Suspensions and polymer solutions

Solution of Exercise 8

1. In class we obtained
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as the critical value of y for which the expression in the square root of Eq. (1) vanishes, i.e.,
(bspinl = ¢spin2- From Eq (1) we have
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We now substitute in Eq. (3) x = x.(1 + €) and expand to leading order in small €, recalling
that the expression vanishes for x = x.. The result is
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Finally, substituting y. from Eq. (2), we obtain to leading order in small ¢ and large N,
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2. The Flory-Huggins free energy of a polymer solution, as derived in class, is
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where N is the number of monomers in a polymer chain and ¢ the polymer volume fraction.
Recall that this is the free energy per lattice site. The total free energy is
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where V' is the total volume, and a® the volume of a lattice cell (monomer volume). We recall

also that
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where N, is the number of polymer chains. To calculate the pressure we will need to take the
derivative of Fi,; with respect to V' while keeping 7" and N, constant. This is equivalent to
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Hence,
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i. We use Eq. (5) in Eq. (6) to get
kgT
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which, to 2nd order in ¢ < 1, gives
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where v = a®(1 — 2x) is the excluded-volume parameter.

ii. Since ¢ = NN.a®/V, the lst-order term in Eq. (7) is equal to kgT'N./V = kgT/V,
where V, = V/N, is the volume per chain. To leading order, therefore, the pressure is
equal to kgT' per molecular volume, in accord with van’t Hoff’s law.

iii. The 2nd-order term will start dominating when ¢ > (a®/v)N~'. We obtained for
the overlap volume fraction ¢* ~ (a®/v)*N=%8 When N is very large, therefore,
we get that the 2nd-order term dominates at volume fractions much smaller than
¢*. This does not make sense, because at ¢ < ¢* we expect the system to behave
as a dilute solution of isolated chains, which is exactly what the lst-order (van’t
Hoff) term describes! This is a failure of the mean-field Flory-Huggins theory, which
assumes a uniform distribution of monomers throughout the solution, i.e., it ignores
the correlations between monomers belonging to the same chain. This assumption of
uniformity leads to an overestimation of the monomer-monomer repulsions and, thus,
to a dominance of the interaction term at concentrations which are far too low.

iv. Nevertheless, if we stick to the Flory-Huggins theory, then at ¢ > ¢* the 2nd-order
term surely dominates, and we get
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(Note that, since the solution is assumed semi-dilute, we still have ¢ < 1, and an
expansion in ¢ is still valid.)

In class we did a scaling analysis for a semi-dilute polymer solution in a good solvent,
obtaining for the blob size
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Recall that in this analysis the blobs form a “rescaled melt”, i.e., the volume available for
a blob is the volume of the blob itself. Hence, applying van’t Hoft’s law for the blobs, we
get
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Comparing Egs. (8) and (9), we see that the correlations inside the chains lead to a
stronger dependence of the pressure on ¢.
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