
Suspensions and polymer solutions

Solution of Exercise 1

1. We assume again that the local concentration ci(r) of each ion species i is related to a local
electrostatic potential ψ(r) via the Boltzmann distribution,

ci(r) = cbie
−βzieψ(r). (1)

We define y(r) ≡ βeψ(r) and assume that y is sufficiently small (smaller than 1/zmax, where
zmax is the absolute valence of the most highly charged ion). We can then linearize Eq. (1),

ci(r) ≃ cbi[1− ziy(r)]. (2)

The local charge density is ρ(r) =
∑

i zieci(r). When we substitute Eq. (2) in this expression,
we get two terms. The first,

∑

i ziecbi, is equal to zero because of the overall neutrality of the
solution. The second term gives

ρ(r) = −e

(

∑

i

z2i cbi

)

y(r). (3)

Substituting this charge density in the Poisson equation, ∇2ψ = −(4π/ǫ)ρ, we get

∇2y = κ2y, (4)

with the following screening length:

κ−1 =

[

4πe2

ǫkBT

(

∑

i

z2i cbi

)]

−1/2

. (5)

2. (a) Assume that the positive plate is at x = −d/2 and the negative one at x = d/2. We need
to solve the DH equation for the dimensionless electrostatic potential,

y′′(x) = κ2y(x), (6)

subject to the boundary conditions,

y′(x = ∓d/2) = ∓
4πσe

ǫkBT
. (7)

The symmetry of the problem is such that the solution must be antisymmetric, y(x) =
C1 sinh(κx), with C1 a constant. Imposing the boundary condition (7), we find C1 =
−4πσe/[ǫkBTκ cosh(κd/2)]. This yields the solution for the electrostatic potential,

ψ(x) = −
4πσ

ǫκ

sinh(κx)

cosh(κd/2)
. (8)



The surface potentials of the left-hand and right-hand plates are, therefore,

ψL,R = ψ(x = ∓d/2) = ±
4πσ

ǫκ
tanh(κd/2). (9)

The free energy per unit area of the system is

F (d)

S
=
∫ σ

0
dσ′ψL(σ

′) +
∫

−σ

0
dσ′ψR(σ

′) =
4πσ2

ǫκ
tanh(κd/2). (10)

This free energy includes the self-energies of the two individual plates, Fself/S = F (d →

∞)/S = 4πσ2/(ǫκ). Subtracting the self-energy, we obtain the free energy of interaction
per unit area,

Fint(d)

S
=

4πσ2

ǫκ
[tanh(κd/2)− 1] . (11)

(b) For similarly charged plates we got a similar expression for Fint/S, with the tanh replaced
by a coth. For large arguments tanh(x) − 1 ≃ −2e−2x and coth(x) − 1 ≃ 2e−2x. Thus,
at large distances the two cases behave as expected — both interactions decay as e−κd,
with repulsion between the similarly charged plates and attraction between the oppo-
sitely charged ones. However, at short distances the behavior is drastically different! For
d → 0 the tanh vanishes, leaving an attraction between the oppositely charged plates of
−4πσ2/(ǫκ), as in a Coulomb (salt-free) system. In sharp contrast, the coth term in the
interaction of the similarly charged plates diverges as d→ 0.

(c) The difference between the two cases stems from the behavior of the ions in the solution.
In the oppositely charged case the total charge of the two plates is zero. Hence, as the two
plates get closer, there can be less and less ions in-between while the system remains overall
neutral. However, in the similarly charged case, ions are always necessary to neutralize
the system. As the plates get closer, the ionic cloud gets squeezed, leading to an increased
repulsion.
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(a) In the figure (the curvatures are exaggerated!) we see h = a sin θ1 ≃ aθ1, and also
h = b sin θ2 ≃ bθ2. In addition, l1 = a − a cos θ1 ≃ aθ21/2, and l2 = b − b cos θ2 ≃ bθ22/2.
From these relations we get

x = D + l1 + l2 ≃ D +
a+ b

2ab
h2. (12)
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The area of a ring element is, therefore,

dS = 2πhdh = πd(h2) ≃
2πab

a+ b
dx, (13)

and the total force between the spheres is

fsph(D) =
∫

dSp ≃
2πab

a + b

∫

∞

D
dxp(x) =

2πab

a+ b

Fpl(D)

S
. (14)

If we set a = b we get the result for equal spheres derived in the class, fsph ≃ πaFpl/S.

(b) The result for a sphere and a planar surface is obtained by setting b → ∞: fsph ≃

2πaFpl/S. Thus, the force between a sphere and a surface is, within the Derjaguin ap-
proximation, twice the force between two identical spheres at the same separation.
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