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Properties of compressible elastica from
relativistic analogy†

Oz Oshria and Haim Diamant*b

Kirchhoff’s kinetic analogy relates the deformation of an incom-

pressible elastic rod to the classical dynamics of rigid body rotation.

We extend the analogy to compressible filaments and find that the

extension is similar to the introduction of relativistic effects into the

dynamical system. The extended analogy reveals a surprising symmetry

in the deformations of compressible elastica. In addition, we use

known results for the buckling of compressible elastica to derive

the explicit solution for the motion of a relativistic nonlinear pendulum.

We discuss cases where the extended Kirchhoff analogy may be useful

for the study of other soft matter systems.

Analogies to dynamical problems have been used to simplify
the physics of various condensed-matter systems, ranging from
the deformation of elastic bodies to the order-parameter profile
across an interface between coexisting phases. A particularly
well-known example is Kirchhoff’s kinetic analogy.1 In this theory
the three-dimensional (3D) deformation of a slender elastic rod is
reduced to the bending deformation of an incompressible curve,
representing the mid-axis of the rod. This problem, in turn, is
analogous to the dynamics of a rigid body rotating about a fixed
point, where the distances along the curve and its local curvature
are analogous, respectively, to time and angular velocity. When
the filament is confined to a two-dimensional (2D) plane (the
celebrated Euler elastica2), the equation of equilibrium coincides
with the equation of motion of a physical pendulum.1,3

In the examples above the elastic system was reduced to an
indefinitely thin, incompressible body, whose equilibrium shape
follows the trajectory of a classical dynamical system. In the
present work we show that relaxing the incompressibility con-
straint introduces terms akin to relativistic corrections to classical
dynamics. Within this analogy, the compression modulus, Y, plays

the role of the relativistic particle’s rest mass, and the bendability
parameter (Y/B)1/2 � h�1, where B is the bending modulus, is
analogous to the speed of light. The limit of an incompressible rod
(h - 0) corresponds to the nonrelativistic limit.

Despite the relevance to real systems, including compressible
fluid membranes,4 there have not been many studies of com-
pressible elastica (see ref. 5 and references therein). Following
these studies, we consider the 2D deformation of a compressible
filament, represented by a planar curve of relaxed length L. The
same model applies to thin elastic sheets, as well as fluid
membranes,6 provided that they are deformed along a single
direction. The deformation away from the flat, stress-free state
is parametrized by the angle f(s) and compressive strain g(s),
as functions of the relaxed arclength s along the curve, s A [0, L];

Fig. 1 (a) Deformed and undeformed configurations. The straight line
(solid, purple) represents a relaxed rod of initial length L, and the curved
line (dashed, gold) represents a deformed rod of total length L̂. Their
arclength parameters are s and ŝ respectively. The local in-plane and out-
of-plane deformations are respectively accounted for by the compression
field g = dŝ/ds and the angle f(s). (b) An illustration of the discrete model.
The initial, zero-energy configuration (solid, purple) consists of N rigid
bonds of rest length a and zero joint angles. A higher-energy state (dashed,
gold) is obtained by the compression of each bond, a - gna, and/or a
change of each joint angle, fn. The continuous limit of this model yields
the picture presented in the panel (a).
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see Fig. 1(a). We denote the compressed arclength by ŝ, such that

g = dŝ/ds and the total deformed length is L̂ ¼
Ð L̂
0 dŝ ¼

Ð L
0 gðsÞds.

To obtain the energy functional which keeps the bending
and compression contributions independent, it is instructive to
start from a discrete model (see Fig. 1(b)). Consider a chain of N
jointly connected compressible rigid bonds of rest length a. The
chain’s configuration is parametrized by a set of bond strains gn

(1 r n r N) and a set of joint angles fn (1 r n r N � 1). The
energy of a given configuration has a compression contribu-

tion, Ec ¼ ðY=2aÞ
PN
n¼1

gna� að Þ2, and a bending contribution,

Eb ¼ ðB=2aÞ
PN�1
n¼1

fnþ1 � fn

� �2
. For the sake of the analogy we

add a potential energy of the form, Ep ¼ a
PN
n¼1

gnV fnð Þ, where

V(f) is an angle-dependent potential. This choice of potential
energy is not artificial. For example, if we include an external
work on the chain, coupling the force P exerted on the boundaries

with the chain’s projected length, we have Ep ¼ Pa
PN
n¼1

gn cosfn,

i.e. V(f) = P cosf. We now take the continuum limit, N -N and
a - 0 such that Na - L and na - s, getting,

E½fðsÞ; gðsÞ� ¼ Eb þ Ec þ Ep

¼
ðL
0

ds
B

2

df
ds

� �2

þ Y

2
ðg� 1Þ2 þ gVðfÞ

" #
:

(1)

To obtain the equations of equilibrium for the filament one
should minimize E with respect to g(s) and f(s). This gives the
two equations,

Y (g � 1) + V = 0, (2)

B
d2f
ds2
� g

dV

df
¼ 0: (3)

First integration yields,

H ¼ B

2

df
ds

� �2

� Y

2
ðg� 1Þ2 � gV ¼ const; (4)

which depends on the boundary conditions at s = 0, L.
The mathematical analogy to relativistic dynamics is revealed

once we transform from the relaxed arclength, s, to the com-
pressed one, ŝ, and redefine the potential as %V =�V. Eqn (3) then
turns into

B
d

dŝ
g
df
dŝ

� �
þ d �V

df
¼ 0: (5)

This equation is analogous to the Euler–Lagrange equation for
the one-dimensional motion of a relativistic particle,7 provided
that g(ŝ) coincides with the Lorentz factor. To obtain g we use
eqn (4) to eliminate V in eqn (2), and transform to ŝ, which gives,

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2H=Y

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2 df=dŝð Þ2

q : (6)

This expression indeed resembles the Lorentz factor up to the

constant prefactor, g0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2H=Y

p
. Absorbing this prefactor

in the potential %V makes eqn (5) identical to the relativistic one,
with the correct Lorentz factor. This completes the analogy. The
mapping between the variables and parameters of these two
systems is summarized in Table 1.

We now use the mapping to identify a new symmetry of
compressible elastica. First, recall that the equation of equili-
brium of incompressible elastica is invariant to the addition
of a constant curvature k, making a flat configuration cylind-
rical. The kinetic analogue of this symmetry is the Galilean
invariance of the equation of motion of a classical free particle
to a boost by a constant velocity. We are after the corresponding
symmetry for a compressible elastic filament. It is natural to try
the analogue of a Lorentz boost. To make the connection to a
free particle we first remove the potential energy from eqn (5),
%V(f) = 0, and then divide by Bg0. The resulting equation of elastic
equilibrium,

d

dŝ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2 df=dŝð Þ2

q df
dŝ

0
B@

1
CA ¼ 0; (7)

is identical to the equation of motion of a free relativistic particle.
With the Lorentz boost in mind, we immediately identify the
transformation of coordinates (ŝ/h, f) - (Ŝ/h, F), which leaves
eqn (7) unchanged:

ŝ=h
f

� �
¼ g �ghk

ghk g

� �
Ŝ=h
F

� �
; (8)

where k = const, and g ¼ 1
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ h2k2
p

. The transformation is a
rotation of the material coordinates, (ŝ/h, f), by an angle y =
sin�1(ghk), turning a flat, relaxed configuration into a cylindrical,
compressed one; see Fig. 2. The rotation leaves the line element
on the material-coordinate plane unchanged, dŝ2/h2 + df2 = dŜ2/
h2 + dF2. This reparametrization invariance defines a continuous
family of solutions to the equation of equilibrium, containing all
the cylindrical, compressed configurations of the filament.
These configurations satisfy local mechanical equilibrium but
differ in their total energy. (Obviously, the flat relaxed configu-
ration always has the lowest energy.) The actual equilibrium

Table 1 Mapping between the parameters of compressible elastica and
relativistic dynamics

Elasticity Relativity

Relaxed arclength,a s Proper time, t
Compressed arclength, ŝ Laboratory time, t
Tangent angle, f Angle coordinate, f
Curvature, k = df/dŝ Angular velocity, o = df/dt
Compression field,a g = dŝ/ds Lorentz factor, g = dt/dt
Compression modulus, Y Minus the rest energy, �mc2

Bending modulus, B Moment of inertia, mc2

Bendability, h�1 ¼
ffiffiffiffiffiffiffiffiffiffi
Y=B

p
Speed of light, c

a More accurately, the analogue of t is g0s, where g0 is a constant
prefactor (see text).
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configuration for a given problem is selected by boundary
conditions. To our knowledge, this symmetry of compressible
filaments has not been recognized before.

An important physical distinction should be made, how-
ever, between the two sides of the analogy. In the elastic
problem there is a unique zero-energy state, and one naturally
specifies the length L and the boundary conditions with
respect to that relaxed state; the compressed length L̂ is
determined by minimization. By contrast, in relativity there
is no preferred reference frame, and the duration of the
experiment and the boundary conditions are given in the
laboratory frame, not the proper one. This difference leads
to the extra prefactor g0 above. Thanks to this prefactor the
elastic strain can be either compressive or dilative, whereas
the relativistic Lorentz factor must be dilative.‡ Note that,
because of the minus sign in the mapping Y - �mc2, time
dilation corresponds to elastic compression.

Despite the physical difference, by absorbing the factor g0 in
the potential, the two problems become mathematically equi-
valent. Thus, a known solution in one system can be readily
transferred to the other. We shall now use known results for the
buckling of compressible elastica to write down an explicit
solution to the equation of motion of a relativistic nonlinear
pendulum. (A solution to this dynamical system was previously
given only in implicit parametric form.11)

To do so, we should specialize to the potential V(f) = P cosf.
The substitution of V in eqn (2) gives g = 1 � (P/Y)cosf. These
expressions for V and g turn eqn (3) into

B
d2f
ds2
þ P sinf� P2

Y
sinf cosf ¼ 0; (9)

which is the equation of equilibrium for a compressible elastica
under a uniaxial force P.5,8 The exact solution to eqn (9) was
derived in ref. 5. For hinged boundary conditions, df/ds = 0 at
s = 0, L, it is given by

fðsÞ ¼ 2 sin �1 q
1� ðqkhÞ2

�
g0

� �1=2
cd

ffiffiffiffiffi
g0
p

ks;m
� �

1� ðqkhÞ2=g0cd2
ffiffiffiffiffi
g0
p

ks;m
� �� 	1=2

" #
: (10)

Hereafter we use the conventional symbols for the various
elliptic functions, cd, am, K and P, as defined in ref. 9. In

addition, k �
ffiffiffiffiffiffiffiffiffi
P=B

p
is the wavenumber of the buckled linear

elastica. We have defined three additional parameters which
depend on the boundary angle, f0 � f(s = 0):

q � sin(f0/2)

g0 = 1 � (kh)2cosf0

m = q2[1 + (qkh)2]/g0. (11)

The parameter g0 = g(s = 0) gives the boundary strain, which
coincides with g0 as defined above. The actual wavelength
(periodicity) l of the nonlinear buckled elastica is

l ¼ 4KðmÞ
� ffiffiffiffiffi

g0
p

k
� �

: (12)

The total rod length matches a half wavelength, L = l/2. This
expression relates f0 to the force P and the system parameters
via eqn (11). The total deformed length is given by

L̂ ¼
Ð L
0 1� ðkhÞ2 cosf
� 	

ds, yielding,

L̂=L ¼ 1� ðkhÞ2 2 1� q2
� �P q2;m

� �
KðmÞ � 1


 �
: (13)

It is readily shown that the three known solutions for incom-
pressible nonlinear elastica (h - 0),1 compressible linear
elastica (f0 { 1),5 and incompressible linear elastica (h - 0,
f0 { 1),1 are obtained from eqn (10) in the respective limits.

To apply the analogy, we first transform eqn (9) to the
deformed arclength ŝ using eqn (2), (4) and (6). This leads to

d

dŝ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2ðdf=dŝÞ2

p df
dŝ

 !
þ k2

g0
sinf ¼ 0: (14)

Next, substituting

{h2, k2/g0} - {�c2/c2, o2},

where o is the natural frequency of the corresponding linear
pendulum and c the pendulum length, the equation of motion
for a relativistic pendulum10 readily follows:

d

dt

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ‘2=c2ð Þðdf=dtÞ2

p df
dt

 !
þ o2 sinf ¼ 0: (15)

From eqn (10) we then immediately write down the explicit
solution for the pendulum motion in terms of its proper time,

fðtÞ ¼ 2 sin �1 q
1þ ðqo‘=cÞ2
� 	1=2

cdðot;mÞ
1þ ðqo‘=cÞ2cd2ðot;mÞ½ �1=2

" #
; (16)

Fig. 2 Rigid rotation of the coordinate system (ŝ/h, f) - (Ŝ/h, F) by an
angle y. A flat elastic filament of length L̂ is described by the blue line. As
viewed from the new frame, the total length is compressed by a factor g,
and the angle coordinate, F, is linearly changing, resulting in a cylindrical
compressed shape of radius 1/k and length gL̂.

‡ If we formulated the elastic problem and its boundary conditions, unphysically,
based on the ultimate deformed length L̂, the information on the unique
reference state would be lost, and the two problems, the elastic and relativistic,
would become identical. This can be readily shown by transforming eqn (1) to ŝ

and minimizing with respect to g.
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where, from eqn (11), q = sin(f0/2) is related to the initial angle
of the pendulum, and m = q2[1 � (oc/c)2(1 � q2)]. Similarly, the
proper period of the pendulum is obtained by the analogy to g0l
of eqn (12),

Tt = 4K(m)/o, (17)

and the laboratory period from L̂/(g0L) of eqn (13),

Tt=Tt ¼ 1þ 2ðo‘=cÞ2 1� q2
� � P q2;m

� �
KðmÞ � 1


 �
: (18)

Finally, we can transform the solution (16) to laboratory time
through

t ¼ tþ
2 1� q2
� �

o
ðo‘=cÞ2 P q2; amðot;mÞ;m

� �
� ot

� 	
; (19)

In Fig. 3 we show the resulting motion of the pendulum
in both proper and laboratory times. The dilation of the period
of the relativistic pendulum (solid curve), compared to the
nonrelativistic one (dash-dotted), illustrates the compression
of the buckling wavelength in the compressible elastica com-
pared to the incompressible case.

We note that a similar factor to the elastic g0 is encountered
in certain relativistic scenarios.11,12 We note also that the usage
of the original strain field to derive the elastic g looks similar in
spirit to the ‘‘einbein’’ used to simplify the analysis of actions
in different physical contexts.13 Unlike those analyses, however,
g here is an actual physical strain, the choice of which is not
free but dictated by elasticity.

The extended Kirchhoff analogy presented in this Commu-
nication should be useful for studying various soft matter
systems. In principle, compressibility corrections are negligible
for sufficiently slender (and therefore bendable) objects. There
are several indications, however, that the compressible-elastica
model may be qualitatively predictive beyond its strict limits of
validity. For example, it produces negative compressibility

(decrease of the force P with increasing confinement) for
bendability h�1 of order 1.5 Although the model is invalid for
such values of h�1, this result is in qualitative agreement with
recent experimental and numerical results for buckled beams.14 In
ref. 4 Diggins et al. studied the buckling of fluid membranes under
uniaxial confinement using molecular dynamics simulations.
To improve the analysis of the simulation data beyond the
incompressible Euler elastica, they used, on purely empirical
grounds, a model which is very similar to the one presented
here, obtaining good fits to the numerical results. The reason
for the unexpected success of the compressible-elastica model
in these two examples is unclear at present. Compressibility is
essential in the case of two-dimensional deformations with a
non-zero Gaussian curvature. The present 1D model, as far as
we know, has no applicability in such cases. It is relevant,
however, to deformations with cylindrical15,16 or conical17

symmetries.
We have shown above how the buckling of a compressible

filament can be studied as the oscillation of a relativistic
nonlinear pendulum. Here are a few suggestions for future
extensions. The instability of a flat compressible rod or sheet
toward curved configurations is connected to the emergence of
oscillations from rest in the parametric resonance of a relati-
vistic oscillator. A change in the compression modulus of an
elastic system (e.g., as a result of a temperature change) is
likened to a change in a particle’s rest mass. Lastly, the analogy
can be extended to three dimensions, where the deformation of
a compressible filament in 3D becomes analogous to a relati-
vistic rotor, as outlined in the ESI.†

We thank Markus Deserno for sharing unpublished simula-
tion results with us and for helpful discussions. This work has
been supported in part by the Israel Science Foundation (Grant
No. 164/14).
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