Let us turn to an explicit construction of the
dependent P, (i, j, k) variables. We start from one
end of the lattice, e.g., 2=0. It follows then from
the gauge condition that

P,(i,j,0)=Py(i - 1,5,0)P! (3,5, 0)
XPy(i,j—l,O)P;(i,j, 0): (C3)

and, as mentioned above, whenever a link is not
defined (near the edges) one inserts the number 1

3
-
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' ~
rd
NS o R /
S
SR U 2>
,4&\h\|*\“ o) et
// !
i i (
T e v
| B i s SR
[ A N\
ey R ad I Vg Y
P 7 2
- prad v-?*
T X
Py (1,0,0)

FIG. 10, Notation of links and plaquettes on a three-
dimensional lattice.

for the corresponding variable. The next plane -
of P, variables will be given by

Pz(i:j’ 1) =Px(i - 1’.//.: I)PI (i’j; I)Py(z’] - 19 1)
X P (i,], )P, (i,§,0), (C4)

and for P,(i,j,0) one can insert Eq. (C3). This
construction leads to the result

k
P,G,j, k) = II Py~ 1,5, ¥')P} (i, j, k)
=0

X Py(i,j -1, k)P}G,j, '), (C5)

which is an explicit construction of all P, varia-
bles. It should be noted that in a finite lattice

(0 < Ek<K) the P, and P, variables in the last plane
(k=K) are not all free, and one has then to make
an additional choice, e.g., taking all P,(,j, K)

to be dependent variables.

We can now make contact with the plaquette
variables S, defined in Eq. (6.2). Let us use a
plaquette notation similar to that of the link no-
tation. One associates three plaquettes with each
point (4,7, k) and defines the operators in the fol-
lowing way:

S,(,j, k) on the plaquette (,7, k)(¢,j+1, k), j+ 1, k+1)(3,5, k+1),
S,(¢,7, k) on the plaquette (,7, )(Z,j, k+1)(E+ 1,5, k+1)(i+1,j, &), (C6)
S,(i,7, k) on the plaquette (7,7, R)(i+1,5,R)(@E+1,j+1,k)(E,j+1,Fk).

Examples of this are given in Fig. 10. Using now
the explicit realization

k
S,irj, k) = kH PG, k),
=0
()

]
S,G,5, 0 =11 Pl G,5, %),
R'=0

-

we see that Eq. (C5) can be rewritten as
P,G,j, k) =S(i,3, kS (G,5 = 1, )
XS, (i,j, BISY (G = 1,5, k) . (c8)
This form is completely consistent with Eq. (6.2).

In order to satisfy the other two equations con-
tained in Eq. (6.2), namely
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Py(i,]) k):SI(i’]’ k)Sx(Z’]: k- 1)

XSx(iyj:k)SZ (Z - l’jr k) b

(C9)
P,(i,j, k) =S](i,5, R)S, G, 5, k- 1)
XS, (1,5 =1, K)S] (4,5, ) ,
we have to add to Eq. (C7):
S,(i,j, k) =const. (C10)

Thus we see that choosing P, to be the dependent
variable was equivalent to the axial-gauge choice
S, =const.

The number of independent S, and S, variables
is the same as the number of independent P, and
P, variables. For a finite lattice there will ap-
pear additional constraints. Thus if By = K one
finds for each (2,7, k)

Se(i, 7, K)ST(,j -1, K)S,(i,j, K)ST 6 - 1,j,K) =1,
(C11)

which was already mentioned above after E'q.
(C5).

Equations (C9) get modified on the surfaces of
the lattice. At k=0 one term (namely S, or S,
at k- 1) does not exist and should be replaced by
the number 1. Hence when one writes H in terms
of the dual (plaquette) variables one encounters
surface terms which are different from the usual
volume terms—they may depend only on three or
even two (at the edges) S, variables instead of the
usual four—S, form. When going to the electro-
magnetic-type variables one can replace these
surface terms by boundary conditions. Thus one
can define B, on the 2=0 lattice plane but require
that A,=A,=0 on the k= -1 level.

The effect of the surface terms was displayed
explicitly in the two-dimensional case in Eq.
(4.10). Their structure and role in the D=3 case
is similar. They remove the degeneracy of the
vacuum in the high-x region but should not affect
the ¢haracter of the phase transition on a large
lattice.
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