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ABSTRACT

Finite energy sum rules for arbitrary scattering amplitudes are
derived., They form consistency conditions that are imposed by énalyti-
clty alone, For amplitudes that decrease fast enough, they tend in the
limit of infinite integration to the usual superconvergence relations.
In our formulation, all Regge poles appear in the same form I1rrespective
of their @value, This helps in particular to resolve difficulties which
appear in the superconvergence relations due to the uncertainty of the
exact location of the leading singularity. The finite form of the sum
rules makes them particularly useful in practical applications. They are
a good tool for the determination of Regge parameters from low-energy

data.



De Alfaro gﬁ_gl.l) have derived superconvergence relations for
amplitudes which decrease faster than v-l. We derive a new and more
general set of sum rules that involve a finite integration of amplitudes,
They apply to all amplitudes that obey dispersion relations and they form con-
sistency conditions on the Regge expansion, Our new relations reduce to
the usual superconvergence relations in the limit of infinite integration
in the speclal case that the asymptotic behavior shows a sufficiently
rapid decrease. The finite energy sum rules are very useful both for
practical applications and for better understanding of the issues involved.
For instance, in fhe usual formulation the éxact position of the leading

Regge trajectory plays a crucial rolee’s)

in determining whether or not a
superconvergence relation exists. However, in our finite energy sum rules
this 1s not crucial at all since all Regge terms appear in the same form,
whether or not they decrease faster than vt

For the sake of simplicity, we shall first assume that the high-
energy behavior of scattering amplitudes is given by a sum of Regge pole
terms. Cuts (which are continuous superpositions of poles) and the back-

ground integral will be treated later. Iet us consider an anti-symmetric

amplitude that obeys the unsubtracted dispersion relation
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F(v) = L ImF(v') 4. (1)
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If its leading Regge term has & < -1, it will obey the superconvergence

relation
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and therefore satisfy also the anti-subtracted dispersion relation

F('V) = -g—

Ve Im F(v') .
=
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However, if the leading Regge term (but not the next one) is above -1, we
can subtract it from ¥, and the resulting amplitude will obey a supercon-
vergence relation. In order to simplify the celculations we use instead

of the conventional @ function of the Regge pole, the simple power

-1

W that has the right high-energy behavior and obeys an unsubtracted

dispersion relation:
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The amplitude F-R will satisfy the superconvergence relation:

a0
f Im(F~-R)dv = O . (6)
O

Iet us now derive the finite energy sum rules, We divide the poles
into three classes: @, stands for all poles which are above -1, %, for
all poles below -1, and o for any pole that happens to be at -1. These
three classes enter into the superconvergence rule in three very different
ways: The poles above -1 have to be subtracted from the integrand, the
poles below -1 do not appear at all, and the residue of the pole at ~1

appears on the right-hand side.
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Bach term on the left-hand side diverges if evaluated separately.

We intend to write the relation in a manifestly convergent form that will
also be suitable for practical applications. Therefore, we cut off the
integration at some Vioax = N and express the high-energy behavior by
Regge terms whose & is below =1:
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The poles Oﬁ below -1 have now entered the sum rule, but in a quite
- different manner from the poles ay above =1, We also notice that all
integrals are now comvergent. Performing the integration, we find the

following finite energy sum rule:
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There are two very important features of Eq. (9) that must be
stressed:
(a) All Regge terms enter in the final equation in the game form,
irrespective of whether & happens to be above, at, or below -1, This is
a bilg advantage of our method because it eliminates the special role that

the point -1 has in the usual treatment of the superconvergence relation,



This latter can, of course, be rederived from (9) by letting N - o, if
all ¢ are below -1,

(b) The relative importance of successive terms in the finite'energy sum
rule (9) is the same as in the usual Regge expansion of the function F,
i.e., 1f a secondary pole or a cut is unimportant in a high-energy fit
above N, then this singularity is unimportant to exactly the same extent
in the low-energy sum rule.

The meaning of our sum rule (9) is further elucidated when one
realizes that it can also be derived in the following manner : One first
uses the forward dispersion relation in order to compute the high-energy
behavior of Re F, As an input, one uses the experimental data below N
and the Regge fit to Im F above N, Afterwards, one does a Regge fit to
Re F and checks the consistency of the two Regge fits. The consistency
equations are identical to our finite energy sum rule (9). As a matter of

fact, they give a family of such relations involving increasing moments

of InmF,
(04
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for all even n. Ome derives the sum rules for odd n by considering the
(unmeasurable) J-parity amplitude, There has been some discussion about
whether fixed poles exist at the Integer J-values of the wrong signature.
These poles would simply appear on the right-hand side of Eq. (10).
Schwarz *) derived sum rules assuming that such fixed poles are absent,

while Mandelstam and Wang 5) recently showed that they might exist.



For clarity of exposition, we have assumed up to now that the ampli-
tude can be written as a sum of Regge pole terms va. Let us now drop this
assumption and start with the general J-plane integral in the Khurifs)
representation

Jo+ioo
Im F(v) = [ aJ a(J) W (11)

Jo-iao
where we choose Jb bigger than the leading singularity. et us integrate

VWInF (n=0,1,2....) from zero to N and interchange the integrations

over J and v:
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We can now do the usual expansion into Regge poles,'z) Regge cuts, and a
background integral further to the left, and we see once more that the
whole family of finite energy integrals Sn(N) is given by a Regge
representation similar to that of F., We do not need any particularx
assumption about essential singularities or fixed poles in the J-plane
in order to deri#e this family of finite energy sum rules, Eq. (12).

The finite energy sum rules, Eq. (10), are not only valid for anti-
symmetric functions, but also for symmetric ones and for the functions
£(v) which have a definite J-parity and have only the right-hand cut.

We can derive similar sum rules for negative n., For the amplitude

f(v) of definite J-parity, the formula analogous to Eq. (10) is
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wnere £™  ig the m-th derivative of £.

The special case of Eq, (13) with m = O is particularly interest-
ing., If the leading trajectory has o > O then a symmetric amplitude
will have to have a subtraction constant. This constant can be determined
from Bq. (13) by using the Regge parameters. Alternatively, if this con-
stant 1s known (for example, scattering length) it helps in detemmining
the high-energy fit., The last argument was essentially used by Igi 8)
in establishing the existence of the P' trajectory.

Our finite energy sum rule sheds light on the behavior of the usual
superconvergence relation, Eq, (2), as the dominant Regge pole moves up
through ~1. We recall that the usual relation gives zero if the dominant
pole is slightly below =1, it gives a finite number (namely, the residue)
if the pole is exactly at -1, and it gives Infinity if the pole 1s slightly

N
above -1, Our finite relation for [ Im f dv always gilves a term of the

kind ¢ X' vhich is much smaller Ehan ¢ (but not zero) for a below
-1 - (log N)-l, about equal to c¢ for o within - 1 + (log N)-l, and
much larger than c¢ (but not infinite) for a above - 1 + (log N)-l. We
see that the violent jumps from O to ¢ to @ have disappeared due to the
finite integration, and that the J-plane has become "coarse-grained" with
an uncertainty of AJ ~ (log N)'l.

This discussion helps us to remove apparent problems that were

2 3
recently raised., Muzinich ) and Phillips ) pointed out that the



existence of double p cuts might spoil the AL = 2 superconvergence rela--
tion of the B amplitude that was checked by many awthors.> ) Since this
cut will have a,(0) = 2,(0) - 1 1t seemed to be very crucial what the
exact value of a is. We see from Eq. (8) that for the practical applica-
tion it is not crucial at all whether acﬁo) would be slightly below or
above zero. In any case, the deviations of the sum rule from zero should
tell us the approximate strength of the cut or any other existent singu-
larity.

The trouble with this particular examplé»(as with many other omes)
is that the only way to check the sum rule 1s by summing over direct
channel resonénces. The results have such bilg ambiguitles that it is very

difficult to draw any canvincing canclusion. However, there exists at least
.one clean case where good experimental data 1ls available for the amplitude,
namely the nlN charge exchange at forward directions.lo) Let us now turn

to this problem and illustrate with it the application of our technique.

Good date for Im Frpy = k(otot(n"p) - °£ot(“+P)) exist from
threshold to 22 BeV, The amplitude converges quickly to its Regge fit,
and above 3.7 BeV this fit falls within the error bars of the experimental
points., We choose therefore N = 3,7 BeV in Eq. (9).

One has to reallze that for the energy reglon above 3.7 BeV, for
which direct-channel resonances still exist, the Regge expansion cannot be
a convergent series (of non-integer powers). It must rather be an asymp-
totic series, because each term V& 1is regular at the resonance energy and
cannot represent a resonance pole in v. However, the asymptotic series
does represent the smoothed-out contribution of all resonances, it only

fails to represent the remaining wiggles, This remalnder is given by the



Regge background integral. Above 3,7 BeV, these resonance wiggles are much
smaller than the systematic experimentsl error, and below this point the
extrema of the experimental curve converge to the Regge fit at a rate of

e-O.B(V/M) .

Summing the datall) we Obtaln

N N s 2
[ mMFav = | kaoav - g B - 23 42 mb BeV
o) o] 2M?

where we have included the N-Born term, On the other hand, the parameters

of the Regge pole as determined from the high-energy fitle) lead to

N

: 1
] —TﬁL_T Wav = —TIL-T - 26+ b w BeV® .
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We see that the one-pole fit 1is consistent within error bars with the sum
rule.

The error of + 4 in the Regge contribution comes from the error of
the Regge parameters ag determined by the fit to the high=~energy data
alone; We see that the ihtegral over the experimental values of k Ao
geve an error that is smaller by 50%. Therefore, we should take it as an
input in an overall one-pole fit. 1In that case, we find the best values

of the paremeters (using 1 BeV as the scale factor in v%):

&, = 0.70 # 0.05

B/r(o#l) = 4.l 4 0.5mb BeV .



The errors allow the possibility of the existence of additiomal
singularities with the right quantum numbers. The situation is parti-
cularly simple if the additional singularity is a pole at a 5 = -1, The
relative contribution of such a second p-pole can be as blg as 15% at
3.7 BeV, On the other hand, if we choose ab. asap, then we do not get
any limits on the strength of the p'-pole, since one cannot distinguish
between the two poles. In particular, we would not be able to distinguish
in this analysis (at t = O) between the p-pole and a p-P cut.

Let us emphasize that thg finite energy sum rules should be taken
into account in any high-energy analysis. Arcareful experimental analysis
of scattering amplitudes should be made at low energles as well as at
high energies to provide a better accuracy for the determination of the

Regge behavior.

We thank Dr, Mehiko Suzuki for raising the idea of the p-subtraction
in xN charge exchange and for active collaboration on this problem, It is

this analysis that led to the general considerations presented here,.
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