Suspensions and polymer solutions

Solution of Exercise 4

1. We begin by inverting the first term in éz-j, which is proportional to 1/¢>.
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Similarly, if we invert 1/¢* we will get (27%)~! [>° dgsin(qr)/(¢®>r). This integral diverges at
y g 0. g g

q — 0, but we note that for the second term in G;; we actually need to invert ¢;q;/¢*, which
removes this divergence.
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The integral [;° dgsin(qr)/(qr) = w/(2r) has already been calculated in Eq. (1). The other one

needed is (ar) in(qr) . ‘
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Substituting these two results in Eq. (2) gives
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Finally, using Egs. (1) and (3) in the expression for éij, we find,
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2. From the definition of rcy we have
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(a) In the absence of hydrodynamic interactions the motions of the two particles are indepen-
dent, i.e., (r) . r®) = 0. We then find from Eq. (5) 6Dcy = (2/4)6D,, i.e.,
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We see that the diffusivity of the center of mass is smaller (by a factor of 1/2) than that of

the single particles. This makes sense, because D¢y characterizes the diffusion of a larger,

less mobile object — a particle pair. You can easily verify that the same calculation for
N uncorrelated particles will yield Dey = Ds/N.
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(b)

In the limit r > a we may assume (i) that the self-diffusion of a single particle is unaf-
fected by the presence of the other; and (ii) that the coupling diffusion coefficients, as we
showed in class, are given by kg times the appropriate components of the Oseen tensor.
Assumption (i) leads to
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and assumption (ii) to
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1 1 1
= 2kpT |G, (rX G X G, (rx)|t = 2kgT t
BT [Gr(1X) + Gy (%) + (rx)] B (47”77’ + ST + 87r77r>

kBTt
r

Substituting these two results in Eq. (5), we find
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namely,
Doy = 2L <1+a> (7)
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For r — oo the hydrodynamic interaction vanishes, the particles become uncorrelated,
and Eq. (7) coincides with Eq. (6) of item (a), as expected. At finite r, however, the
hydrodynamic interaction leads to a correction of order a/r, which enhances the diffusion
of the center of mass. This is because the hydrodynamic interaction makes particles drag
one another in the same direction, making the pair move more as a coherent body.

The correction in Eq. (7) is larger than 10% when a/r > 0.1, i.e., for r < 10a. At particle
concentration ¢ the mean inter-particle distance is ¢~'/3. We therefore expect deviations of
order 10% when ¢ > 1/(10a)? = 1072 a=2. The volume fraction is related to concentration
as ¢ = c(4ma®/3). So deviations of order 10% are expected for ¢ > 47 /(3-103) =~ 4.2x1073.

We see that hydrodynamic interactions become important for the dynamics of suspensions
already at very low volume fraction! This is a consequence of the long range of the
interaction. Note another interesting consequence of the long-range (scale-free) nature of
the Oseen tensor: these qualitative conclusions are parameter-free — they do not depend
on 7 or a.



