
Suspensions and polymer solutions

Solution of Exercise 8

1. In class we obtained
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, (1)
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as the critical value of χ for which the expression in the square root of Eq. (1) vanishes, i.e.,
φspin1 = φspin2. From Eq. (1) we have
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We now substitute in Eq. (3) χ = χc(1 + ε) and expand to leading order in small ε, recalling
that the expression vanishes for χ = χc. The result is
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Finally, substituting χc from Eq. (2), we obtain to leading order in small ε and large N ,

φspin2 − φspin1 ' 2N−1/4ε1/2. (4)

2. The Flory-Huggins free energy of a polymer solution, as derived in class, is
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]
, (5)

where N is the number of monomers in a polymer chain and φ the polymer volume fraction.
Recall that this is the free energy per lattice site. The total free energy is

Ftot =
V

a3
∆F,

where V is the total volume, and a3 the volume of a lattice cell (monomer volume). We recall
also that
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3

V
,

where Nc is the number of polymer chains. To calculate the pressure we will need to take the
derivative of Ftot with respect to V while keeping T and Nc constant. This is equivalent to(
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Hence,
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(a) i. We use Eq. (5) in Eq. (6) to get

p = −kBT

a3
[ln(1− φ) + χφ2],

which, to 2nd order in φ� 1, gives
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where v = a3(1− 2χ) is the excluded-volume parameter.

ii. Since φ = NNca
3/V , the 1st-order term in Eq. (7) is equal to kBTNc/V = kBT/Vc,

where Vc = V/Nc is the volume per chain. To leading order, therefore, the pressure is
equal to kBT per molecular volume, in accord with van’t Hoff’s law.

iii. The 2nd-order term will start dominating when φ > (a3/v)N−1. We obtained for
the overlap volume fraction φ∗ ∼ (a3/v)0.6N−0.8. When N is very large, therefore,
we get that the 2nd-order term dominates at volume fractions much smaller than
φ∗. This does not make sense, because at φ � φ∗ we expect the system to behave
as a dilute solution of isolated chains, which is exactly what the 1st-order (van’t
Hoff) term describes! This is a failure of the mean-field Flory-Huggins theory, which
assumes a uniform distribution of monomers throughout the solution, i.e., it ignores
the correlations between monomers belonging to the same chain. This assumption of
uniformity leads to an overestimation of the monomer-monomer repulsions and, thus,
to a dominance of the interaction term at concentrations which are far too low.

iv. Nevertheless, if we stick to the Flory-Huggins theory, then at φ > φ∗ the 2nd-order
term surely dominates, and we get

p ' kBT

a3

v

a3
φ2. (8)

(Note that, since the solution is assumed semi-dilute, we still have φ � 1, and an
expansion in φ is still valid.)

(b) In class we did a scaling analysis for a semi-dilute polymer solution in a good solvent,
obtaining for the blob size
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(
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1−3ν
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1−3ν .

Recall that in this analysis the blobs form a “rescaled melt”, i.e., the volume available for
a blob is the volume of the blob itself. Hence, applying van’t Hoff’s law for the blobs, we
get
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Comparing Eqs. (8) and (9), we see that the correlations inside the chains lead to a
stronger dependence of the pressure on φ.
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