
Suspensions and polymer solutions

Solution of Exercise 5

1. Since the chain is assumed to consist of N segments of fixed length 2lp each, we can define
a certain chain configuration by specifying the N solid angles, {θn, ϕn}n=1,...,N , of segment
orientations, where θn are measured with respect to the x axis. The extension of the chain
along the x axis in the given configuration is X = 2lp

∑N
n=1 cos θn, and its energy is U =

−~f · ~R = −fX = −2flp
∑N
n=1 cos θn. This energy is analogous to that of N independent

dipoles, of dipole moment 2lp each, interacting with an external field ~f = f x̂. Since there is
no coupling between the “dipoles”, the partition function can be decomposed into a product
of independent partition functions for each “dipole” separately,

Z(T, f,N) =
∫ 2π

0
dϕ1 · · ·

∫ 2π

0
dϕN

∫ 1

−1
d(cos θ1) · · ·

∫ 1

−1
d(cos θN)e2βflp

∑N

n=0
cos θn

=
[∫ 2π

0
dϕ
∫ 1

−1
d(cos θ)e2βflp cos θ

]N
=

[
4π

sinh(2βflp)

2βflp

]N
. (1)

2. The free energy is

G(T, f,N) = −kBT lnZ = −NkBT
[
ln

(
sinh(2βflp)

2βflp

)
+ const

]
. (2)

3. The mean extension is

〈X〉 = −
(
∂G

∂f

)
T,N

= 2Nlp

[
coth(2βflp)− 1

2βflp

]
≡ 2NlpL(2βflp), (3)

where L(u) = coth(u) − 1/u is called the Langevin Function. For small arguments L(u �
1) ' u/3. Hence, for f � kBT/lp we get 〈X〉 ' [4Nl2p/(3kBT )]f , i.e., an “entropic spring”, as
expected. For large arguments L(u � 1) ' 1 − 1/u. Hence, for f � kBT/lp we get 〈X〉 '
2Nlp[1− kBT/(2lpf)], i.e., the extension approaches its maximum possible value, L = 2Nlp, as
f−1.

4. From Eq. (3) we see that to get 〈X〉 = L/2 we need u that satisfies L(u) = 1/2. Numerical
solution of this equation gives u ' 1.8. The required force is, therefore, f ' 1.8kBT/(2lp) '
7.5× 10−14 N, or 0.075 pN.

Remark: As shown in the class, the actual approach to maximum extension goes as f−1/2 and not
as f−1. This is because when the chain is highly stretched the assumption of dividing it into many
freely jointed segments breaks down.


