Suspensions and polymer solutions

Solution of Exercise 7

- 1. We assume that the adsorbed polymer can be divided into blobs of g monomers and size ξ . The thickness of the adsorbed "cushion" is ξ , i.e., the rescaled chain of blobs lies flat on the surface. The blobs are defined such that the energy of adsorbtion per blob is equal to $k_{\rm B}T$. ξ and g are related by $\xi \sim ag^{\nu}$.
 - (a) The monomer concentration within a blob is

$$c \sim \frac{g}{\xi^3} \sim \frac{g}{a^3 g^{3\nu}} \sim \frac{1}{a^3} g^{1-3\nu}.$$

Since the surface potential has a short range of a, only a thin layer of thickness a in the blob feels it. The volume of this layer is $\xi^2 a$. Hence, the number of monomers in a blob that are actually adsorbed on the surface is

$$n_{\rm ads} \sim \xi^2 ac \sim a^2 g^{2\nu} aa^{-3} g^{1-3\nu} \sim g^{1-\nu}$$
.

The energy of adsorbtion per blob is, therefore,

$$\varepsilon_{\rm ads} \sim n_{\rm ads} V_0 \sim g^{1-\nu} V_0$$

which, by the definition of the blob, is set equal to $k_{\rm B}T$. From this we find

$$g \sim \left(\frac{k_{\rm B}T}{V_0}\right)^{\frac{1}{1-\nu}}, \quad \xi \sim a \left(\frac{k_{\rm B}T}{V_0}\right)^{\frac{\nu}{1-\nu}}.$$
 (1)

For a theta solvent (ideal chain, $\nu=1/2$) we get a thickness of $\xi \sim a(k_{\rm B}T/V_0)$, whereas in a good solvent (real chain, $\nu \simeq 0.6$) $\xi \sim a(k_{\rm B}T/V_0)^{1.5}$.

(b) The free energy of adsorbtion is

$$F_{\rm ads} \sim \frac{N}{g} \varepsilon_{\rm ads} \sim \frac{N}{g} k_{\rm B} T \sim N k_{\rm B} T \left(\frac{V_0}{k_{\rm B} T}\right)^{\frac{1}{1-\nu}}$$
 (2)

In a theta solvent it scales as T^{-1} , and in a good solvent as $T^{-1.5}$.

2. We assume again that the confined polymer can be divided into blobs of g monomers and size ξ . Inside a blob the chain is unperturbed by the confinement, while the rescaled chain of blobs has a straight configuration along the tube. Thus, $\xi \sim A$. The number of monomers in a blob is

$$g \sim \left(\frac{\xi}{a}\right)^{1/\nu} \sim \left(\frac{A}{a}\right)^{1/\nu},$$

so the number of blobs is

$$n_{\rm blob} \sim \frac{N}{g} \sim N \left(\frac{a}{A}\right)^{1/\nu}.$$

Each blob represents a free energy of $k_{\rm B}T$. The free energy of confinement is, therefore,

$$F_{\rm conf} \sim n_{\rm blob} k_{\rm B} T \sim N k_{\rm B} T \left(\frac{a}{A}\right)^{1/\nu}$$
 (3)

The free energy increases as the tube gets thinner, as expected. It scales as A^{-2} for an ideal chain, and as $A^{-1.7}$ for a real chain. Since a/A < 1, the free energy is larger for a real chain — it is harder to squeeze a chain with internal repulsions into a tube. Another quantity of interest is the length R_{\parallel} of the tube occupied by the polymer. It is

$$R_{\parallel} \sim n_{\rm blob} \xi \sim NA \left(\frac{a}{A}\right)^{1/\nu}$$
 (4)

Note that $R_{\parallel} \sim N$, i.e., the dimensionality of the chain became D=1 because of the confinement. R_{\parallel} has a nontrivial scaling with the tube diameter, $R_{\parallel} \sim A^{1-1/\nu}$, i.e., it scales as A^{-1} for an ideal chain and as $A^{-0.7}$ for a real one. In both cases, as expected, R_{\parallel} increases as the tube gets thinner.