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Abstract 

The cortical layers define the architecture of the gray matter and its neuroanatomical 

regions and are essential for brain function. They are often studied using T1 or T2 

MRI analysis. Concentrating on the cortex it is of interest to present it as a parceled 

map of the structural MRI information, known as the parcellation of the brain. 

We develop a novel methodology for investigating the 3d information of the MRI 

data. It is based on the recent finding that the Parzen probability distribution, which 

can be derived from such 3d imagery, can be decomposed into Weight and Shape 

components. Shape is independent of the bias field effect in MRI data; the latter is 

included in the Weight component. 

We find that selecting a thresholded Shape component of T2 data, one obtains a good 

segmentation of the gray matter, without the need for any prior anatomical 

information. Confining ourselves to this data component, we perform clustering on it, 

and find the dominant closest clusters to the cortical surface, thus achieving 

parcellation of the brain. We demonstrate results of such analysis for four macaque 

brains and three rat brains. 

For T1 analysis, the thresholded Shape component contains more than the gray matter 

information. Hence segmentation cannot be applied in the same manner as in T2 

images. Nonetheless, parcellation can be derived by performing QC clustering of the 

full MRI image, followed by mapping onto the brain surface. This is demonstrated on 

three human brains. A comparison of the two parcellation methods for T2 data shows 

satisfactory agreement. 

Our two methods are universal; i.e. they do not rely on expert anatomical knowledge, 

and they are applicable to all mammalian brains.  
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Chapter 1 

1.1. Introduction 

The task of understanding the structure of a brain and its effects on functionality and 

behavior has been a great challenge for over a century [1] and is still far from being 

accomplished. A major portion of research is based on variety of Magnetic Resonance 

Imaging (MRI) techniques [2] such as: Functional MRI, Diffusion MRI, MRN 

(Neurography) and more. 

As the technologies of brain imaging evolve, so does the motivation and tools for 

brain mapping, leading to an increase in number and in quality of brain modeling and 

brain mapping collaborations and projects [3]. 

Brain segmentation methods, separation of brain MRI into different regions according 

to their physiological composition, differ by the techniques of image collection, 

regions of interest, and image processing methods. This enormous amount of 

variations leads to many different parcellation techniques, dividing the gray matter 

into separated regions of interest [4-6] and wide variety of brain atlases. 

In this work we suggest a new multistage brain MRI image segmentation and 

parcellation method, based on the Quantum Clustering (QC) methodology [7]. The 

latter has recently been demonstrated to follow from the Shape component of data [8], 

building on its non-biased characteristics and edge sensitivity, features which are very 

useful for the analysis of the cortical mammal brain regions. 

The method is applied to several kinds of mammalian brains (rats, macaques and 

humans are presented here) without invoking any prior customization. This separates 

our methodology from most other existing solutions. 

We develop methods for both T1 and T2 weighting techniques. Method 1 allows for 

both segmentation of gray matter and brain parcellation in T2 images, and Method 2 

provides parcellation for both T1 and T2 imaging. 

 

1.2. Background 

1.2.1. MRI: 

Magnetic Resonance Imaging is a non-invasive scan, used for internal organs 

imaging. The scan is considered relatively safe and can be used as often as needed, 

because of the absence of ionizing radiation. The MRI mechanism relies on the 

magnetic resonance sensitivity of hydrogen, which is abundant in biological tissues. 

In order to obtain an MRI image, a large constant magnetic field is applied to the 

hydrogen nuclei, which causes a perturbation to their protons' magnetic moments. 

While returning to their original states (relaxation phase) an electro-magnetic signal is 

emitted. 
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The emitted signal is than recorded for examination. The signal depends on three 

observed parameters:  

a. Proton density 

b. Spin-lattice relaxation time (T1) 

by applying an RF Larmor frequency signal, one can flip the spins in opposite 

direction to the magnetic field. T1 describes the time to restore magnetization: 

(1)  𝑀|| = 𝑁 [1 − 𝑒
−

𝑡

𝑇1] 

where T1 has different values for different tissue types, N is the initial magnetization. 

This leads to contrast between CSF, fat and brain components as shown in figure 1c. 

c.  Spin-spin relaxation time (T2) 

by using a weaker RF pulse and triggering a smaller flipped angle. The magnetization, 

parallel to the external magnetic field sums up to a smaller signal and the 

magnetization transverse to the original direction sums up to: 

(2)  𝑀𝑇 ̝
= 𝑁𝑒

−
𝑡

𝑇2   

a measurable signal. where T2 has different values for different tissue types, thus 

providing contrast between CSF, fat and brain components as shown in figure 1d. 

The overall signal of the described spin echo mechanism obeys the following 

equation: 

(3) 𝑠𝑖𝑔𝑛𝑎𝑙 = 𝐾[𝐻]
(𝑠𝑖𝑛𝛼)(1−𝑒

−
𝑇𝑅
𝑇1 )

1−(𝑐𝑜𝑠𝛼)𝑒−𝑇𝑅/𝑇1 𝑒−
𝑇𝐸

𝑇2  

Where k is a scaling factor, [𝐻] is spin density, 𝛼 represents the flip angle, TR is 

the time between two successive excitations of the same slice (repetition time), TE is 

the time between the excitation pulse and the peak of the signal (echo time). 

 

1.2.2. Contrast mechanisms: 

By using short repetition time and echo time  we achieve a T1 sequence which gives 

high signal for fat and lower signal for water, as demonstrated in figure 1a. 

Using both long TE and TR achieves a T2 sequence which gives higher signal for 

water and lower signal for fat, as demonstrated in figure 1b. 

When examining a complex biological tissue, it is important to have the ability to 

differentiate between different ingredients. This capability is the main key which 

allows us to differentiate between brain's gray matter and white mater. 

https://en.wikipedia.org/wiki/Echo_time
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Figure 1. a. T1: Short TR Maximizes T1 contrast due to different degrees of saturation. Short 

TE Minimizes T2 influence, maximizes signal.  b. T2: Long TR Minimizes influence of different 

T1 and Long TE Maximizes T2 contrast- Relatively poor SNR.  c.T1  

The following table summarizes the different matter characteristics, using different 

weighting techniques: 

 

Tissue T1 weighted T2 weighted 

CSF Dark Bright 

White matter Light Dark gray 

Cortex Gray Light gray 

fat Bright light 

 

1.2.3. Learning and Adaption 

Any method that incorporates information from training samples in the design of a 

classifier employs learning. Creating classifiers involves positing some general model 

of the classifier and using training patterns to learn or estimate the unknown 

parameters of the model. Learning refers to some sort of algorithm for reducing the 

error on the net training data. There are three families of learning algorithms: 

supervised learning, non-supervised learning and reinforcement learning. 

a. In supervised learning, a teacher provides a category label or cost for 

each pattern in a training set and seeks to reduce the sum of costs for 

these patterns.  

b. In unsupervised learning or clustering there is no explicit teacher and 

the system forms clusters or "natural grouping" of the input patterns.  

c. In reinforcement learning no desired category signal is given. Instead, 

the only teaching feedback is that the tentative category is right or 

wrong. The algorithm uses a known target category label to improve 

the classifier until a satisfying category is reached.  
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1.2.4. MRI segmentation 

Image segmentation is commonly used for measuring and visualizing brain structures. 

The goal of image segmentation is to divide an image into a set of homogenous and 

nonoverlapping regions of similar attributes such as intensity, color or texture. In the 

case of brain MRI, image elements are typically classified into three main tissue 

types: white matter, gray matter, and cerebrospinal fluid (CSF). 

There are five main families of methods which are used for brain MRI segmentation 

[9]: 

1)Manual segmentation, where a human operator segments an image by hand 

2) Intensity-based methods classify individual pixels/voxels based on their 

intensity [12]. 

3) Atlas based methods. The atlas contains information about the brain anatomy 

and it is used as a reference for segmenting new images. 

4) Surface based methods, such as deformable models including active contours 

and surfaces. [13] 

5) Hybrid segmentation methods, using a combination of several techniques to 

obtain the segmentation goal. 

 

1.2.5. Brain parcellation 

Brain parcellation means dividing the brain's surface into parcels which represent 

non-overlapping regions of homogeneity of the gray matter with respect to specific 

features, such as anatomical connectivity, functional connectivity and more.  

Because of the need of learning and grouping the data into unified sets, brain 

parcellations are often derived from clustering algorithms applied to brain images 

[14]. 

There are three main techniques commonly used for brain parcellation: anatomical or 

functional ROI (regions of interest), brain atlas based and data driven parcellation. 

a. Functional region of interest: brain parcellation consists of building a 

summary of signals in a predefined region. The method is limited to the scope 

of the specific region and ignores any peripheral signals; therefore, the method 

is extremely sensitive inside the region's boundary but may suffer from 

disability to fit the bigger picture. FROI analyses are particularly useful for 

investigating phenomena with distinctive, well-described, and anatomically 

restricted features [10], e.g. V1, MT, and the fusiform face area. 

b. Atlas based parcellation is useful when dealing with wider areas of the brain, 

and even full brain analysis. The method involves a known prior parcellation 

of a well-defined atlas. The atlas can serve as a reference template for studies 

of functional data or neuroanatomy, or as a statistical prior for segmentation 

algorithms. The atlas can provide a basis for the analysis of automated image 
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segmentation methods, serving as training data for machine learning 

algorithms [11] 

c. Data driven parcellation uses different algorithms in order to group voxels 

with similar attributes or functional activity together. The variety of different 

clustering techniques and their flexibility to seek after different features 

appears to be a very useful tool. [https://arxiv.org/pdf/1802.04353.pdf] 

 

 

 

1.3. Thesis organization 

The remainder of the thesis is organized as follows: in section 2, we present the 

methods tested in this study and the criteria for model evaluation. 

 In section 3 we describe our experiments on real data, illustrating the methodology in 

details for one test case: macaque #3. The rest of test cases and our model evaluation 

are presented in section 4. 

Conclusions regarding the algorithms and the parcellation schemes are drawn in 

section 5. 
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Chapter 2  

2.  Methodology 

Our study suggests a novel methodology for brain parcellation which may be used for 

different types of mammals: rat, macaques and human alike. 

We use a data driven method in order to parcellate MRI images into different numbers 

of clusters, using the Quantum Clustering algorithm. We study its relevance by 

following the Weight-Shape decomposition procedure.  

2.1. Weight-shape decomposition 

Given an image defined by intensities 𝐼𝑖  in discrete voxels 𝐢 in a 3D Euclidean space, 

one defines its Parzen [17] (un-normalized) probability distribution by 

(4)              𝑃(𝒙) =  ∑ 𝐾(𝒙 − 𝒙𝒊)𝑖 𝐼(𝒙𝒊)  

where K is the Gaussian kernel: 𝐾(𝒛) = 𝑒𝑥𝑝 (−
𝒛2

2𝜎2), and 𝒙𝒊 is the location of the 

image pixel. 

Following [8] we employ the Weight Shape decomposition:  

(5)      𝑃(𝒙) =  𝑊(𝒙)𝑆(𝒙)   

where 

(6)  𝑆(𝒙) = exp(−𝑉(𝒙)) 

The potential function,  𝑉(𝒙), is related to the Parzen probability P by the 

Schrodinger equation: 

(7)     −
𝜎2

2
∇2𝑃(𝒙) + 𝑃(𝒙)𝑉(𝒙) =

𝑑

2
𝑃(𝒙) 

 Where d represents the Euclidean space dimension in which the data points reside. 

 Weight is related to an entropy function H by: 

(8)     𝐻(𝒙) = log 𝑊(𝒙) = V(𝐱) + 𝑙𝑜𝑔P(𝐱).    

This decomposition allows for three families of clustering algorithms [8], based on 

maximization of P, maximization of S, and maximization of H. The first method 

coincides with Mean-Shift [15], and the second coincides with Quantum Clustering 

(QC) [7] which is based on minimization of V. 

On a finite lattice described by discrete voxels 𝐢  one can rewrite the potential (up to a 

constant) in terms of convolutions 

(9)   𝑽(𝒙) =  
∑ 𝑳(𝒙−𝒙𝒊)𝐢 𝑰(𝒙𝒊)

∑ 𝑲(𝒙−𝒙𝒊)𝐢 𝑰(𝒙𝒊)
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where    

(10)  𝑳 = −𝑲 𝐥𝐨𝐠 𝑲. 

and L is the discrete realization of the Laplace operator. 

As a simple illustration, we plot in Fig. 2 the different shape functions for a two-

dimensional star figure.  

 

Figure 2.  Shapes  for different sizes of 𝜎. (a) the original image. (b-f) shapes for                         𝜎 = 10 , 𝜎 = 5, 𝜎 =
2.5, 𝜎 = 1, 𝜎 = 0.5 𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔𝑙𝑦. Note that the edges are much brighter than the rest of the image. We shall use 
this unique behavior for filtering data later on   

 The advantage of the weight-shape decomposition is that weight depends on the 

semi-local scale of P, whereas V is free of such bias. Hence V and S reflect local 

variations in P. 

2.1.1. Bias field  

Bias field signal is a low-frequency and very smooth signal that corrupts MRI images, 

especially those produced by old MRI machines [18]. Because of the bias 

inhomogeneity, it has a significant influence over both segmentation and parcellation 

algorithms that use grey level values of image pixels. Therefore, a pre-processing 

procedure is required in order to eliminate the described corruption. 

A variety of different algorithms were developed for this purpose, using fuzzy c-

means [18], intensity-based clustering [16], kernel-based clustering [19] and more. 

We take advantage of the fact that when Shape is formed out of P=WS, non-local bias 

is eliminated through the fact that it belongs to Weight.  This is demonstrated in Fig. 

3. 
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Figure 3. Example of bias field reduction by using weight shape decomposition. (a)T2 MRI brain shape. (b) biased 
T2 image (c) T1 MRI brain shape. (d) biased T1 MRI image. It is easy to notice that bias elimination is achieved by 
using our  method, which derives (a) from (b) and (c) from (d). 

2.1.2. Weight Supplementary Information 

We define thresholded amplitudes, where we limit W̅  by considering W values above the 

threshold W=0.6, and S̅  by limiting S to contain values higher than S=0.25. This allows us to 

cover complementary regions in the brain, as exemplified in Fig. 4. Concentrating on the 

cortical regions we continue below with clustering of S̅.  

 

 

Figure 4. thresholded shape (red) and thresholded weight (blue) different dominant regions using the same MRI 

image. Data outside the brain are due to noise in the MR image. 

 

 

 

 



12 
 

2.2.   Quantum Clustering 

Clustering is performed using the QC method, which involves gradient descent of 

replica of data points to their nearest minimum of V. This method requires a choice of 

σ. The higher σ becomes, the larger the clusters will be, resulting correspondingly in 

overall smaller numbers of clusters. 

This clustering procedure is illustrated in Fig.5, on a simple example of two 

dimensional datapoints. 

 

Figure  5 (a) illustrates  synthetic data  residing in a 50 by 50 pixels region. (b) illustrates the given 

points in the presence of the potential V, calculated for 𝜎 = 3, where dark blue represents low V values 

and yellow represents high values. (c) illustrates the procedure of gradient descent for the first step. (d) 

represent the last step (8 in this case) and the grouping by location. (e) shows the original data as 

clustered by QC. (f) displays the calculated potential and the corresponding clustering results for 𝜎 =
2.5.  

Figures 5e and 5f demonstrate the importance of σ size and the need to determine its values to suit the 

data's typical dimensions or to the number of desired clusters. 

 

 

 

 

 

 

 

 

 

 



13 
 

2.3. The Brain Parcellation Algorithm 

METHOD 1 (segmentation and parcellation for T2) 

this multistep algorithm combines weight-shape decomposition and quantum 

clustering in order to segment the gray matter from a given MRI image and parcellate 

it into sub components: 

a. Noise reduction. 

b. Brain segmentation, using weight shape decomposition. 

c. Quantum clustering of the gray matter. 

d. Use the clusters for parcels classification. 

METHOD 2 (parcellation only for both T1 and T2) 

This simplified version skips over the segmentation step and employs QC over all 

brain data points. 

Method 2 leads to a parcellation result which is similar to Method 1, as will be 

demonstrated in section 4 on a T2 image. It is applicable to both T1 and T2 MRI 

procedures. We applyy Method 2 to a human brain image in chapter 4.  

a. Noise reduction 

It is important to reduce the noise of the MR image. We do it by filtering out all I 

values which are smaller than 10% of the maximal I value. The importance of this 

procedure is exemplified in Fig. 6. If this noise is not filtered out the Shape acquires 

an unwarranted halo at the brain surface. Clearly the filtering does not affect the 

image while it clears the false background in the shape calculation. 

 

Figure 6 shape representation for filtered and non-filtered macaque #3 MRI brain image. (a) the original MRI 
image, layer z=70. (b) the corresponding calculated Shape for the original MRI image, layer z=70.  (c) the filtered 
MRI image, layer z=70. (b) the corresponding calculated Shape for the filtered MRI image, layer z=70. 
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b. Shape calculation and gray matter segmentation 

We shall calculate the shape for the filtered MRI images, using different  𝜎  sizes. 

We define thresholded S by considering only contributions which have high values, 

higher than S=0.225. Let us denote the resulting distribution by 𝑆 .  The latter is 

expressed mainly in the cortical regions dominated by gray matter, as seen in Fig. . 

This becomes our segmentation procedure. 

c. Quantum Clustering 

Quantum Clustering will be applied to I data restricted to the segmented area in 

Method 1, or to all noise-reduced data in Method 2, for different 𝜎 values (3,5,7 

pixels). In order to reduce computational complexity, we pick randomly n=30,000 

data points from the gray matter region. 

Being interested in the strongest clusters, we order them by their strength, defined by 

𝐺𝛼 = ∑ 𝐼𝑖𝑖𝜖𝛼  ,where 𝛼 denote a cluster index and 𝐼𝑖 represents the intensity of data-

point i.. 

d. Cortex parcellation 

An outer surface of all data points is constructed by a standard Matlab triangulation 

procedure isosurface. Each triangle on the resulting mesh of the cortical layer is 

attributed to a specific cluster, determined by the majority of the clusters met along 

five steps toward the center of the brain, with the direction orthogonal to the triangle. 

Cortical datapoint parcellation 

1. For each triangle of the mesh 

2. Calculate its normal 

3. Proceed 5 steps along the normal 

4. At each step keep the identity of the nearest cluster met along the normal 

5. end 

2.4. Segmentation evaluation. 

Comparison between different segmentation methods 

Our shape-based segmentation will be compared to another segmentation algorithm 

by using the Jaccard index [20], calculating an appropriately normalized overlap 

between them.  

𝑱(𝑨, 𝑩) =
𝑨 ∩ 𝑩

𝑨 ∪ 𝑩
 

The method to be compared with is the Multiplicative intrinsic component 

optimization (MICO) for MRI bias field estimation and tissue segmentation [16]. 

2.4.1.1. Parcellation evaluation.  
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Evaluation of the parcellation results is a challenge by itself. Observation of the 

results and comparing to familiar atlases may give us a feeling about its success, but a 

non-quantitative evaluation means nothing but a hunch. 

We now introduce two main parameters to be quantitatively examined: stability and 

reproducibility. 

2.4.1.2. Normalized Mutual Information 

A well-known [21] method used to quantitatively evaluate the similarity between two 

clustering results is the Normalized Mutual Information (NMI) matrix:  

(11) 𝑀(𝐴, 𝐵) =
∑ ∑ 𝑝(𝐴𝑖,𝐵𝑗) log(

𝑝(𝐴𝑖,𝐵𝑗)

𝑝(𝐴𝑖)𝑝(𝐵𝑗)
)𝑁

𝑗=1
𝑁
𝑖=1

(− ∑ 𝑝(𝐴𝑖) log(𝑝(𝐴𝑖))𝑁
𝑖=1 −∑ 𝑝(𝐵𝑖) log(𝑝(𝐵𝑖))𝑁

𝑖=1 ) 2⁄
 

     𝑤ℎ𝑒𝑟𝑒      

 

(12) 𝑝(𝐴𝑖) =
𝑠𝑖𝑧𝑒(𝐴𝑖)

∑ 𝑠𝑖𝑧𝑒(𝐴𝑗)𝑁
𝑗=1

; 𝑝(𝐴𝑖𝐵𝑖) =
𝑠𝑖𝑧𝑒(𝐴𝑖∩𝐵𝑗)

∑ 𝑠𝑖𝑧𝑒(𝐴𝑖)𝑁
𝑖=1

  

The measure M falls in the range of 0 to 1 where 0 means that the clustering methods 

are completely dissimilar to each other, and 1 means full similarity. 

We shall use this parameter for evaluating the algorithm's stability and 

reproducibility, where we define 

Stability= small change in M as 𝝈 varies for the same MRI image. 

Reproducibility= small change in M for different registered MRI images and the same 

𝝈 value.  

Since two meshes usually don’t fit exactly each other, we calculate the NMI 

according to the triangles that do fit. We denote the fraction of consistent triangles by 

𝑟. For example: if one parcellation has 100 classified triangles and the other has 200 

classified triangles, we look for the triangles which suit both parcellations. If they sum 

up to 80 than 𝑟 =
80

100
= 0.8 . 
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Chapter 3 

3. Test cases 

We analyze three types of mammalian brains: rats, macaques and humans. The 

mammalian brains differ from each other by their size, shape and structure as shall be 

demonstrated later on.  

For macaque #3 we present the entire algorithm explicitly for different sizes of 𝝈 in 

order to illustrate its significance.  This will also enable us to evaluate the suited 𝝈 for 

each test case. 

We present  a short description of the rest of the test cases in order to evaluate the 

algorithm stability and reproducibility. 

3.1. Data 

We use different mammalian brains in order to demonstrate our parcellation 

algorithm.  They are summarized in the next Table. 

 

test 

case 

name Size [pixels] Type Weight Source Intensity 

scale 

1 Macaque #3 130X156X130 Macaque T2 TAU 0-1 

2 Macaque #5 130X156X130 Macaque T2 TAU 0-1 

3 Macaque #7 130X156X130 Macaque T2 TAU 0-1 

4 Macaque #9 130X156X130 Macaque T2 TAU 0-1 

5 Wild rat 130X156X130 Rat T2 TAU 0-1 

6 Rat #1 130X156X130 Rat T2 TAU 0-1 

7 Rat #6 130X156X130 Rat T2 TAU 0-1 

8 MaNa 130X156X130 Human  T1 TAU 0-1 

9 KaYo 130X156X130 Human  T1 TAU 0-1 

 

 

 

 

 

 

 

3.1.1.Macaque #3- detailed illustration 
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We use a T2 MRI notation, where higher intensity values represent gray matter, while 

lower intensity values represent white matter. 

Segmentation: 

the following figure displays the shape weight decomposition and its resulting segmentation 

for    σ = 3:  

 

Figure 7. macaque #3 segmentation evaluation using Shape methodology,𝜎 = 3.(a) the MRI image for layer z=70, 

after noise reduction. (b) the corresponding shape, for 𝜎 = 3.(c) the grey matter segment , ilustrated by 𝑆.(d) 
total MRI histogram and the threshold used for noise reduction.(e) macaque #3 shape histogram, and the 

threshold used for 𝑆 definition.  

 

 

 

 

 

 

 

 

 

 

 

By the same  method we segmented the gray matter for σ = 5, 7 and 9: 
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Figure 8. macaque #3 segmentation using the Shape methodology for different σ .sizes (a) σ=5. (b) σ=7.(c) σ=9.(d) 
shape intensity histogram for σ=5.(e)shape intensity histogram for σ=7.(f) shape intensity histogram for σ=9 

An alternative segmentaion method, Multiplicative Intrinsic Component Optimization 

(MICO) for MRI bias field estimation and tissue segmentation [16], leads to the result 

displayed in Fig. 9 for the same z=70 layer. We will compare the two methods in 

section 4, using the Jaccard coefficient. 

 

  

Figure9. MICO grey matter segmentation 
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Quantum Clustering results: 

After apllying QC to the segmented region, we obtained the following results for 

different σ  values in Figures 10 to 12. Subfigures a-f display sifferent steps of the QC 

algorithm. Colors are defined according to the final clusters (f). Subfigures g-i 

represent clustering results on three perpendicular planes. σ = 3: 

 

 

Figure 10.brain datapoints clustering, using quantum clustering method σ=3. (a) initial position. (b) position after 5 iterations. (c) position 
after 10 iterations. (d) position after 20 iterations. (f) position after 50 iterations (g) the original data points divided into clusters-X_Y plane 
.(h) the original data points divided into clusters-Z_X plane.(i) the original data points divided into clusters-Y_Z plane. 
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σ = 5 

 

Figure 11.brain datapoints clustering, using quantum clustering method σ=5. (a) initial position. (b) position after 
5 iterations. (c) position after 10 iterations. (d) position after 20 iterations. (f) position after 50 iterations (g) the 
original data points divided into clusters-X_Y plane .(h) the original data points divided into clusters-Z_X plane.(i) 
the original data points divided into clusters-Y_Z plane. 
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σ = 7

 

Figure 12.brain datapoints clustering, using quantum clustering method σ=7. (a) initial position. (b) position after 
5 iterations. (c) position after 10 iterations. (d) position after 20 iterations. (f) position after 50 iterations (g) the 
original data points divided into clusters-X_Y plane. (h) the original data points divided into clusters-Z_X plane. (i) 
the original data points divided into clusters-Y_Z plane. 
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Final parcellation: 

σ = 3 

 

 

σ = 5 
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σ = 7 

 

 

It is easy to notice that for increasing sizes of  𝝈 , cluster sizes increase and the 

number of different parcels decreases. 

This interesting connection motivated us to seek a suitable 𝝈 for each of the 

mammalian brain types. We simulated the entire algorithm for 𝝈 in the range of [3,9] 

in 0.2 resolution. The following graph illustrates the relationship between 𝝈 and the 

resulting number of parcels.

 

Figure13. number of different parcells versus 𝝈 𝑠𝑖𝑧𝑒  
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Chapter 4 

4.  Results 

4.1. Macaques 

4.1.1. Summary of our results- macaques: 

name 𝝈 #data 

points 

#clusters #parcels #triangles 

Macaque #3 3 29244 1015 549 17188 

5 29883 421 261 

7 29811 246 197 

Macaque #5 3 29758 1207 668 19655 

5 30017 478 283 

7 30388 240 180 

Macaque #7 3 30746 1225 610 18101 

5 29847 498 262 

7 30663 286 166 

 

4.1.2. Segmentation comparison to MICO's: 

Jaccard index 𝝈 = 𝟑 𝝈 = 𝟓 𝝈 = 𝟕 

Macaque #3 0.72 0.63 0.57 

Macaque #5 0.61 0.54 0.5 

Macaque #7 0.73 0.65  0.59 

Macaque #9 0.7 0.61 0.54 

 

4.1.3. Stability 

Macaque #3-MNI 𝝈 = 𝟑 𝝈 = 𝟓 𝝈 = 𝟕 

𝝈 = 𝟑 1 , 𝑟 = 𝟏 0.77, r= 0.98 0.73,r= 0.97 

𝝈 = 𝟓 0.77, r= 0.98 1, 𝑟 = 𝟏 0.75, r= 0.97 

𝝈 = 𝟕 0.73,r= 0.97 0.75, r= 0.97 1 , 𝑟 = 1 

 

Macaque #5-MNI 𝝈 = 𝟑 𝝈 = 𝟓 𝝈 = 𝟕 

𝝈 = 𝟑 1 , 𝑟 = 1 0.77, r= 0.98 0.73, r= 0.97 

𝝈 = 𝟓 0.77, r= 0.98 1 , 𝑟 = 1 0.75, r= 0.97 

𝝈 = 𝟕 0.73, r= 0.97 0.75, r= 0.97 1 , 𝑟 = 1 

 

Macaque #7-MNI 𝝈 = 𝟑 𝝈 = 𝟓 𝝈 = 𝟕 

𝝈 = 𝟑 1 , 𝑟 = 1 0.77, 𝑟 = 1 0.72, 𝑟 = 0.98 

𝝈 = 𝟓 0.77, 𝑟 = 1 1 , 𝑟 = 1 0.75 , 𝑟 = 0.98 

𝛔 = 𝟕 0.72, 𝑟 = 0.98  0.75, 𝑟 = 0.98 1 , r = 1 
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4.1.4. reproducibility 

𝝈 = 𝟑-NMI Macaque #3 Macaque #5 Macaque #7 

Macaque #3 1 , 𝑟 = 1 0.8, r= 0.5 0.8, r= 0.38 

Macaque #5 0.8, r= 0.5 1 , 𝑟 = 1 0.8, r=0.72 

Macaque #7 0.8, r= 0.38 0.8, r=0.72 1 , 𝑟 = 1 

 

𝝈 = 𝟓-NMi Macaque #3 Macaque #5 Macaque #7 

Macaque #3 1 , 𝑟 = 1 0.76, r= 0.49 0.76, r= 0.38 

Macaque #5 0.76, r= 0.49 1 , 𝑟 = 1 0.76, r=0.71 

Macaque #7 0.76, r= 0.38 0.76, r=0.71 1 , 𝑟 = 1 

 

𝝈 = 𝟕-NMI Macaque #3 Macaque #5 Macaque #7 

Macaque #3 1 , 𝑟 = 1 0.74, r=0.49 0.74, r= 0.38 

Macaque #5 0.74, r=0.49 1 , 𝑟 = 1 0.73, r=0.71 

Macaque #7 0.74, r= 0.38 0.73, r=0.71 1 , 𝑟 = 1 
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4.2. Rats: 

the following figure displays the shape-based segmentation for different   σ for the wild rat: 

 

Figure 14.segmentation procedure for Wild Rat, using 𝝈 = 𝟑.(a) the MRI data- layer z=70.(b) shape distribution 
z=70, (c) thresholded s,(d) S intensity histogram.(e) MICO algorithm segmentation 

Following clustering of the segmented region we obtained parcellations for "Wild Rat": 

 

Figure 15. WIld Rat parcellation using different 𝝈 values.(a)𝝈 = 𝟑,(b)𝝈 = 𝟓,(c)𝝈 = 𝟕 
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Summary of our results- rats:  

name 𝝈 #data points #clusters #parcels #triangles 

Wild rat 3 30379 1074 675 24314 

5 28948 404 286 

7 30266 217 171 

Rat #1 3 31035 1109 740 29385 

5 30623 450 307 

7 30201 228 196 

Rat #6 3 29282 892 612 21826 

5 31625 338    258 

7 31340 140 118 

 

4.2.1. Segmentation comparison to MICO's: 

Jaccard index 𝝈 = 𝟑 𝝈 = 𝟓 𝝈 = 𝟕 

Wild rat 0.64 0.63 0.6 

Rat #1 0.6 0.55 0.52 

Rat #6 0.49 0.43 0.39 

4.2.2. Stability 

Wild rat 𝝈 = 𝟑 𝝈 = 𝟓 𝝈 = 𝟕 

𝝈 = 𝟑 1 , 𝒓 = 1 0.75, 𝑟 =0.95 0.67, 𝑟 =0.92 

𝝈 = 𝟓 0.75, 𝑟 =0.95 1 , 𝑟 = 1 0.71, 𝑟 =0.91 

𝝈 = 𝟕 0.67, 𝑟 =0.92 0.71, 𝑟 =0.91 1 , 𝒓 = 1 

 

Rat #1 𝝈 = 𝟑 𝝈 = 𝟓 𝝈 = 𝟕 

𝝈 = 𝟑 1 , 𝑟 = 1 0.75, 𝑟 = 0.96 0.69, 𝑟 =0.91 

𝝈 = 𝟓 0.75, 𝑟 = 0.96 1 , 𝑟 = 1 0.73, 𝑟 =0.91 

𝝈 = 𝟕 0.69, 𝑟 =0.91 0.73, 𝑟 =0.91 1 , 𝑟 = 1 

 

 

Rat #6 𝝈 = 𝟑 𝝈 = 𝟓 𝝈 = 𝟕 

𝝈 = 𝟑 1 , 𝒓 = 1 0.73, 𝑟 = 0.98 0.63, 𝑟 =0.95 

𝝈 = 𝟓 0.73, 𝑟 = 0.98 1 , 𝑟 = 1 0.7, 𝑟 =0.95 

𝝈 = 𝟕 0.63, 𝑟 =0.95 0.7, 𝑟 =0.95 1 , 𝑟 = 1 

 

4.2.3. reproducibility 

𝝈 = 𝟑 Wild rat Rat #1 Rat #6 

Wild rat 1 , 𝒓 = 1 0.77, 𝑟 = 0.61 0.77, 𝑟 =0.49 
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Rat #1 0.77, 𝑟 = 0.61 1 , 𝒓 = 1 0.77, 𝑟 =0.59 

Rat #6 0.77, 𝑟 =0.49 0.77, 𝑟 =0.59 1 , 𝑟 = 1 

 

 

𝝈 = 𝟓 Wild rat Rat #1 Rat #6 

Wild rat 1 , 𝒓 = 1 0.73, 𝑟 = 0.57 0.73, 𝑟 = 0.47 

Rat #1 0.73, 𝑟 = 0.57 1 , 𝑟 = 1 0.73, 𝑟 =0.57 

Rat #6 0.73, 𝑟 = 0.47 0.73, 𝑟 =0.57 1 , 𝑟 = 1 

 

 

𝝈 = 𝟕 Wild rat Rat #1 Rat #6 

Wild rat 1 , 𝒓 = 1 0.71, 𝑟 = 0.54 0.68, 𝑟 =0.45 

Rat #1 0.71, 𝑟 = 0.54 1 , 𝑟 = 1 0.67, 𝑟 = 0.55 

Rat #6 0.68, 𝑟 =0.45 0.67, 𝑟 = 0.55 1 , 𝒓 = 1 

 

 

4.3. Comparison of Method 2 and Method 1 parcellations: 

4.3.1. Summary of Macaque #3 results using method 2:  

 

name 𝝈 #data 

points 

#clusters #parcels #triangles 

Macaque #3 3 30458 1257 576 17188 

5 30458 376 229 

7 30458 214 153 

 

4.3.2. Comparison between method 1 and method 2 for macaque #3 

Macaque #3 𝝈 = 𝟑, method 1 𝝈 = 𝟓, method 1 𝝈 = 𝟕, method 1 

𝝈 = 𝟑, method 2 0.82  , 𝑟 = 1 0.78  , 𝑟 =0.98 0.73 , 𝑟 = 0.97 

𝝈 = 𝟓, method 2  0.77, 𝑟 = 𝟏 0.78  , 𝑟 =0.98 0.75 , 𝑟 =0.97 

𝝈 = 𝟕, method 2 0.69 , 𝑟 =1 0.73 , 𝑟 =0.98 0.74 , 𝑟 =0.97 

 

The comparison between method 1 and method 2 shows consistency 

between the two methods. Hence we may continue and use method 2 for 

analysis of human brains. 
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4.4. Human brains 

4.4.1.  Summary of our results- humans: 

name 𝝈 #data points #clusters #parcels #triangles 

KaYo 3 30273 1178 486 16534 

5 30273 367 209 

7 30273 203 135 

MaNa 3 30382 1363 553 18216 

5 30382 396 234 

7 30382 235 164 

 

 

 

 

 

 

4.4.2. Parcellation 

Using QC  clustering over the entire brain (Method 2) we obtained the following parcellations 

for "MaNa": 

 

Figure 16. Human parcelation using different σ values.(a)σ=3,(b)σ=5,(c)σ=7 

4.4.3. Stability 

 

KaYo 𝝈 = 𝟑 𝝈 = 𝟓 𝝈 = 𝟕 

𝝈 = 𝟑 1 , 𝑟 = 1 0.81  , 𝑟 = 1 0.74 , 𝑟 = 1 

𝝈 = 𝟓 0.81  , 𝑟 = 1 1 , 𝑟 = 1 0.81  , 𝑟 = 1 

𝝈 = 𝟕 0.74 , 𝑟 = 1 0.81  , 𝑟 = 1 1 , 𝑟 = 1 

 

MaNa 𝝈 = 𝟑 𝝈 = 𝟓 𝝈 = 𝟕 

𝝈 = 𝟑 1 , 𝑟 = 1 0.8  , 𝑟 = 1 0.74  , 𝑟 = 1 

𝝈 = 𝟓 0.8  , 𝑟 = 1 1 , 𝑟 = 1 0.81  , 𝑟 = 1 

𝛔 = 𝟕 0.74  , 𝑟 = 1 0.81 , 𝑟 = 1 1 , 𝑟 = 1 
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4.4.4. reproducibility 

𝝈 = 𝟑-NMI KaYo MaNa 

KaYo 1 , 𝑟 = 1 0.79 , 𝑟 =0.82 

MaNa 0.79 , 𝑟 =0.82 1 , 𝑟 = 1 

 

𝝈 = 𝟓-NMI KaYo MaNa 

KaYo 1 , 𝑟 = 1 0.76 , 𝑟 =0.82 

MaNa 0.76 , 𝑟 =0.82 1 , 𝑟 = 1 

 

𝝈 = 𝟕-NMI KaYo MaNa 

KaYo 1 , 𝑟 = 1 0.74, 𝑟 = 0.82 

MaNa 0.74, 𝑟 = 0.82 1 , 𝑟 = 1 
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Chapter 5 

Summary and conclusions 

The weight-shape formalism relates the quantum potential of a unique data-set with 

its equivalent energy. By using this formalism, combined with Quantum Clustering we 

have created a novel method for brain parcellation.  

The method is unique in the sense of its universality to all kinds of mammals and its 

stability over a large range of parcel numbers, determined by the chosen scale 𝜎 . 

As demonstrated for macaques, rats and humans, the method leads to stable 

outputs, examined by comparing parcellations for different 𝜎 sizes. It is shown that as 

𝜎 is increased,  the comparison value (NMI) with low  𝜎 decreases.  

Reusability of the algorithm was examined by comparing different data sets of the 

same mammal and using the same 𝜎 scale satisfying pretty stable NMI values for each  

of the examined 𝜎 sizes. Most NMI values were around 0.75 which demonstrates a 

high consistency of the results. 

Another unique achievement is the ability to cope with both T1 and T2 MRI imaging 

methods, with quite consistent results as examined for Rat datasets. Since T1 requires 

a whole brain clustering and T2 requires only the gray matter segmented areas, it is 

satisfying to witness NMI results reaching 0.82, showing consistency between the two  

parcellation methods. 

The methods can be  applicable to brain research, but may require  further 

improvements, such as optimization of the ratio between 𝜎 and the specific MRI 

image resolution, and judicious selection of data points and software befitting 

constraints of computational complexity. 

  

The code used for this work, and  datasets studied here, are available at 

https://github.com/itayfisher/brain . 

 

  

https://github.com/itayfisher/brain
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 תקציר

 

מבנה החומר האפור תכונות השכבות השונות המהוות את אזור הקורטקס במוח מגדירות את 

שימוש  והקישוריות  בין האזורים השונים במוח ההכרחיים לתפקודו התקין. חקר שכבות אלו עושה

   MRIבתמונות דימות מסוג 

חקר שכבת הקורטקס מציע חלוקות שונות ומיפוי תמונות דימות אלו לאזורים נפרדים, תהליך המכונה   

המח. במסגרת עבודה זו פיתחנו מתודולוגיה חדשה לחקר נתוני דימות אלו. המתודולוגיה  תפרסלציי

מתבססת על פונקציית ההסתברות המתקבלת משימוש בחלון פארזן על גבי נתוני הדימות התלת ממדיים, 

 "צורה"המתארים מאפיינים שונים של פונקציית ההסתברות: ה "צורה"ו "משקל"ופירוקה למרכיבי 

מושפע יותר מההטיה הגלובאלית בנתונים. "משקל"לידי ביטוי נתונים לוקאליים בעוד ה מביאה  

ממצאינו מראים כי בחירת נתוני מידע מתוך תמונת הדימות על בסיס אזורים בהם התקבלו ערכים גבוהים 

, מתקבלת חלוקה טובה בין מרכיבי החומר האפור מיתר  T2מסוג של פונקציית ה"צורה" עבור קיטוב 

מרכיבי המוח, זאת ללא צורך במידע נוסף על אנטומיית המח. שימוש בטכניקות קליסטור על אותם 

 חולדות. שלושקופי מקוק ו ארבעהאזורים הדגימה פרסלצייה יציבה על תמונות דימות של 

האזורים בהם מתקבלים ערכים גבוהים של   T1  בתמונות דימות אשר התקבלו בטכניקת

פונקציית ה"צורה" כוללים מרכיבי מוח נוספים מלבד החומר האפור. לכן בתמונות אלו אנו 

מבצעים קליסטור על גבי כל אזורי המוח בתמונות. שיטה זו נבדקה על תמונות דימות של שני 

השוואה בין ממצאים המתקבלים בין שתי שיטות אלו הראתה התאמה.  בני אדם.  

ות עבור מספר רב של יונקים, ללא צורך בידע מקדים על שיטות אלו ייחודיות ושימושי

.אנטומיית המוחות  
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