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Spatially confined rigidmembranes reorganize their morphology in response to imposed constraints. Slight

compression of a rigid membrane resting on a soft foundation creates a regular pattern of sinusoidal

wrinkles with a broad spatial distribution of energy. For larger compression, the deformation energy is

progressively localized in small regions which ultimately develop sharp folds. We review the influence of

the substrate on this wrinkle to fold transition by considering two models based on purely viscous and

purely elastic foundations. We analyze and contrast the physics and mathematics of both systems.
1 Introduction

The great variety of structures and shapes in nature have long
been a source of amazement and questioning.1 Understanding
how such patterns emerge spontaneously from a homogeneous
environment is a key issue in the context of morphogenesis and
pattern formation.2–4 These structures appear in various con-
trasted contexts such as during the formation of large-scale
structures in the Universe,5 during thermal convection in uids,
Taylor–Couette ow, solidication fronts, oscillatory chemical
reactions,6 during formation of dunes, sand ripples and beach
cusps,7–9 during collisions of ice oes,10 during formation of
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icicles, hot-spring landscapes and columnar jointing11–14 or in
minerals like agates.15 In biology, it is important to know
whether the various genetically encoded forms displayed in
living organisms are related to physical processes. In this case,
simple laws could be identied revealing some universality
between disparate systems.16–22

One important class of patterns is that which emerges
spontaneously upon external or internal mechanical
constraints applied to the system. Fruits and vegetables,23,24

wrinkled and damaged skin,25–27 organs like lungs28 and
arteries,29 pollen grains30 or geological folds31 are some exam-
ples of natural systems developing such structures during
global deformation induced by differential growth, a drying
process or connement. Understanding the origin of these
structures emerging from uniform states and identifying the
role of mechanical forces in this process is one important aspect
of morphogenesis. Controlling the length-scales characterizing
these structures allows the fabrication of versatile patterns32–36
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Fig. 1 Qualitative comparison between the evolution with respect to confinement of the morphology of compressed sheets resting on a liquid78 (left panels,
l0 � 1.6 cm) and on an elastic foundation (right panels, l0 � 70 mm). The confinement increases from panels a to panels c.
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for applications in optics,37 microuidics,38 stretchable elec-
tronics39–42 or for metrology in nanometric lms.43–47

Most of the aforementioned natural systems can be idealized
as being composed of a thin and stiff membrane attached to a
thick and so material. However, these systems are oen
characterized by a complex geometry. In order to study carefully
the properties of the emerging structures, we focus on bilayer
systems compressed uniaxially in the plane of the rigid
membrane that have been intensively studied.48–63 Notice,
however, that more complex geometries have already been
studied by considering biaxial/radial stresses (with or without
substrate) or curved substrates64–71 where wrinkle to fold tran-
sitions can also be observed for large enough deformations of
the systems.72–74

Here we consider the case of a sufficiently strong adhesion
between layers to avoid delamination75–77 and discuss in detail
the uniaxial compression of a rigid membrane resting either on
a liquid foundation78,79 or on an elastic solid substrate.80 Before
starting this discussion, let us recall qualitatively the basic steps
of the system deformation.

For small enough connement, compressed sheets stay
planar and preserve the system symmetry. As it is much easier to
bend a thin sheet than to stretch or compress it, there exists
some connement threshold beyond which the membrane
buckles to release the stored compression energy. The
membrane undulates out of its initial plane breaking sponta-
neously the system symmetry. The foundation is then also
deformed following the undulations of the sheet. The bending
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energy of the sheet, being proportional to the square of the
curvature, favors the emergence of large length-scales such as
the system size. However, the surface deformation energy of the
bulk substrate favors vanishing length-scales. The total energy
is thus minimized for some intermediate length-scale, l0,
independent of the system size. This behavior is observed for
both liquid and elastic foundations.

For larger connement, the evolution of the membrane
morphology differs strongly according to the nature of the
substrate.

� For a liquid foundation, the amplitude of the initial wrin-
kles rst grows uniformly across the sheet. Further connement
leads to the formation of a single fold where all of the defor-
mation is focused within a narrow region of the sheet (see Fig. 1
le panels). The folding can appear downward, i.e. toward the
substrate, or upward. The system is thus characterized by an
up–down symmetry which is broken spontaneously by the
emergence of the instability.

� For an elastic foundation, the amplitude of the initial
wrinkles also rst grows uniformly across the sheet. However,
beyond a second threshold for the connement, a dramatic
change in the morphology is observed: one wrinkle grows in
amplitude at the expense of its neighbors leading to a period-
doubling instability with the emergence of a subharmonic
mode characterized by a wavelength 2l0 (see Fig. 1 right panels).
The periodic folding appears always downward and never
upward. Consequently the up–down symmetry is broken
explicitly by the system.
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Witten served at the University of
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2 General formalism and small
confinement

The system studied here is composed of a thin incompressible
elastic sheet of length L, width W and bending modulus B lying
on a so substrate. The sheet is uniaxially conned by a
distance D along the x-axis and deforms in the xy plane. The
shape of the sheet is described by the parametric equation
(x(s),y(s)) ¼ (

Ð s
�L/2cos q(s0)ds0,

Ð s
�L/2sin q(s0)ds0) where q (s) is the

angle between the local tangent to the sheet and the x-axis at a
given arclength s, see Fig. 2. The total energy per unit width
(along the z-axis), U, of the system is composed of the bending
energy of the sheet, Ub ¼ (B/2)

Ð L/2
�L/2

_q2ds, and of the deformation
energy of the substrate, Us ¼ (K/2)

Ð L/2
�L/2usds where the dot

denotes an s derivative. (K/2)usds is the deformation energy of
an innitesimal section of the substrate of size ds (dx¼ ds cos q)
and K is the effective stiffness of the substrate. The stiffness
measures how a material resists deformation in response to an
applied force. For an elastic foundation, K is proportional to the
Young's modulus whereas for a liquid it is proportional to its
weight per unit volume. The displacement along the direction
of connement is given by

D ¼
ðL=2
�L=2

ð1� cos qÞds; (1)

and is related to the applied load necessary to conne the
membrane by P ¼ dU/dD. The action characterizing this system
reads S ¼ Ð L/2

�L/2L (s)ds, where

L ¼ B

2
_q
2 þ K

2
us � Pð1� cos q� D=LÞ �QðsÞ�sin q� _y

�
; (2)

and where P and Q(s) are Lagrange multipliers introduced to
take into account the global constraint (1) and the local one
between y and q respectively. The equation governing the
morphology of the rigid membrane is obtained through the
Euler–Lagrange equation once us is specied. The solutions of
this equation correspond to the extrema of the action.
Fig. 2 Definitions of the geometrical parameters describing a uniaxially
confined sheet. The deformation can be described by using a two-dimensional
coordinate system. Here ~t and ~n are the tangent and normal to the surface,
respectively. The angle q(s) gives the position of the tangent with respect to the
horizontal direction along the sheet parametrized by s. (a) Initial state. (b) Infin-
itesimal displacement near the onset of the instability characterized by a length-
scale l0. (c) Finite displacement D.
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Near the instability threshold when the membrane buckles,
the vertical elevation, y, of the membrane as well as the angle q
between the tangent to the membrane and the horizontal x-axis
are innitesimally small. The deformation of the substrate is
then also small and since the at state is a minimum of the
substrate energy, the cost of a small displacement is quadratic
in y: us ¼ y2. In this limit, the Lagrangian (2) reduces to

L ¼ B

2
_q
2 þ K

2
y2 � P

�
q2=2� D=L

��QðsÞ�q� _y
�
: (3)

Considering (q,y) as generalized coordinates, the Euler–
Lagrange equations read

vL
vqi

� d

ds

vL
v _qi

¼ 0; i ¼ 1; 2 (4)

with q1 ¼ q and q2 ¼ y. Using expression (3), they yield the
following system of equations
B€q + Pq + Q ¼ 0, (5)

Ky � _Q ¼ 0. (6)

The equation governing the shape of the membrane near the
instability threshold is nally obtained by eliminating Q
between these two equations and by using _y ¼ sin q x q,

Byzþ Py€þ Ky ¼ 0: (7)

This equation gives the balance of normal forces acting on the
membrane. The rst two terms describe the deformation of the
membrane whereas the last one is the restoring force due to the
substrate. Notice that when K ¼ 0, the only length-scale of the
problem is introduced through the boundary conditions spec-
ied generally at the edges of the system. In that case, the size of
the deformation is simply given by the system size. The pres-
ence of a substrate introduces a new length-scale l0 in the
problem. Neglecting the inuence of the boundary conditions
by considering L [ l0, a periodic prole y ¼ cos(ks) is a solu-
tion of (7) provided the applied load P is related to the wave-
number k by
P(k) ¼ Bk2 + Kk�2. (8)

Since the total energy of the system is the work of the
applied load (U ¼ Ð

PdD), the optimal value of the wavenumber,
k0 ¼ 2p/l0, is obtained by minimizing the applied load
(vP/vk ¼ 0). In general, the effective stiffness can depend on the
size of the deformation. Let us write
K ¼ �Kka. (9)

The wavelength characterizing the pattern is thus given by

l0 ¼ 2p

�
2B

ð2� aÞ �K
�1=ð4�aÞ

: (10)

This length-scale emerges spontaneously when the applied load
reaches the critical value P(k0). To carry on this discussion, we
now discuss separately each considered substrate.
Soft Matter, 2013, 9, 8177–8186 | 8179
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3 Liquid substrate

When the substrate is a liquid the effective stiffness is given by
K¼ rg where r is the liquid mass density and g the gravitational
acceleration. From eqn (10) with a ¼ 0 and K ¼ �K ¼ rg, we
obtain

l0 ¼ 2p

�
B

rg

�1=4

: (11)

This relation is in very good agreement with available experi-
mental data found in ref. 67 and 78 and gathered in Fig. 3.
Consequently, eqn (7) governing the membrane morphology,
obtained from an expansion at the lowest order of the
Lagrangian (2), captures well the physics of this system near the
buckling threshold. This length-scale l0 emerges as soon as the
applied load reaches the critical value P0 ¼ P(2p/l0) whose
expression is obtained from eqn (8)

P0 ¼ 2(Brg)1/2. (12)

To describe the subsequent evolution of the membrane
morphology, we need to derive the complete nonlinear equation
from the Lagrangian (2) with the full expression for the defor-
mation energy of the substrate us ¼ y2cos q. We consider the
ideal case of an innitely long sheet L/Nwith y¼ q¼ _q¼ 0 for
s / �N. As shown below, this approximation gives a satis-
factory description of this system and allows us to obtain an
explicit exact solution. The Euler–Lagrange eqn (4) gives the
following system of equations
Fig. 3 Circular and triangular symbols correspond to data for liquid foundations
from ref. 67 and 78 with K ¼ rg. PE stands for polyester and PS stands for poly-
styrene. Square and diamond symbols correspond to data for elastic substrates
from ref. 39, 88 and 89 with K ¼ Es/3. PMMA stands for polymethyl methacrylate
and Si stands for silicon. Experiments using PVDF thin sheets of thickness 9 and 25
mm and partially cross-linked PDMS substrate have been performed to extend the
spanned experimental domain (E¼ 2.5� 0.5 GPa and s¼ 0.35 for PVDF90 and E¼
25 � 5 kPa and s ¼ 0.5 for PDMS). The bending modulus B of polystyrene sheets
used in ref. 67 has been computed using E ¼ 3 � 1 GPa and s ¼ 0.35.81,82 When
not displayed, error bars have sizes similar to symbol sizes. SI units are used for l0
and the ratio B/K.
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Bq€þ K

2
y2sin qþ Psin qþQcos q ¼ 0 (13)

Kycos q � _Q ¼ 0. (14)

Differentiating (13) with respect to s and using eqn (14) to
eliminate _Q together with _y ¼ sin q, we obtain

Bq
.

þ Kyþ K

2
y2 _qcos qþ P _qcos q�Q _qsin q ¼ 0 (15)

Since the Lagrangian L has no explicit dependence on
the independent variable s, the Hamiltonian, H, is a constant
(dH/ds ¼ 0). The expression of the Hamiltonian is given by

H ¼ P
i

_qi
vL
v _qi

� L

¼ B

2
_q2 � K

2
y2cos qþ Pð1� cos qÞ þQsin q ¼ 0; (16)

where the constant has been set to 0 to satisfy the boundary
conditions at s / �N. The Lagrange multiplier Q is nally
eliminated by multiplying the expression (16) of H by _q and
adding the result to eqn (15):

Bq
.

þ B

2
_q
3 þ P _qþ Ky ¼ 0: (17)

Eqn (17) coincides with Euler's elastica problem. It expresses
the balance of normal forces on an innitesimal section of
the sheet. The last term, which usually corresponds to an
external normal force,83 arises here from hydrostatic pressure.
Differentiation of eqn (17) leads to an equation depending
only on q:

Bqzþ 3B

2
_q
2
q€þ Pq€þ Ksin q ¼ 0: (18)

Notice that this equation, or the equivalent one written in
terms of y and its derivatives,84 is invariant against the change
y / �y. This system is thus characterized by an up–down
symmetry meaning that the folding takes place either toward
the substrate or upward. Indeed, any deformation or its
symmetric one obtained from y / �y is equivalent for the
sheet. Pulling out the liquid from its initial equilibrium state or
pushing it down in a symmetric way is also energetically
equivalent.

At rst glance, it seems unlikely that this nonlinear eqn (18)
possesses explicit exact solutions. However, as indicated in ref.
79, it is characterized by a high level of symmetry. Simple
algebraic manipulations allow us to obtain the value of y and
all its derivatives at s ¼ 0 which hints that the problem may be
integrable. Moreover, this equation can be derived from the
integrable physical-pendulum equation, €q + k2sin q ¼ 0, which
is another indication that exact solutions may exist. From this
relation between these two seemingly unrelated systems, one
can show that the following solution of the pendulum
equation

�q(a,k;s) ¼ 4tan�1(ae�iks) (19)
This journal is ª The Royal Society of Chemistry 2013



Fig. 4 (a) Definitions of the amplitudes A0 and A1. (b) Comparison between the
experimental evolutionofA0 andA1 (rescaledby l0)with the confinement forfinite
sheets78 and the evolution predicted by the exact solution (21) obtained for an
infinite sheet. Inset: representative membrane profiles for various values of D/l0.

Fig. 5 Comparison between experimental78 and theoretical profiles for D/l0 ¼
0.15 (a), 0.30 (b) and 0.80 (c).
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is also a solution of eqn (18) provided P ¼ Bk2 + Kk�2 for any a.
Consequently, eqn (19) gives complex solutions for eqn (18),
with the complex wave vectors

k ¼ �kþ � ik�; k� ¼ 1

2

�
K

B

�1=4�
2� Pffiffiffiffiffiffiffiffi

BK
p

�1=2

: (20)

Real exact solutions can, however, be constructed using
these complex expressions. The equation to solve being
nonlinear, linear combinations of the complex solutions are no
longer solutions. Nevertheless eqn (18) is the third member of
the stationary-sine–Gordon-modied-Korteweg–de Vries hier-
archy where the sine–Gordon and the physical-pendulum are
the two rst ones.85 Knowing three solutions, �q0, �q1, �q2, of the
pendulum equation, one can construct another solution, q,
using the following nonlinear combination:86 tan[(q � �q0)/4] ¼
[(k1 + k2)/(k1 � k2)]tan[(�q1 � �q2)/4]. These three solutions are
obtained from eqn (19) by using the relation (20) between k
and P, which connects the pendulum equation to eqn (18),
and by xing the appropriate value for the arbitrary amplitude
a. Choosing �q0(a0 ¼ 0,k0;s) ¼ 0, �q1(a1 ¼ 1,k1 ¼ k+ � ik�;s) and
�q2(a2 ¼ 1,k2 ¼ �k+ � ik�;s) we obtain

q ¼ 4 tan�1

"
k�sinðkþsÞ
kþcoshðk�sÞ

#
(21)

corresponding to an even prole for the membrane.† Substi-
tution of this function into eqn (18) conrms that it indeed
solves it exactly. The expression (21) together with the denition
of k� (20) give the evolution of the shape of the membrane with
respect to the applied load P. The applied load can be related to
the connement D using eqn (1) with L / N:

D ¼ 8

�
B

K

�1=2

k� ¼ 2l0

p

�
2� Pffiffiffiffiffiffiffiffi

BK
p

�1=2

; (22)

whereweused eqn (11) to introduce l0. Consequently the applied
load evolves with the connement following a quadratic law,

Pffiffiffiffiffiffiffiffi
BK

p ¼ 2� p2

4

�
D

l0

�2

; (23)

which coincides perfectly with numerical calculations per-
formed for a nite system in ref. 78.

Even if this exact solution has been obtained in the ideal case
of an innitely long sheet, folding is a localized deformation
which should be rather independent of the system size. This is
illustrated in Fig. 4 where the experimental evolution of two
wrinkle amplitudes, A0 and A1, for nite sheets78 is compared to
the evolution predicted by the exact solution obtained
for innite sheets. When the folding of the sheet is signicant
(D/l0 T 0.3), the agreement is remarkable. Fig. 5 shows a
comparison between experimental and theoretical proles
conrming that the innite sheet approximation gives a satis-
factory description of nite sheet morphology especially for
large enough connement.
† An energetically equivalent odd prole is obtained by choosing �q0 ¼ 0, �q1(i,k+ �
ik�;s) and �q2(i,�k+ � ik�;s).

This journal is ª The Royal Society of Chemistry 2013
4 Elastic substrate

When the substrate is an elastomer the normal force induced by
the foundation on the membrane is given by �KH ( _y(s)) for small
connement with

�K ¼ 2Es(1 � ss)/(1 + ss)(3 � 4ss), (24)

where Es and ss are the Young's modulus and the Poisson's ratio
of the substrate respectively.80 This expression is valid for an
arbitrary shape of the membrane, y. The operator H is the
Hilbert transform.87‡ For a periodic deformation characterized
by a wavenumber k, the effective stiffness is thus given by �Kk.
From eqn (10) with a ¼ 1, we obtain

l0 ¼ 2p

�
2B
�K

�1=3

¼ 2p

�
3B

Es

�1=3

; (25)
‡ The action of this linear operator on trigonometric functions is quite simple:
H (cos(kx)) ¼ sin(kx) and H (sin(kx)) ¼ �cos(kx).

Soft Matter, 2013, 9, 8177–8186 | 8181
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where we used �K ¼ 2Es/3 for ss ¼ 1/2. This relation is in very
good agreement with available experimental data found in ref.
39, 80, 88 and 89 and gathered in Fig. 3. This length-scale l0

emerges as soon as the applied load reaches the critical value
P0 ¼ P(2p/l0) whose expression is obtained from eqn (8)

P0 ¼ 3( �K2B/4)1/3 ¼ (3BE2
s)
1/3. (26)

The evolution of the wrinkle amplitude A (y ¼ Acos(k0s)) as a
function of the compression D is purely geometric. It is given by
eqn (1) adapted to the case of an innitely long and periodic
prole

d ¼ l�1
0

ðl0
0

ð1� cos qÞdsx 1

2l0

ðl0
0

_y2ds; (27)

where d is the relative compression and where the wrinkle
amplitude is assumed to be innitesimally small ( _y ¼ sin qx q

� 1). This relation leads to

jAj ¼ l0

p
d1=2; (28)

which ts nicely the experimental data found in ref. 56, 57 and
80 up to d � 0.1 as shown in Fig. 7.

To describe the subsequent evolution of the membrane
morphology, we need to take into account nonlinear terms. As
mentioned in Introduction, the periodic folding observed for
large enough connement always takes place toward the
substrate. The up–down symmetry is thus explicitly broken by
this system. This symmetry cannot be broken spontaneously by
the sheet alone whose energy is invariant against y / �y. It
must then be broken by the substrate.

Assuming that the dominant terms describing the shape of
the membrane just before the emergence of the period-
doubling instability are y ¼ Acos(ks) + Ccos(2ks), with A of the
order d1/2 (see eqn (28)) and C of the order d, the normal force
induced by the elastic foundation on the membrane is found to
be Py ¼ �Kk(Acos(ks) + 2Ccos(2ks)) + (�K2/2)A

2k2cos(2ks) at the
order d with �K given by eqn (24) and

�K2 ¼ Es(1 � 2ss)(13 � 16ss)/2(1 + ss)(3 � 4ss)
2. (29)

The linear part of this restoring force, proportional to �K ,
corresponds obviously to the expression written above (H ( _y))
which is valid for an arbitrary form of y. The nonlinear part,
proportional to �K2, can be written as H ( _y)2 � hH ( _y)2i where h$i
¼ l�1Ð l

0$ds with l ¼ 2p/k.80 However, this nonlinear contribu-
tion has not been derived for a general expression of y but only
in the context of this perturbative scheme.

The presence of a quadratic nonlinear term in the normal
force due to the substrate leads to an explicit up–down
symmetry breaking as required by experimental observations.
This nonlinear restoring force has been obtained assuming a
Hookean material§ and taking into account the nonlinear
(quadratic) relationship between the displacement vector and
§ Indeed, the period-doubling instability emerges for d � 0.2 and A/l0 < 0.15, see
Fig. 7, leading to small stretching of the substrate where the material should still
be Hookean.91
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the strain tensor.92 It has been derived without taking the sub-
harmonic mode cos(ks/2) into account in the prole y. This
theory is thus, a priori, only valid near the instability threshold
where the amplitude of this additional mode is arbitrarily small.
However, as shown below, the agreement with experiments
extends signicantly beyond this regime.

Due to the up–down symmetry associated with the defor-
mation of the sheet alone, the rst nonlinear correction due to
the membrane to eqn (7), giving the balance of normal forces, is
of the cubic order. Consequently, the lowest nonlinear correc-
tion arises from the substrate contribution. At the lowest
nonlinear order, the equation governing the shape of the
membrane thus reads

Byzþ Py€þ �KH
�
_y
�þ �K2

�
H
�
_y
�2 � D

H
�
_y
�2E� ¼ 0: (30)

To ease the subsequent discussion, eqn (30) can be rescaled
using quantities obtained from the linear analysis

u ¼ (2k0 �K2/ �K)y, �P ¼ P/P0, x ¼ k0s (31)

Using the explicit expression (25) of k0, we obtain

uzþ 3 �Pu€þ 2H
�
_u
�þ H

�
_u
�2 � D

H
�
_u
�2E ¼ 0: (32)

Guided by experimental observations where the proles
always stay periodical and develop a subharmonic mode, we
search for a periodic solution using the following expansion:
u(x) ¼ PN

j¼1cjcos( jx/2), where cj are Fourier coefficients. The
periodic system considered being invariant to translation, the
experimental proles can always be translated such as they are
described by an even function. In other words, the arbitrariness
in the position of the origin of the coordinates allows us to
consider an expansion containing cosine functions only.
Substituting this expansion into (30) and dropping terms with
wavenumbers larger than N/2 (Galerkin method93) leads to a
nonlinear system of N equations with N + 1 unknowns
(N coefficients cj and the applied load P). All the coefficients can
thus be expressed as a function of P giving the evolution of the
shape of the membrane as a function of the applied load like
the solution (21) in the case of a liquid substrate. The applied
load can then be related to the relative connement d using
eqn (27).

Using an expansion limited to N ¼ 2 is already sufficient to
capture the physics of the period-doubling instability. Imposing
that the coefficients of cos(x/2) and cos x vanish, we obtain a
system of two equations. One solution reads c1 ¼ 0 and �P ¼ 1
which leads to the linear solution u ¼ c2cos x; the coefficient c2
is xed by the inextensibility constraint (27). This linear solu-
tion predicts that the prole is cosinusoidal with an amplitude
following eqn (28) while P keeps a constant value P0 (�P ¼ 1).
However, there exists another solution

c1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ð �P� 1Þc2

q
; (33)

c2 ¼ (12 �P � 17)/8. (34)
This journal is ª The Royal Society of Chemistry 2013



Fig. 6 (a) Evolution of the rescaled applied load P as a function of the relative
confinement d together with some representative membrane profiles. (b)
Comparisons between theoretical and experimental profiles.
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Physically, the subharmonic mode, cos(x/2), can only emerge if
the corresponding prole leads to a decrease of the system
energy (�P # 1) and if its amplitude, c1, is real. The solution (33)
implies that this happens when the amplitude of the harmonic
mode, cos x, is large enough (in modulus):�c2 $ 5/8. Returning
to the original variables (31) and calling A the amplitude of the
harmonic mode, the period-doubling instability appears thus
when A reaches the critical value

jAj ¼ 5l0

32p

�K
�K2

: (35)

Using eqn (28) we obtain the expression for the critical
connement, d2, at which the instability occurs

d2 ¼
�

5 �K

32 �K2

�2

: (36)

Using the expressions (24) and (29) of the effective stiffness
coefficients and the experimental value of the critical conne-
ment, d2x 0.2, we obtain �K2/�K x 0.35 and the following value of
the Poisson's ratio of the substrate ss x 0.41. This value of the
Poisson's ratio is already reasonably close to the measurements
reported in the literature and will be improved below by consid-
ering an expansion with additional Fourier modes (N > 2).

This analysis does not, however, imply that an harmonic
mode with a positive amplitude, c2 > 0, is stable against sub-
harmonic perturbations. Indeed, the above analysis is per-
formed using, without the loss of generality, an even function to
describe the evolution of the wrinkled pattern. Having found
the energetically favorable pattern in this case, we can relax our
arbitrary choice for the position of the origin and use trans-
lation invariance to generate equivalent patterns: u(x � p) ¼
c1sin(x/2) � c2cos x. The sign of c2 being now reversed, implies
that an harmonic mode with a positive amplitude is also
unstable against subharmonic perturbations above the same
threshold and leads to the same wrinkled pattern but trans-
lated. Notice that the mechanism leading to a period-doubling
instability is structurally robust since it survives when the
operator H ( _u) is formally replaced by u in eqn (32); the
threshold value being slightly modied.

Increasing the number of modes N, the system of equations
for the coefficients cj is solved numerically. The convergence is
already essentially reached for N ¼ 4. The critical value for c2 is
now found to be around 0.42. As above, returning to the original
variables (31) and using eqn (28) we obtain a corrected expres-
sion for the critical connement, d2, at which the instability
occurs

d2 ¼ (0.105 �K / �K2)
2. (37)

Using the experimental value of the critical connement, d2x 0.2,
we obtain �K2/�K x 0.25 and ss x 0.44 which is close to
measurements reported in the literature for Sylgard 184 which
ranges from 0.45 to 0.48.94,95

As mentioned above, the system studied here manifests
experimentally an explicit breaking of the up–down symmetry
since the periodic folding occurs only toward the substrate. This
This journal is ª The Royal Society of Chemistry 2013
symmetry breaking can only be due to the substrate as captured
by the model. Consequently, the threshold, d2, at which the
instability occurs is determined by the material properties of
the substrate. Since both d and A/l0 are small at this threshold,
the substrate can reasonably be considered as Hookean.91

Consequently, the foundation is characterized by only two
parameters, the Young's modulus and Poisson's ratio. d2 being
dimensionless, can only be a function of the Poisson's ratio as
derived by the model.

The evolution of the applied load P as a function of the
relative connement d is presented in Fig. 6 together with some
representative membrane proles. Notice that these proles are
computed well beyond the domain of validity of the model for
illustrative purposes. As for the case of a liquid substrate, P
decreases when the sheet is compressed. Once the connement
reaches a critical value d2, the emergence of a subharmonic
mode lowers the system energy compared to the energy
obtained without such a mode. At the transition, the sub-
harmonic mode emerges with a vanishing amplitude since the
evolution of P is continuous, only the rst derivative of P with
respect to d is discontinuous. Since P ¼ dU/dD, it implies that
the second derivative of the energy is discontinuous; the tran-
sition is thus of second order. Comparisons between theoretical
and experimental proles are also presented in Fig. 6 showing a
good agreement.

The amplitudes A0 and A1 characterizing the sheet proles
(see Fig. 7a) can also be computed and compared to data found
in ref. 56, 57 and 80 and gathered in Fig. 7. Before the emer-
gence of the secondary instability, both amplitudes coincide
Soft Matter, 2013, 9, 8177–8186 | 8183



Fig. 7 (a) Definitions of the amplitude A0 and A1. (b) Comparison between
experimental and theoretical evolutions of A0 and A1 (rescaled by l0) as a function
of the relative confinement d. Shaded areas represent the regions spanned by
varying the parameter �K2/�K from 0.25 to 0.27. Data:56 E¼ 0.5 MPa and s¼ 0.5 for
PDMS and E ¼ 3.2 GPa, s¼ 0.35, h ¼ 218 nm for polystyrene (PS). Data:57 E ¼ 130
GPa and s¼ 0.27 for silicon (Si), E¼ 1.8MPa and s¼ 0.48 for PDMS. Data from ref.
57 are plotted as a function of the relative compression, d, of the rigid sheet
instead of the relative prestretching, 3, of the PDMS: d ¼ 3/(1 + 3).
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whereas beyond the critical connement, d2, the wrinkle
amplitude A0 grows at the expense of the amplitude A1 of its
neighbors. The shaded areas represent the region spanned by
varying the parameter �K2/�K from 0.25 to 0.27. This small vari-
ation has only a marginal effect on the evolution of the ampli-
tude before the emergence of the period-doubling instability
and cannot be seen in the graph.
Fig. 8 Comparison between profiles of a compressed membrane resting in
between two identical soft PDMS foundations (trilayer, a) and a compressed
membrane bound to a soft PDMS foundation (bilayer, b) for a similar relative
compression d x 0.23.
5 Summary and discussions

When a rigid thin sheet resting on a liquid foundation is slightly
compressed in its plane, it develops wrinkles regularly spaced
by a distance l0 whose expression in terms of material proper-
ties is given by eqn (11). When the sheet is further compressed,
the amplitude of the wrinkles rst grows before decaying.
Finally, the sheet almost recovers its initial at state except in a
small region where all the deformation is concentrated into a
single fold where self-contact is eventually observed (see Fig. 5).
The single fold state takes place once the horizontal displace-
ment D reaches a value comparable to l0 independently of
the length, L, of the sheet (see Fig. 4). This means that
folding happens for a vanishingly small relative compression
d ¼ D/L x l0/L � 1 for long enough sheets. For such long
sheets, L [ l0, the wrinkle regime might not even be observ-
able. In the ideal case of an innitely long sheet, there is actually
no transition between wrinkle to fold states. The sheet prole is
always localized; the localization length diverges as the
connement vanishes. The sheet morphology evolves thus from
an initial at state to a folded state without undergoing any
secondary instability.

However, the deviation for small connement between the
evolution of the pattern amplitudes extracted from the exact
8184 | Soft Matter, 2013, 9, 8177–8186
solution (21) valid for an innite sheet and the data, as seen in
Fig. 4, may hint that there is actually a secondary instability
once the sheet length is nite. Additional accurate measure-
ments of the evolution of the amplitude A near the buckling
threshold (D/l0 ( 0.2) are needed to detect a possible transi-
tion. For example if dA/dD diverges as D tends to 0, it may
suggest that the system undergoes a transition from a periodic
state to a localized state since for a periodic solution A � D1/2.

When a rigid thin sheet resting on an elastic foundation is
compressed, it adopts an undulated morphology similar to the
one observed with a liquid foundation for small enough
connement. The expression of the emerging length-scale, l0,
in terms of material properties is given by eqn (25). However, as
the connement increases, the morphology signicantly devi-
ates from homogeneous wrinkles. Beyond some critical
connement d2 (37) a secondary instability occurs. It takes the
form of a period-doubling instability leading to a transition of
the second order. The membrane displays a periodical folding
where the folds are distanced by 2lx 2l0(1� d)80 whereas there
is only one fold in a small region of size l0 for a liquid foun-
dation. Because of this periodic folding, the number of folds
increases with the sheet length which can thus accommodate a
larger compression D. This behavior contrasts with the sheet on
liquid systems where the sheet cannot be compressed further
than D � l0 before self-contact occurs.

When the bilayer is further conned, period-quadrupling
can occur80 suggesting that a cascade of spatial period-doubling
bifurcations could be observed when a rigid thin sheet resting
on an elastic foundation is conned. Such a cascade is known to
lead to chaos aer several bifurcations.96,97 There is, however, a
geometric limitation due to the nite thickness of the sheet: the
evolution of the pattern saturates as soon as sharp folds appear
such that self-contact occurs. This prevents reaching high
connement. Nevertheless, it may be possible to go beyond
period-quadrupling (experimentally or at least numerically) and
to measure the values of the connement ratio dn at which each
transition occurs. A ratio like (dn�1 � dn�2)/(dn � dn�1) could
eventually converge to the Feigenbaum's constant as n
increases. Such a property would further relate this system to
nonlinear dynamical systems.

Finally, the period-doubling instability occurs because the
system exhibits an explicit up–down symmetry breaking. This
symmetry can be restored by considering a trilayer where a thin
rigid membrane is sandwiched in between two identical so
foundations. Fig. 8 shows the morphology adopted by a rigid
membrane in such a case for d x 0.23. The period-doubling
instability no longer emerges, even for larger compression,
instead the membrane develops a pattern similar to the one
This journal is ª The Royal Society of Chemistry 2013
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observed with a oating membrane (system which possesses an
up–down symmetry).
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