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Abstract 
 
We investigate the formation of ordered spatiotemporal activations of pools of 
neurons in synfire chains (SFC) within a balanced network, both by simulations and 
by analytic tools. Using a suitable matrix of synaptic connections, we show that the 
results depend on the ratio between the size of an individual pool of neurons (w) and 
the total excitatory input of a neuron (K). In our simulations of 10,000 neurons, we 
obtain an asynchronous-irregular firing mode, which does not sustain a traveling 
pulse-packet of SFC activity. Our analysis shows that the latter may be expected to 
exist in larger networks in which very small w/K values can be realized.  
 
Keywords: synfire chain, balanced network, asynchronous irregular state, common 
input, integrate and fire neuron. 

1 Introduction 
A randomly connected sparse network, where each neuron gets as much inhibition as 
excitation is called a “balanced network”  [2]. Such a network of integrate-and-fire 
(IAF) neurons is known to have a regime of parameters with stable asynchronous-
irregular (AI) activity  [2]. In the AI state, population activity is asynchronous and the 
individual neuron's activity is irregular. When a balanced network operates in the AI 
regime, its neuronal firings are driven by the fluctuations of its input, rather than by 
its mean input. Hence, the neurons fire irregularly although they integrate a huge 
number of inputs. This property of balanced networks as well as their ability to 
respond fast to external stimuli  [5] makes them an appropriate candidate for modeling 
a cortical neural network. 
In this paper, we study the stability of the AI state of a balanced network in the 
presence of ordered connectivity. We show that one can depart from the random 
connectivity assumption and still keep the AI state stable. In particular, we are able to 
embed microcircuits of synfire chains (SFCs) in a balanced network without losing 
the AI state. 
SFC  [1] is a feed-forward multi-layered architecture (a chain), in which spiking 
activity can propagate in a synchronous wave of neuronal firing (a pulse packet). The 
chain is made of a sequence of pools of neurons. A neuron in a pool receives afferent 
inputs from all neurons in the previous pool, while projecting its output to all the 
neurons in the consecutive pool. A neuron also receives many other afferents from the 
network and projects many outputs to other neurons in the network. The notion of 
pulse packet was developed in  [3], where it was found that for pool size large enough, 
the pulse packet converges to a synchronous firing pattern, whereas for small pool 
size, the pulse packet dissolves and is no longer distinguishable from the background 
activity. 
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We begin by analyzing the effect of common input on a pair of neurons in a simple 
neuronal model. We then use this result in our numerical study of a balanced network   
whose excitatory connections are superpositions of SFCs. 

2 A pair of neurons in a pool 
 

As a preparation for the understanding of pulse-packet propagation, we begin by 
studying the correlations of two neurons that belong to the same pool on a chain. This 
chain is assumed to belong to a network whose connectivity is neither entirely random 
nor entirely structured. In contrast to a random network, where a pair of neurons 
shares a small number of common inputs, our network contains many pairs of neurons 
that share at least a pool as their common inputs. This is due to the specific wiring of 
a chain, where a pair of neurons in a pool shares common input from the previous 
pool. Clearly, a common input to a pair of neurons induces correlation between the 
pair, even if the inputs are nothing but noise. We use a simple model of binary 
neurons to study the relation between the size of the common input and the correlation 
induced by the common input. 

1 The simple model 
We look at a pair of neurons in a pool, each having K excitatory synapses and K 
inhibitory synapses.  w of their excitatory synapses receive the same input (due to the 
previous pool on the chain). We enumerate the synapses such that the first w synapses 
are common and the last K-w are not. We assume w and K to be large. 
Let si(t) be a stochastic point process representing the afferent input to the i-th 
synapse of a neuron. For clarity, we discard the time dependence notation of the si‘s. 
The si‘s are correlated binary variables with the following characteristics: 
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members of the same pool.  
We assume, therefore, no correlations among inputs that are not common to both 
neurons. This assumption may not be valid in a full network.  

2 Correlation of fields 
We start by partitioning the input field of a neuron into three sub-fields: Inhibitory (I), 
independent-excitatory (X) and common-excitatory- (Z). We calculate the membrane 
potential that is the result of incoming post-synaptic potentials in each of the three 
sub-fields.  
Let Z be a random variable that represents the local field generated by the first w 

excitatory synapses: �
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, where J is the (single) synaptic weight. 

The statistics of Z is as follows: 
νµ JwZZ =≡  
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Note that we assumed here that the inputs that do not come from the previous pool are 
uncorrelated, i.e. 2ν>=< ji ss . 
Since we assume large w, we can apply the central limit theorem, leading to:  

( )ZZNZ σµ ,~ , with νµ wJZ = and ( )( )11 −+= wwJ in
sZ ρσσ . 

 
Let X1 and Y1 be random variables that represent the local sub-fields of the first 
neuron generated by the independent K-w excitatory synapses and K inhibitory 
synapses, respectively. A derivation similar to that of sub-field Z leads to: 

( )XXNX σµ ,~1 , with νµ )( wKJX −= and wKJ sX −= σσ . 

( )IINI σµ ,~1 , with νµ JKI −= and KJ sI σσ =  
 
Let h1 be the sum of the three uncorrelated, normally-distributed sub fields of the first 
neuron: h1 = X1 + Z + I1.  
The mean of h vanishes by construction, due to the balanced network assumption, 
whereas the variance is given by ( )[ ]in

sIZXh wwKJ ρσσσσσ 12222222 −+=++= . 
Similarly, we define h2 = X2 + Z + I2, where X2 and I2 are the respective sub-fields of 
the second neuron.  
Clearly, 12 hh =  and 2

1
2
2 hh = . The covariance of the two fields, however, 

depends on their common input:  
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The correlation coefficient is: 
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Note that hρ  is not a function of ν  or sσ in this model, i.e., the correlation between 
the fields is neither a function of the input rates, nor a function of the input variance.  
In Figure 1 we display the correlation of the two fields as a function of the correlation 
in the inputs for a series of w=10, 50, 500, emphasizing the fast jump in behavior 
from small to high correlations. 
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Figure 1: Correlation in the fields as a function of the correlation in the common input. K=1,000. 
All the curves are concave and intersect the diagonal (dashed line) at a single point. 
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3 Fixed-point correlations 
Next, we recall that our pair of neurons resides in a pool, which in turn is a part of a 
chain. Using equation  (1), we are able to follow the evolution of correlation from the 
common input to the fields. If we further assume that the correlation between the 
output spikes, outρ , is equal to the correlation between the fields, hρ , we can 
calculate  outρ  as a function of inρ . Indeed, simulations of a pair of IAF neurons that 
operate in the irregular regime show that the correlation between the output spikes is 
almost equal to the correlation between the fields.  
Hence, we equate hρ  of a pair of neurons in a pool with inρ  of the consecutive pool. 
We define hin ρρρ =≡* , to be the fixed-point correlation, and we solve Eq.  (1) for 

*ρ . The intersections of the curves in Figure 1 with the diagonal are these fixed 
points. The fixed-point correlation curve is plotted in Figure 2, as a function of w, for 
several values of K. 
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Figure 2: The fixed-point correlation as a function of w, for several values of K. Note the sharp 
transition between low and high fixed-point correlations.  

3 The network 

1 Integrate-and-fire neurons 
Following Brunel  [2], we use an IAF model, in which a neuron’s membrane potential, 

)(tvi , obeys the equation: 

(2) )()()( tRItv
dt

tdv
ii

i +−=τ ,  

where )(tI i  is the synaptic current arriving at the soma. Spikes are modeled by delta 
functions; hence, the input is written as 
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where the first sum is over different neurons, while the second sum represents their 
spikes arriving at times Dtt f

j −= . f
jt  is the emission time of the f-th spike at neuron 

j, and D is the transmission delay. The sum is over all neurons that project their output 
to neuron i, both local and external afferents. 
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When )(tvi  reaches the firing threshold θ , an action potential is emitted by neuron i, 
and after a refractory period rpτ , during which the potential is insensitive to 
stimulation, the depolarization is reset to vreset. 
The following parameters were used in all simulations: The transmission delay D = 
1.5ms, the threshold θ  = 20mV, the membrane time constant τ  = 10 ms, the 
refractory period rpτ = 1ms and the resetting potential vreset = 10mV.  
We used the Synod simulation environment  [4]. The Runge-Kutte method of order 2 
was used for integration, with time steps of 0.1ms. 
As this model is similar to the previous simple model, we can expect the effect of 
correlations in the input on the output correlations to stay the same as in the simple 
model. Thus, we presume the fixed-point correlations to behave as depicted by the 
curve in Figure 2. 

2 Network architecture 
We connect two neurons in the network according to the following rule: 
 If the connection is of one of the I->E, E->I or I->I types, then the neurons are 
connected with probability ENK . Again, we follow Brunel  [2] by forcing each 
neuron to receive exactly K afferents. 
 Else, for E-E connections, we consecutively choose a random pool of w 
neurons and connect them to the previous pool in an all-to-all manner. Each neuron 
can participate in no more than w

K  pools, thus, in the process of choosing a pool, we 
discard any neuron that exceeds its limit of afferents, and we draw randomly another 
neuron. After embedding the maximum possible number of pools, which is 2w

KNE , we 
add random excitatory connections, so that each neuron receives exactly K excitatory 
afferents. 

3 Results 
For the following synaptic coupling: mVJJmVJJ IIEIEEIE 5.0,1.0 −==== , and 
external rate Hzext 20=ν , we get a strong dependence of network activity on w, as 
expected from the simple model. 
The population activity, i.e. the percentage of firing neurons in the excitatory 
population in millisecond bins, is presented in Figure 3. 
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Figure 3: Population activity of 10,000 excitatory neurons in an IF network including also 2500 
inhibitory neurons. Each excitatory neuron receives K=2,000 inputs (1000 from the excitatory 
population and 1000 reflecting external input) and 250 inhibitory inputs. Changing the size of the 
pool w from 94 To 95 switches the network from an asynchronous-irregular mode to a 
synchronous one, exhibiting global oscillations. Note the different scales on the two plots. 
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We note that global oscillations are exhibited by the population activity, as w crosses 
the critical value.  

4 Discussion 
Figure 2 demonstrates that in the limit of large K, there is a critical value of w, wc, 
which separates two regimes. If w>wc, the pools fire in tandem with no regards to 
their input, as long as their external input is larger than some threshold. With all pools 
activated simultaneously, the chain loses its computational meaning. If however, 
w<wc, all neurons fire asynchronously, given an asynchronous input.  
From Figure 3, we learn: 

(i) It is possible to attain a stable state of AI activity in a balanced 
network, even if the synaptic matrix contains a superposition of chains. 

(ii) If the pools’ size exceeds a critical value, the asynchronous activity is 
replaced by   global oscillations. 

These observations are explained by the curve of Figure 2: The global oscillation is a 
result of the inability of the network to sustain a stable AI state due to excess of pair 
wise correlations, which in turn, are the result of w>wc. 
 
Correlation between uncoupled neurons due to common and synchronous input was 
also studied in  [6]. Their setup is similar to our pair of neurons in a pool, but with 
conductance based IAF neurons. In accordance with our conclusions, they found that 
correlation of the output spikes is strongly enhances by the correlation in the common 
excitatory input. The level of fixed-point correlation in a chain was not studied, but 
their result seems to lead to the same curve depicted in Figure 2. 
 
The w<wc regime is adequate, in principle, for transporting pulse-packets along 
chains. For large enough w<wc, igniting the first pool, the pulse packet can propagate 
or dissolve, depending on the size of w, the strength and width of the pulse packet. 
See  [3] for details.  Using only N=104 neurons a traveling pulse packet cannot be 
obtained in our balanced network. In order to obtain large enough w, while 
maintaining the AI regime, we need wc to be large; hence, also K has to be large. 
For our neuronal model, we estimate that for N=105 neurons with K=104, wc is large 
enough for pulse-packets to propagate synchronously in an AI state of a balanced 
network. 
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