
Suspensions and polymer solutions

Solution of Exercise 4

1. We begin by inverting the first term in G̃ij, which is proportional to 1/q2.
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Similarly, if we invert 1/q4 we will get (2π2)−1
∫∞
0 dq sin(qr)/(q3r). This integral diverges at

q → 0, but we note that for the second term in G̃ij we actually need to invert qiqj/q
4, which

removes this divergence.
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The integral
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0 dq sin(qr)/(qr) = π/(2r) has already been calculated in Eq. (1). The other one
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Substituting these two results in Eq. (2) gives
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Finally, using Eqs. (1) and (3) in the expression for G̃ij, we find,
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2. From the definition of rCM we have
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(a) In the absence of hydrodynamic interactions the motions of the two particles are indepen-
dent, i.e., 〈r(1) · r(2)〉 = 0. We then find from Eq. (5) 6DCM = (2/4)6Ds, i.e.,
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. (6)

We see that the diffusivity of the center of mass is smaller (by a factor of 1/2) than that of
the single particles. This makes sense, because DCM characterizes the diffusion of a larger,
less mobile object — a particle pair. You can easily verify that the same calculation for
N uncorrelated particles will yield DCM = Ds/N .
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(b) In the limit r � a we may assume (i) that the self-diffusion of a single particle is unaf-
fected by the presence of the other; and (ii) that the coupling diffusion coefficients, as we
showed in class, are given by kBT times the appropriate components of the Oseen tensor.
Assumption (i) leads to

〈(r(1))2〉 = 〈(r(2))2〉 = 6Dst =
kBT

πηa
,

and assumption (ii) to

〈r(1) · r(2)〉 = 〈x(1)x(2)〉+ 〈y(1)y(2)〉+ 〈z(1)z(2)〉 = 2D12
xxt+ 2D12

yyt+ 2D12
zzt

= 2kBT [Gxx(rx̂) +Gyy(rx̂) +Gzz(rx̂)]t = 2kBT

(
1

4πηr
+

1

8πηr
+

1

8πηr

)
t

=
kBT

πηr
t.

Substituting these two results in Eq. (5), we find

〈r2CM〉 =

(
kBT

4πηa
+
kBT

4πηa
+
kBT

2πηr

)
t =

kBT

2πηa

(
1 +

a

r

)
t,

namely,
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For r → ∞ the hydrodynamic interaction vanishes, the particles become uncorrelated,
and Eq. (7) coincides with Eq. (6) of item (a), as expected. At finite r, however, the
hydrodynamic interaction leads to a correction of order a/r, which enhances the diffusion
of the center of mass. This is because the hydrodynamic interaction makes particles drag
one another in the same direction, making the pair move more as a coherent body.

(c) The correction in Eq. (7) is larger than 10% when a/r > 0.1, i.e., for r < 10a. At particle
concentration c the mean inter-particle distance is c−1/3. We therefore expect deviations of
order 10% when c > 1/(10a)3 = 10−3 a−3. The volume fraction is related to concentration
as φ = c(4πa3/3). So deviations of order 10% are expected for φ > 4π/(3·103) ' 4.2×10−3.

We see that hydrodynamic interactions become important for the dynamics of suspensions
already at very low volume fraction! This is a consequence of the long range of the
interaction. Note another interesting consequence of the long-range (scale-free) nature of
the Oseen tensor: these qualitative conclusions are parameter-free — they do not depend
on η or a.
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