
Suspensions and polymer solutions

Solution of Exercise 3

1. The free energy of interaction, per unit area, between membranes separated by distance D is
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Differentiating with respect to D and setting the result to zero, we get the equation,
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Defining the dimensionless parameters x ≡ κD and α ≡ εHκ3/(48π2σ2), we obtain the following
equation for the extrema of FDLVO:

x3e−x = α. (2)

(a) The left-hand side of Eq. (2) is bounded between 0 and αc = 33e−3 ' 1.34. Hence, the
equation has either no solution (for α > αc) or two solutions (for α < αc) corresponding
to a maximum and a minimum of FDLVO. A necessary condition for the stack not to
collapse is that FDLVO should have a maximum, i.e., an energy barrier, which will prevent
the system from reaching the global minimum at D = 0. Thus, a necessary condition is
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' 1.34 ∼ 1.

This can be ensured by either strengthening the electrostatic repulsion (increasing the
charge density σ, decreasing the dielectric constant ε, increasing the screening length
κ−1), or weakening the van der Waals attraction (decreasing the Hamaker constant H).

(b) The inverse screening length is
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' 1.0 × 107 cm−1,

i.e., a screening length of 1 nm. For water we get
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'
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48π2 · (4.8 × 10−10 · 1014)2
' 0.11.

We now substitute this value of α in Eq. (2) and solve it numerically. There are two
solutions, x1 ' 0.58 and x2 ' 8.7, the first corresponding to the maximum of FDLVO (the
barrier), and the second to the minimum. Since κ−1 ' 1.0 nm, we conclude that the
equilibrium separation between membranes is D ' 8.7 nm. Note that the separation is
significantly larger than the screening length; this is a manifestation of the weakness of
the van der Waals interaction compared to the electrostatic one for such highly charged
surfaces.
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2. As we showed in class, the free energy of the depletion interaction is given by

Fdep = ps∆Vex, (3)

where ps is the osmotic pressure of the small particles, and ∆Vex is the change in the volume
excluded for the centers of small particles compared to the case of the two large particles being
far apart.

We define b ≡ al + as as the radius of the exclusion sphere. (See figure.) Obviously, if the
distance r between the centers of the two large spheres is larger than 2b, there is no change
in the excluded volume, and Fdep = 0. If r < 2b, the two exclusion spheres overlap, and ∆Vex

is equal to minus the volume of the resulting overlap “lens” (figure). We therefore need to
calculate the volume of the lens.

We first calculate the volume of the sphere section spanned by the angle 2α:
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Next we calculate the volume of the cone spanned by the angle 2α:
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The lens volume is just twice the difference between the section volume and the cone volume,
leading to
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Substituting r = 2b we confirm that this overlap volume vanishes as required.

Using the result in Eq. (3), we finally have
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