Suspensions and polymer solutions

Exercise 5

27 April 2011

DNA is a semiflexible polymer having a persistence length $l_{\rm p} \simeq 50$ nm. Consider the molecule as a three-dimensional chain containing N freely-jointed (i.e., uncorrelated) segments of length $2l_{\rm p}$ each. Suppose that one end of the chain is fixed at the origin and the other end is pulled with force \vec{f} in the $\hat{\mathbf{x}}$ direction. The chain is in contact with a thermal bath of temperature T.

- 1. Calculate the partition function of the chain. Hint: The work required to bring the other end from the origin to a point \vec{R} is $-\vec{f} \cdot \vec{R}$; hence, this is the energy of a configuration with end-to-end vector \vec{R} . Note that the problem is analogous to that of N non-interacting dipoles under external field.
- 2. Find the free energy.
- 3. Calculate the mean extension of the chain in the direction of pulling, $\langle X \rangle$. What is the value of $\langle X \rangle$ for very small f? Compare to the result obtained in the class for a Gaussian chain. What is $\langle X \rangle$ for very large f?
- 4. What is the force required to get $\langle X \rangle$ which is one half the total length of the chain at room temperature?