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Abstract 

We study the problem of memory capacity in balanced networks of spiking neurons. 

Associative memories are represented by either synfire chains (SFC) or Hebbian cell 

assemblies (HCA). Both can be embedded in these balanced networks by a proper 

choice of the architecture of the network. The size wE of a pool in a SFC, or of an 

HCA, is limited from below and from above by dynamical considerations. Proper 

scaling of wE by K , where K is the total excitatory synaptic connectivity, allows us 

to obtain a uniform description of our system for any given K. Using combinatorial 

arguments we derive an upper limit on memory capacity. The capacity allowed by the 

dynamics of the system, cα , is measured by simulations. For HCA we obtain cα  of 

order 0.1, and for SFC we find values of order 0.065. 
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The capacity can be improved by introducing 'shadow patterns', inhibitory cell 

assemblies that are fed by the excitatory assemblies in both memory models. This 

leads to a doubly-balanced network, where, in addition to the usual global balancing 

of excitation and inhibition, there exists specific balance between the effects of both 

types of 

assemblies on the background activity of the network.  

For each one of the memory models, and for each network architecture, we obtain an 

allowed region (phase space) for KwE  in which the model is viable. 

 

1. Introduction 

An interesting property of neural networks is their ability to function as memory 

devices. In this mode memories are embedded in the synaptic connections of the 

network, to be recalled later. Recalling is typically done by external ignition of part of 

the desired memory. The system, using the given hint, should then settle on an 

associated memory, hence it is called an 'associative memory' model. Reading out the 

network's activity, it is possible to decide if the input memory exists or not, and if it 

does, then what are its constituents. 

One method of embedding memories is that of 'attractor neural networks' (Amit, 

1989), where an initial input may lead to dynamical flow into an attractor, that serves 

as a Hebbian Cell Assembly (HCA) (Hebb, 1949) representing the recalled memory 

through elevated firing rates of its neurons. Another method is that of storing 

memories in spatio-temporal patterns of activity, such as Synfire Chains (SFC) 
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(Abeles, 1991). The memories are encoded in the precise firing patterns produced by 

the given external input. As this method involves fine temporal structure, it is capable 

of dynamic binding (Bienenstock, 1995). Applying binding (von der Malsburg & 

Schneider, 1986) to HCAs one has to resort to other temporal means (Horn, Sagi, & 

Usher, 1991). 

A network memory model should allow a neuron to participate in more than one 

memory, i.e. have memories stored in a distributed manner. In this case a neuron may 

receive input also when it is not supposed to fire. This input is due to the overlap 

between memories and should be treated as noise. Moreover, background activity in 

the absence of any memory retrieval, should also be allowed, and may be regarded as 

being due to some other noise source. One should keep in mind that the statistics of 

an active cortical tissue is one of high variability. An irregular spike train is observed 

on the individual neuron level, together with an asynchronous activity on the global 

level (Shadlen & Newsome, 1994). Among the sources of that variability are the 50% 

inputs from other cortical areas (Braitenberg & Schuz, 1991) and probabilistic 

synaptic release (Huang & Stevens, 1997). 

A network model capable of displaying stationary noisy activity of this kind is the 

balanced network (BN) model. A network is said to be balanced (Shadlen & 

Newsome, 1994; van Vreeswijk & Sompolinsky, 1998) if each neuron in the network 

receives equal amounts of excitation and inhibition. Its membrane potential will then 

fluctuate around some mean value and the firing process is noise driven, and therefore 

irregular (Abeles, 1982; Gerstein & Mandelbrot, 1964). BNs have been shown 

(Brunel, 2000) to mimic the in-vivo firing statistics of cortical tissue, and it is 
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therefore plausible that cortical neurons receive balanced input. BNs have also been 

shown (Brunel, 2000; van Vreeswijk & Sompolinsky, 1998) to have a stable 

asynchronous state (AS). 

Generally, BNs assume sparse and random connectivity. It is possible to embed 

memories in the connections of a BN, but this would violate the random connectivity 

assumption. The main consequence of introducing ordered connectivity in an 

otherwise random connectivity matrix is the appearance of a new critical point 

beyond which the AS is unstable. This was studied in detail in (Aviel, Mehring, Horn, 

& Abeles, 2003). 

Having set the background, we will now turn to our memory models of choice. 

A milestone in the theory of attractor neural network is the Hopfield model (Hopfield, 

1982), capable of storing and retrieving binary vectors by a clever construction of the 

connectivity matrix of the neural network.  The models of Hopfield, as well as some 

predecessors (Willshaw, Buneman, & Longuet-Higgins, 1969) and followers 

(Tsodyks & Feigelman, 1988) are, however, based on binary rather than spiking 

neurons (but see (Treves, 1990) for a Hopfield model of linear threshold neurons). All 

attractor neural networks serve as some kind of implementation of the idea of 

Hebbian cell assemblies (HCA) (Hebb, 1949), i.e. they contain neuronal ensembles 

that represent a memory by elevated firing rates. The cell assembly may be 

characterized by denser intra-assembly connectivity that facilitates a sustained 

activity upon partial assembly excitation (Braitenberg, 1978). The Hopfield model is 

a step backwards from the biological complexity of HCAs but it allows detailed 

analysis. Gerstner (Gerstner & van Hemmen, 1992) showed how the Hopfield model 
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may be incorporated in a network of spiking neurons. 

A network that reacts to external inputs with a reproducible firing patterns (over 

neurons and time), is said to code its input by spatio-temporal patterns. The model we 

use for producing spatio-temporal patterns is the synfire chain (SFC) (Abeles, 1982). 

For other interesting models, see (Izhikevich, Gally, & Edelman, 2003; Levy, Horn, 

Meilijson, & Ruppin, 2001; Miller, 1996). 

The SFC dictates a well-defined connectivity pattern among neurons in the form of 

feed-forward connections between pools of neurons. Each of the wE neurons in a pool 

receives L connections from neurons in the previous pool, thus creating a chain of 

pools. Other additional input connections as well as outputs are allowed. 

If L is large enough, then a synchronized firing volley of most of the neurons in a 

pool may form a wave of activity that propagates along the chain (Diesmann, 

Gewaltig, & Aertsen, 1999). Also if L is large enough, and if the igniting volley is 

synchronized and strong enough, the waves are stable in the presence of background 

noise (Diesmann et al., 1999).  

To avoid terminological confusion, the feed-forward connectivity schemes are 

referred to henceforth as chains, and the synchronized volley propagating along a 

chain as a synfire wave, or simply a wave. A wave can propagate in a synchronized 

manner along a chain, or it can lose its synchrony, dissolving into the background 

activity. A wave is said to be stable if it remains as a synchronized volley for more 

than 100ms. 

Having introduced all the ingredients – asynchronous activity at the global level, 
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attractors or spatio-temporal patterns at the assemblies’ level, and irregular spiking at 

the neuronal level – we may state our mission: 

We seek a balanced network of spiking 

neurons that can serve as a high capacity 

memory device. 

To establish the goal, we use BNs of Integrate-and-Fire (IAF) neurons, similar to the 

model described in (Brunel, 2000). As memory models we use either a HCA or a 

SFC. 

HCAs embedded in a recurrent network were suggested as a model (Amit & Brunel, 

1997) of the persistent activity observed  in delayed match-to-sample experiments 

performed in the inferotemporal and in the prefrontal cortex area (Miyashita & 

Chang, 1988). Within this model the network, in the absence of memory stimulation, 

exhibits sustained asynchronous activity. After learning, an elevated activity within a 

HCA is obtained, if a familiar stimulus is presented for a short while. Wang (Wang, 

1999) found that in order to realize a stable, low-rate, persistent activity coexisting 

with a stable resting state, recurrent excitation should be primarily mediated by 

kinetically slow synapses of the NMDA type. Later, Compte et al (Compte, Brunel, 

Goldman-Rakic, & Wang, 2000) examined the synaptic mechanisms of selective 

persistent activity underlying spatial working memory in the prefrontal cortex. Their 

model reproduces the phenomenology of the occulomotor delayed-response 

experiment of Funahashi et al (Funahashi, Bruce, & Goldman-Rakic, 1989). Brunel & 

Wang (Brunel & Wang, 2001) studied the effects of external input and 

neuromodulation on persistent activity in a working memory model. Additional 
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reviews on HCA can be found in (Sommer & Wennekers, 2000, 2001).   

In (Aviel, Mehring et al., 2003) we studied the embedding of SFCs in a BN of IAF 

neurons. The main obstacle that we found is the conflict between constraints due to 

embedded memories on one hand and the AS stability on the other hand. The 

conflicting demands are not easily resolved. This is in agreement with the study of 

(Mehring, Hehl, Kubo, Diesmann, & Aertsen, 2003), where a similar setup was used 

with added topological, cortex like, connectivity. The authors report a fairly small 

parameter regime where SFC can be embedded and recalled without destabilizing the 

AS. 

None of these publications paid special attention to the question of high capacity. The 

focus of the present paper is capacity. We load the system with memory patterns, and 

look for conditions under which we can 

 (a) maximize the load 

 (b) keep the asynchronous state stable 

 (c) recall every memory in a stable manner. 

Obtaining maximal capacity is, of course, a desirable goal. Many papers dealt with 

this kind of question in networks of binary neurons. While far from biological reality, 

binary neurons lend themselves to analytical examination.  

The Hopfield model, for example, is useful because it can be analyzed theoretically. 

In particular its behavior with respect to memory load is analyzed in (Amit, 

Gutfreund, & Sompolinsky, 1985), where it is shown that the maximal number of 

uncorrelated memory patterns, Pmax, is linear in N, the number of neurons: 
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NP cα=max , with cα  = 0.14. 

Applying results obtained in a binary neural network to neural networks of spiking 

neurons is not straightforward. Spiking neurons involve membrane time constants and 

non-linear resetting which lead to much richer system dynamics. Little is known on 

capacity of neural networks of spiking neurons. 

Sommers and Wennekers (Sommer & Wennekers, 2001) obtained a high capacity 

limit of HCA in a symmetrically coupled network of 100 Pinsky-Rinzel neurons. An 

inhibitory loop provided negative feedback leading to dynamic threshold control that 

can improve capacity. Their network operated in the oscillatory regime, and obtained 

high capacity. Here we limit ourselves to the asynchronous regime within a BN, 

which introduces other types of constraints.  

The capacity of SFCs has also been investigated: Bienenstock (Bienenstock, 1995) 

used an r-winners-take-all model and applied to it signal-to-noise analysis. Hermann 

et al  (Herrmann, Hertz & Prugel-Bennett, 1995; Hertz, 1999) reduced the IAF 

model to a binary model so statistical mechanics methods can be used. Both arrived at 

similar conclusions; again NP cα=max , but now 8≅cα .  Here Pmax is the maximal 

number of pools. 

In section 2 our model is presented in detail, in section 3 the scaling of the system is 

discussed, then in section 4 the results are reported and finally in section 5 we discuss 

the results. 
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2. The model 

We employ three levels of modeling in our system; on the microscopic level – a 

neuronal model is required, for which we use an Integrate-and-Fire model.  On the 

intermediate level – we model memory patterns in two different ways, through 

synfire chains and by Hebbian cell assemblies. On the macroscopic level we use a 

balanced network and discuss, in the following, its modification into a doubly 

balanced network. 

For simulations we used the SYNOD environment (Diesmann, Gewaltig, & Aertsen, 

1995) with the Paranel kernel (Morrison & Diesmann). The neuronal model was 

integrated with time steps of 0.1ms. 

 

2.1 Single neuron model 

Following Lapique (Tuckwell, 1988), we use an Integrate-and-Fire model, in which 

the i-th neuron’s membrane potential, Vi(t), obeys the equation: 

(1) )()()( tRItV
dt

tdV
ii

i +−=τ ,  

where  Ii(t) is the synaptic current arriving at the soma and R is the membrane 

resistance. Spikes as well as post-synaptic currents are modeled by delta functions; 

hence, the input is written as 

(2) , ∑∑ −−=
j t

delay
f
jiji

f
j

ttJtRI )()( τδ
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where the first sum is over different neurons, whereas the second sum represents their 

spikes arriving at times .  is the emission time of the f -th spike by 

neuron j, and 

delay
f
jtt τ−= f

jt

delayτ  is a transmission delay, which we assume here to be the same for 

any pair of neurons. The sum is over all neurons that project their output to neuron i, 

both local and external afferents. The strength of the synapse that neuron j forms on 

neuron i is Jij. 

When Vi(t) reaches the firing threshold θ , an action potential is emitted by neuron i, 

and after a refractory period rpτ , during which the potential is insensitive to 

stimulation, the depolarization is reset to Vreset. 

The following parameters were used in all simulations: The transmission delay delayτ  

= 1.5ms, the threshold θ  = 20mV, the membrane time constant τ  = 10ms, the 

refractory period rpτ = 2.5ms, the resetting potential Vreset = 0mV and the membrane 

resistance . Ω= MR 40

The inhibitory and excitatory neurons have identical parameters. 

 

2.2 Memory model 

Two memory models are explored, constructed on the basis of either the Hebbian 

Cell Assembly (HCA) or the SynFire Chain (SFC). 

HCAs form an associative-memory model in a biologically plausible network. An 

assembly is a group of wE randomly chosen excitatory neurons. The assembly is 

distinguished by a dense inter-assembly connectivity. A neuron in an assembly 
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receives L connections from other neurons in the assembly. The dense connectivity 

allows for sustained high firing rate, once an assembly is ignited. 

A neuron will typically participate in more than one assembly. In that case, it will 

have high connectivity with all these assemblies. If two neurons happen to participate 

together in two assemblies, we assign two different synapses to the connectivity 

induced by the two memories. All excitatory (inhibitory) synaptic connections are 

assumed to be of equal strength, J (JI), and a stronger bond between a pair of neurons 

is brought about by multiple synapses. Each neuron will be assumed to have a fixed 

synaptic resource, made of K excitatory (inhibitory) “synaptic units” J (JI). This 

constraint on synaptic resources will impose an upper bound on the number of 

memory patterns one can embed in the network. 

SFCs (Abeles, 1991) are feed forward connections among neuronal pools, with a 

fixed number of excitatory neurons, wE, in each pool. wE is also referred to as the 

“chain width”. To wire a SFC, we randomly pick pools of wE neurons each and 

connect them in a feed-forward manner, thus obtaining a chain of pools. Converging-

diverging connections form a link between two consecutive pools. Similar to HCAs, a 

neuron will typically participate in more than one pool. In contrast to HCAs, each 

neuron in a pool receives L specific connections from the previous pool, and not from 

the pool to which it belongs. If wE is large enough, then a synchronized firing volley 

of most of the neurons in a pool may propagate along the chain forming a Synfire 

wave, a stable wave of activity (Diesmann, Gewaltig, & Aertsen, 1999). The wave 

signals an activity of a specific memory object. The wave can be (de-) synchronized 
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with other waves, allowing for a mechanism of dynamically (un-) binding objects 

(Hayon, 2002). 

In these two memory models we have three parameters; wE – the size of the memory 

pattern (either an assembly or a pool), L – the inter-pattern connectivity, and P – the 

number of memories (assemblies or pools).  

Ignition of a memory pattern is performed by increasing the external input to all 

members of the pattern during 5ms. An HCA pattern will be said to be stable if after 

ignition it manifests a sustained elevated firing rate for at least 100ms. A Synfire 

wave will be said to be stable if a wave propagates along the chain for at least 100ms. 

Both patterns have a minimal value of wE , wmin , below which patterns are unstable. 

The minimum is due to the condition that the firing of the assembly or pool 

guarantees the continuing firing of the same assembly or the next pool. In case of 

SFCs, (Aviel, Mehring et al., 2003; Tetzlaff et al., 2003) w has also a maximal value, 

above which spontaneous emergence of waves occur. This is also likely to be the case 

for HCAs. 

Once wiring of all memory patterns is done, more connections are added such that if 

an excitatory neuron has less than K excitatory (KI inhibitory) synapses, random 

sources are chosen from the network until it reaches exactly K excitatory (KI 

inhibitory) synapses. The resulting connectivity is a mixture of random connectivity 

and ordered connectivity.  
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2.3 Network model 

The excitatory population consists of NE excitatory neurons, and the inhibitory one 

consists of EI NN γ≡  inhibitory neurons. A sparse connectivity is required, both to 

adhere as closely as possible to biological values and to induce a source of 

randomness. In addition to the external input (K excitatory afferents), each neuron in 

the network receives exactly K excitatory and KK I γ=  inhibitory afferents, from the 

excitatory and inhibitory populations, respectively. In our simulations we will use 

ENK ε= , with 1.0=ε . Our formalism allows other relations as well, e.g. K=Const 

when NE grows. This will be further elaborated in the Discussion section below. 

If a neuron of population y (either E or I) innervates a neuron of population x (either 

E or I) its synaptic strength  is defined as follows: xyJ

(3)                         KJJJ xE 0=≡ ,  IxII KgJJJ 0−=≡   

where J0 is a constant. Note that JgJ I ⋅−= γ , hence the constant γg  is the 

relative strength of the inhibitory synapses.  

A Poisson process with rate vextK simulates the external input. threext vvv ⋅≡ , where 

 is the minimal rate needed to emit a spike within threv τ  milliseconds (on the 

average) in a neuron that gets balanced input (Brunel, 2000).  

The network parameters used in this paper are: 

 1.0,41 == εγ , g =5, J0=10 and v=1/20. 
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The total input to a neuron is, therefore, nearly balanced. There is a small bias toward 

an excess of excitation, which controls the firing rates. 

 

3. Scaling 

Scaling is a crucial issue in modeling of complex systems. It tells us how parameters 

should be modified (scaled) while changing the number of elements (or the size) of a 

system. In our case, the "system" is the network with its connectivity matrix, the 

external input and the single neuron dynamics. The number of elements is the number 

of neurons or synapses in the network. 

Complex systems often show complex behavior that depends on of the parameters of 

the system. For proper scaling the behavior may only weakly depend on the size of 

the system. In this regard it makes sense to consider the "thermodynamic limit", 

where the number of elements goes to infinity. In this section we propose a scaling 

scheme that allows us to capture the essential behavior of the model for all values of 

K. 

We start by scaling the synaptic weight, J. The proportionality factor of the synaptic 

weight is typically chosen in model calculations as a function of the number of 

synapses, K: 

(4) βKJJ 0=  

where β gets values 0, 0.5 or 1. 

Aviel et al. Page 14 24/6/04 



The mean field approach using β=1 leads to weak coupling in the high K regime.  

Examples of such studies are the Hopfield model (Hopfield, 1982) and phase variable 

analysis (Hansel, Mato, & Munier, 1995). 

Constant synaptic strength, i.e. β=0, was also used in the literature. Brunel (Brunel, 

2000), for example, used fixed synapses together with the assumption that the 

constant post-synaptic potential (PSP) contribution is small relative to the distance 

between threshold and resting potential. Also in this regime the synaptic coupling is 

weak, and one can model the barrage of incoming PSPs as Gaussian noise. Since the 

contribution of each PSP is small, the overall change in the membrane potential is 

smooth and diffusion approximation can be used. 

Following (van Vreeswijk & Sompolinsky, 1998), we propose using β=0.5. The 

reason underlying this choice comes from requiring the firing rate of each neuron to 

be independent of the number of synapses, K. The same logic applies to the inhibitory 

synaptic strength JI. Choosing β=0.5, we obtain Eq.  (3). 

Our system operates under balanced conditions, i.e. the mean input to a neuron is near 

zero and fluctuations drive the spiking process. Let hx be the field generated by 

synapses of population x (x=E or I) felt by some neuron, and let us assume that the 

system is in an asynchronous state (AS). Under these conditions all synaptic inputs 

can be modeled by a Poisson process with rate v. To simplify calculations, we assume 

that both populations fire at the same rate v. Using  (3), the mean and variance can be 

described as follows:  

(5)     ( ) ( ) ( )γγµ gKvJgKvJKJJKvhh IIIE −⋅⋅=−⋅⋅=−⋅=−≡ 11 0  
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(6)     ( ) ( ) ( ) ( ) ( )2222222 11varvar gvJgKvJKJKJvhh oIIIE +=+⋅⋅=+⋅=+=σ  

From Eq.  (5), we see that γg controls the balance between the two populations. The 

mean of the field is zero if 1=γg , and therefore independent of K. But also the 

variance is independent of K.  This would not have been the case for β=0 or 1. 

On average, therefore, an input of K excitatory PSPs produces a spike. The 

minimum rate of external input that is needed in order to emit a spike within τ  ms 

(on average) in a neuron that does not get other inputs (Brunel, 2000) is defined to be 

( ) ( )0JKJvthre ⋅=⋅⋅≡ τθτθ . Again, is independent of K. threv

In our simulations γ1>g , so there is a potential excess of inhibition, but there is 

also an additional excitatory external input. Even if the total input is not exactly 

balanced, the feedback between the population, which is on the order of 

K according to Eq.  (5), leads to an appropriate change of the firing rates that 

stabilize the AS (van Vreeswijk & Sompolinsky, 1998). 

Another hint for setting β to 0.5 comes from our previous study (Aviel, Mehring et 

al., 2003), where we demonstrated that wE has to obey KConstwE ⋅= . In this case 

an input from wE synapses, , should lead to firing with high probability. It means 

that , i.e. J is proportional to 

EJw

( )1OJwE ≅ K1 . 

As a consequence, we set the pattern size KCw wE = , and the intra-pattern 

connectivity KCL L= , where Cw and CL are the scaling pre-factors. The scaling of 
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the external rate and the synaptic weights is given by ( )0Jvvvv threext ⋅⋅=⋅≡ τθ  and 

KJJ 0≡  respectively, as discussed in chapter "The model" above. 

We use the following values: 

 

  Parameter          Values            
    HCA  SFC 
 =============================== 

  J0  10  10 
   Cw  3.3  4 
   CL  0.75Cw  Cw
  v  0.05  0.05 

The usefulness of the scaling of pattern connectivity and external rate will become 

evident from the discussions below. 

In the next section we discuss properties of the resulting balanced network. 

 

4. Results 

4.1 Balanced Network 

In a previous paper (Aviel, Mehring et al., 2003) we studied the embedding of SFCs 

in the synaptic connectivity matrix of a balanced network. There, as we do here, we 

enforced two constraints: the asynchronous state (AS) has to be the stable background 

mode of the system, and the synfire wave has to propagate on top of it in a stable 

manner. Based on simplified models and simulations, we concluded that these two 

constraints could be met if K is large enough ( ). In this paper, we 2
minwConstK ⋅>
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take the network load ENP≡α  into consideration, using synaptic scaling. This 

allows further refinement of our statements.  

Brunel's network (Brunel, 2000) serves here as the starting point, in which we embed 

HCA or SFC patterns. But apart from introducing ordered patterns in its connectivity 

matrix, we also use a particular scaling procedure. Synaptic weights, instead of being 

constants, are now scaled like K1  (van Vreeswijk & Sompolinsky, 1998). This, in 

turn, leads to ( )0Jvthre ⋅= τθ  = Const. We verified by simulations that indeed the 

mean firing rate (in the AS) is linearly related to vext and is only weakly dependent on 

NE. 

The analysis of the Appendix in (Aviel, Mehring et al., 2003) supports square-root-

scaling.  We have shown there that wE is limited by two constraints: 

(7) wmin <  wE <  wmax

where KCw bmax ≡ . The upper bound is due to requiring stability of the AS, and the 

lower bound is posed by wave stability demand. We can estimate wmin as the mean 

number of excitatory PSPs needed to evoke an action potential with high probability. 

Assuming a normal distribution of the membrane potential, wmin can be approximated 

by twice the distance between threshold and V  in units of J, where V  is the mean 

membrane potential and J is the synaptic unit:  

(8) 
J

V
w

−
=

θ
2min .  
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Substituting Eq.  (8) in Eq.  (7), we notice that wE is sandwiched between an upper 

bound that is of order K  and a lower bound that is of order βK . Unless 5.0≤β , 

wE has no valid value in the limit of large K.  

By choosing 5.0=β  and KCw a≡min accordingly, Eq  (7) can be rewritten as: 

(9) Ca <  Cw < Cb

Under these conditions, we expect the SFC to be stable in our system regardless of 

the number of synapses K. 

In Figure 1a, we can see a wave propagating along a chain of 750 pools in a BN of 

15,000 excitatory neurons. If, however, the chain width exceeds a critical value, or if 

the network load exceeds capacity, global oscillations appear. In Figure 1b, we 

increase the number of pools embedded in the network. This leads to emergence of 

global oscillations after wave ignition. 
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Figure 1: Raster plots of a SFC embedded in a BN with K=1500. Left: α = 0.05, 

Right: α = 0.07. Neurons that participate in more than one pool may appear 

more than once on the raster plot, whose y-axis is ordered according to pools, 
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and represents every second neuron in each pool. The first 40 pools of the SFC 

are presented on the y-axis. 

We also embedded HCAs according to the protocol described in "The model" section. 

In a lightly loaded system, as in Figure 2a, an evoked assembly sustained its activity 

for hundreds of milliseconds without provoking strong global oscillations. 
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Figure 2:Raster plots of HCAs embedded in a BN with K=1500. Left: α = 0.05, Right: α = 0.105. 

The twelfth pattern is externally ignited at time t=500ms for 5ms. Neurons that participate in 

more than one HCA may appear more than once on the raster plot, whose y-axis is ordered 

according to HCAs, and represents every second neuron in each pattern. 40 HCAs are presented 

on the y-axis.  

As in the SFC case, Figure 2b shows that the global oscillations become prominent as 

the load increases. A surprisingly high capacity is obtained in both cases. 

In order to quantify the emergence of global oscillations, the values of the population 

rate, i.e. number of spikes of a population in one millisecond, are considered. An 

average and standard deviation (std) of these values are taken over a time window of 

300 ms, in order to compute a population's coefficient of variance (CV). The CV is 

the std divided by the mean, and in our case it measures the amount of synchrony of 

the population activity. CV near one means a std that is close to the mean, which is in 
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agreement with an AS. High CV is a result of high std, which implies global 

synchronous (a-periodic) oscillations in our model. Low CV (<0.5) signifies high 

firing rates. Low CV will become apparent in the next section, where the mild 

oscillations in the background activity during wave propagation will be addressed. In 

Figure 3, the CV of the population rate is plotted as a function of network load, P/NE, 

for various network sizes. We present statistics for two cases: pre- and post- pattern 

ignition. In the former, the time window is taken prior to pattern ignition (time 200 to 

500ms) and in the latter, the time window is taken post ignition (500 to 800ms). 

All curves exhibit transitions near critical points. We define the critical point of the 

network load by Pc , and we define the capacity of the network as Ecc NP≡α . The 

capacity obtained here is 0.1 and 0.065 for HCA and SFC respectively. 
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Figure 3: BN population CV as a function of α , for various values of K. Left: 

HCAs are embedded. Right: A SFC is embedded. Post- and pre- ignition curves 

are indicated by 'o' and '+' markers respectively. In both cases statistics was 

gathered from the 300ms pre- and post- ignition. Curves for three values of K 

(500 (dotted curve), 1000 (dashed curve) and 1500 (full line)) are superimposed. 
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The transitions to the oscillatory mode occur near the same α  value, cα , (0.1 for 

HCAs, 0.07 for SFCs pre-ignition and 0.65 for SFC post-ignition) for all K 

values.  

One should note an important difference between HCAs and SFCs. Whereas when 

HCAs are embedded, the pre- and post-ignition curves are indistinguishable, the 

SFCs shows a significantly higher network CV after their ignition. 

 

4.2 Doubly balanced network 

In the background activity of Figure 1, oscillation can be seen during wave 

propagation. In this section, we provide a mechanism that gets rid of this problem. 

The solution we arrived at involves architectural modifications to the original SFC 

structure. 

Let us attach a pool of randomly chosen inhibitory neurons, a shadow pool, to each 

excitatory pool in a synfire chain. A neuron in an excitatory pool projects its output, 

not only to the next pool in the chain, but also to all neurons in its shadow pool. A 

neuron in the shadow pool, does not project its output in any ordered manner, but 

diffuses its output randomly to the rest of the network, as in a completely random 

network. Similar connectivity, but for different reasons, was suggested in (Hayon, 

2002; Mehring, Hehl, Kubo, Diesmann, & Aertsen, 2003). A sketch of the 

connectivity scheme of a modified synfire chain is shown in Figure 4. 
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Excitatory 
chain 

Inhibitory 
(shadow) chain 

Pool

Figure 4: A modified synfire chain. Excitatory neurons (open circles) construct 

the "traditional" excitatory chain, characterized by the full feed-forward 

connections. Inhibitory neurons (filled circles) form the "shadow" pools. Each 

shadow pool receives excitation from its associated excitatory pool. A neuron can 

participate more than once in the chain. Additional excitatory (solid line) and 

inhibitory (dashed lines) inputs and outputs are allowed (marked with curved 

lines). 

These inhibitory pools do not carry specific information down the chain, as is the case 

for the excitatory pools, but rather echo a synchronized activity of their attached 

excitatory pool. The role of the 'shadow pools' is to guarantee a correct amount of 

inhibition during the propagation of the wave. The excess of converging connections 

in the network, due to the embedded chain, induces excess of correlated excitation, 

which may in turn, lead to global excitation (Aviel, Mehring et al., 2003). The sole 
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purpose of the shadow pools is to cancel that excess of excitation. An analogous 

shadow pattern is associated with every HCA in an HCA model. 

The size of a shadow pattern is defined as EI wdw ~
≡ . This leads to the factor d, 

representing the relative strength of inhibitory to excitatory currents, due to a pattern 

or pool, affecting a neuron that is connected to both:  

γ
dg

KJ
dKgJ

Jw
wJd

IE

II
~~

0

0 ==
−

≡ ,  { }IEx ,∈ .  

In other words ( ) EgI wdw γ= .  In the simulations reported below we use d=2 for 

HCAs and d=1 for SFCs, i.e. EI ww ⋅= 2.0  and EI ww ⋅= 1.0  respectively. These 

values were chosen after a search for optimal d values that lead to the smoothest 

background behavior after pattern ignition. 

We refer to this new type of network as a Doubly Balanced Network (DBN). To avoid 

confusion we will refer to the previous case, d=0, as a Singly Balanced Network 

(SBN). 

In Figure 5, we repeat the simulations of Figure 3, only this time we simulate DBNs. 

Since the pre- and post- ignition curves overlap in the DBN, we present only the pre-

ignition curve. The two cases are plotted on the same scale, so that the difference in 

capacity can be appreciated. 
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Figure 5: DBN pre-ignition population
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HCA (square marks), and is indepen

respectively.  

As evident, the capacity of the DB

4.3 Capacity 

In this section we show that the m

the network is limited by combina

proportional to N. That such a lim

excitatory synapses. On one hand 
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 CV as a function of α , for three values of K (500 (dotted 

full line)). The transition in SFC ('+') occurs before that of 

dent of K. Capacity is 0.115 and 0.07 for HCA and SFC 

N is superior to that of the SBN in both cases. 
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torial considerations of synaptic resources, and is 

it has to exist follows from simple counting of all 
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the other we know that each HCA, or pair of consecutive pools in a SFC, use up w2 of 

them. Hence , or KNPw <2
22

1
wCw

K
N
P =<=α . 

A more careful analysis can take care of the accounting of synapses in the way they 

are assigned within our model. We divide the K excitatory synapses of each neuron 

into chunks of L synapses. A neuron of population x (E or I) can participate in at most 

⎣ LKm ≡ ⎦  patterns due to synaptic constraints. The total number of chunks, , 

sets an upper bound on the number of patterns, since embedding P patterns requires 

w

mN x

xP chunks.  

Hence we get: 

(10) xx NmPw ⋅≤max  

where Pmax is the maximal number of patterns or pools. Next, defining 
x

x N
Pmax≡α , we 

find that 

(11) ⎣ ⎦
x

L

x
x w

KCK
w
m

=≤α   

To leading order in this turns into EN

(12) ⎣ ⎦ ( ) ( )EExLwE
wx

L
xx NONDCCN

KCD
KCKN −== −1α  

where ( )γgdDx ≡  if x=I, or 1 for x=E. 
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Thus we conclude that synaptic combinatorial considerations lead to a maximal 

number of patterns Pmax. If DI>1, then EI αγα <  and the inhibitory neurons set the 

maximum value of P. Otherwise, if DI<=1, the excitatory neurons set Pmax.

(13) ENP maxmax α=   

                                    ( ) ( )( )11
max ,min −−≡ ILwLw DCCCCα  

In our DBN, as well as the SBN where DI<1, hence the excitatory neurons determine 

the limit to be . Substituting the parameters of our HCA in Eq. 

 (11), we get . 

( ) ELw NCCP 1
max

−=

ENP 12.0max ≅

In  

 

 

 

 

 

 

Figure 6, Pc of HCAs is plotted as a function of NE. A linear relation can be observed 

up to values of NE as high as 45,000. Furthermore, the proximity of the dynamical 

capacity to the combinatorial one is evident. Results for cases of SBN are also plotted 

for comparison. As already noted before, their dynamical capacity is lower than that 

of DBNs. 
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Figure 6: Combinatorial and dynamical capacities of HCAs as function of NE for 

DBN ('o') and SBN ('*'). The solid line is EN⋅maxα .   

 

4.4 Allowed phase space 

We are now in a position to return to the issues of scaling and inquire about the 

dependence of Cb of Eq  (9) on network load. We fix α  and progressively increase wE 

in an SBN until global oscillation appears. As in Figure 3 and Figure 5, the curves 

display a critical point, wc. This criticality was discussed in (Aviel, Mehring et al., 

2003), where we found KCw bc = . In Figure 7, we repeat these simulations for 

various values of α  and K. Each simulation (Cw, α , K) is repeated five times to give 

an indication of the trial error. We also plot a crude estimate, based on simulations, of 

Ca and the combinatorial capacity upper limit, maxα , according to Eq  (13).  
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Figure 7: The allowed region of Cw, the shaded gray area, is limited by Ca from 

below and Cb from above. The latter, represented by markers with error bars, is 

estimated from numerical simulations for three different values of K. The 

markers are slightly shifted with respect to each other (K=500 (circles) to the left 

and 1500 (squares) to the right) to allow easy interpretation. These values lie 

below the constraint  that led us (Eq.  (13)) to the combinatorial upper 

bound 

1<αLCwC

maxα .  

In the phase portrait illustrated in Figure 7, values of Cw and α  that are above the 

combinatorial upper bound (dashed-dotted line) are forbidden due to the synaptic 

constraints of our model. Combinations of Cw and α  that are below the combinatorial 

upper bound but outside the shaded area lead to instability of the AS. Below Ca 

pattern activities dissolve into the background, hence they are unstable. The only 

regime that allows stability of both the AS and the pattern activity is the shaded 

region in the figure.  

Aviel et al. Page 29 24/6/04 



As the network load increases, Cb and Ca approach each other, shrinking the allowed 

regime of Cw, in which embedding is possible. 

In a DBN, the Cb values are higher, closer to the combinatorial upper bound. This 

enlarges the stability regime of the assemblies in a BN to the extent that it enables 

realizing the combinatorial upper bound in some cases (Aviel, Horn, & Abeles, 

2003a). 

When embedding SFCs in the BN, the phase portrait stays qualitatively similar but Cb 

values are lower, leading to lower dynamical capacity than in the case of HCAs. 

 

5 Discussion 

In this paper we studied embedding of memory patterns in a balanced network of IAF 

neurons. Two types of memories were used, Hebbian cell assemblies (HCAs) (Hebb, 

1949) and synfire chains (SFCs) (Abeles, 1991). We propose a scaling behavior of 

synaptic weights and other parameters that render our model invariant to changes in 

K, the synaptic size of the network. This square-root-scaling allows for high capacity 

of both HCA and SFC.  

We emphasized the scaling of variables with K, but it is usually NE that one varies. 

Using the relation ENK ε=  these two variables are linearly related. Note however 

that K may also be assumed to be constant, or vary at a different rate than NE, and our 

results will still be valid as long as K/NE <<1.  In particular, the increase of the 

maximal number of patterns Pmax with NE is valid even if K is constant. 
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We distinguished between the "traditional" balanced network, which we termed 

Singly Balanced Network (SBN), and our new Doubly Balanced Network (DBN). In a 

DBN, memory patterns embedded in the excitatory-to-excitatory part of the 

connectivity matrix project also onto their shadow patterns. The shadow patterns are 

merely random pools of inhibitory neurons that receive inputs from their associated 

excitatory patterns. Counteracting emerged excitatory correlations by inhibitory ones 

imposes another type of balance. Hence it is a doubly balanced network. We have 

shown in (Aviel, Horn, & Abeles, 2003b) that an optimal choice of d, the ratio of 

inhibitory to excitatory correlation currents, achieves the desired effect. If d is too 

small, background oscillations appear, as was the case of the SBN. If d is too large, 

the induced inhibition kills the synfire waves. The proper value, around d=1, allows 

for optimal performance. The DBNs have the advantage that their background 

activity during memory recall stays asynchronous even for high memory loads. 

Another indication of the stabilizing affect of the shadow patterns is given in (Aviel, 

Horn et al., 2003b), where it is shown that if a strong synchronized input is used to 

ignite a wave in a SBN, rather than a step current, then global oscillations are 

inevitable. With a DBN on the other hand, waves are possible on top of asynchronous 

background activity. 

Introducing double-balance is only one way of stabilizing the AS. Other ways involve 

more sophisticated neuronal models (Wang, 1999), or introducing variability through 

non-homogeneous neuronal population or through different connectivity schemes. 

For example, models, such as (Amit & Brunel, 1997; van Vreeswijk & Sompolinsky, 

1998), used variable number of synapses on each neuron. This leads to a broad 
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distribution of firing rates across the population, which in turn, introduces variability 

that helps to stabilize the AS. In our work, however, each neuron receives exactly the 

same number of synapses (Brunel, 2000). Here we suggest a stabilizing mechanism 

that is directly related to the cause of the instability. Clearly, additional stabilizing 

mechanisms, such as variable number of synapses,  variable transmission delays, or 

more sophisticated neuronal models will only help to increase the AS’s stability. 

A capacity limit cα = 0.12 of HCAs calls for comparison with analytic bounds 

obtained for binary models, like cα = 0.14 in the Hopfield model (Amit et al., 1985). 

The comparison must be done with care, as the two types of neuronal models are 

qualitatively different. Hertz (Hertz, 1999) has argued that a capacity limit obtained in 

a network of integrate-and-fire neurons should be multiplied by 2/τ  to compare it 

with a network of binary neurons. Hence the 115.0=cα  obtained here, is equivalent 

to 57.0=cα  in a binary model. It is not surprising that the last number is higher than 

0.14, since our model's memory patterns are sparse, as, e.g. in the Tsodyks-Feigelman 

(Tsodyks & Feigelman, 1988) model, where larger capacities were achieved. 

An example of an IAF network with high capacity was demonstrated by Sommers & 

Wennekers (Sommer & Wennekers, 2001). However, their network was not balanced, 

and memories retrieved from oscillatory modes. To the best of our knowledge, the 

model presented here is the first to obtain such a high capacity in an asynchronous 

mode of a network of spiking neurons. 

 

Finally let us touch some of the interesting open issues. 
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The firings of the neurons in the ignited pool are of much higher rate and are higher 

regularity than those reported by delayed match-to-sample experiments (Miyashita & 

Chang, 1988). In our model, neurons in the ignited pool receive much more excitatory 

than inhibitory input and therefore do not operate in the balanced-input regime 

anymore. Ways to reduce the ignited state’s firing rate were suggested before (Amit 

& Brunel, 1997; Wang, 1999). It will be interesting to incorporate these studies with 

the DBN approach in order to better fit experimental data. 

In this work we recall only one pattern at a time. We require the ignited pattern to be 

stable (i.e. sustained high firing rate for HCA or sustained propagation of Synfire 

wave) for at least 100ms without provoking global oscillations. The next step is to ask 

how many concurrent patterns can be successfully recalled. This is yet another type of 

capacity. Preliminary results show that three HCAs can be recalled in a K=1500 

model, one of which will survive the competition and exhibit sustained activity for 

hundreds of milliseconds.  

Our model uses binary synapses; a synapse either exists, with strength of one synaptic 

unit, or is absent. We strengthen bonds if the two neurons participate together in more 

memories. This construction leads to the combinatorial maximum capacity. One may 

speculate that different synaptic arrangements, e.g. along the spirit of the Willshaw 

model (Willshaw, Buneman, & Longuet-Higgins, 1969), will lead to even higher 

dynamical capacity. 
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