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Law of corresponding states for osmotic swelling of vesicles
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As solute molecules permeate into a vesicle due to a concentration difference across its membrane, the

vesicle swells through osmosis. The swelling can be divided into two stages: (a) an ‘‘ironing’’ stage,

where the volume-to-area ratio of the vesicle increases without a significant change in its area; (b)

a stretching stage, where the vesicle grows while remaining essentially spherical, until it ruptures. We

show that the crossover between these two stages can be represented as a broadened continuous phase

transition. Consequently, the swelling curves for different vesicles and different permeating solutes can

be rescaled into a single, theoretically predicted, universal curve. Such a data collapse is demonstrated

for giant unilamellar POPC vesicles, osmotically swollen due to the permeation of urea, glycerol, or

ethylene glycol. We thereby gain a sensitive measurement of the solutes’ membrane permeability

coefficients, finding a concentration-independent coefficient for urea, while those of glycerol and

ethylene glycol are found to increase with solute concentration. In addition, we use the width of the

transition, as extracted from the data collapse, to infer the number of independent bending modes that

affect the thermodynamics of the vesicle in the transition region.
I. Introduction

Membrane vesicles are made of a closed bilayer of amphiphilic

molecules in aqueous solution, having length scales of 0.1–100

mm. Used as simplified models of biological membranes, they

have been one of the most extensively studied systems in soft-

matter physics.1,2 Vesicles usually enclose both solvent (water)

and solute molecules. Such vesicular capsules are ubiquitous in

cell functions3 and used as microreactors and delivery vehicles in

various biomedical and cosmetic applications.4

The hydrophobic core of the bilayer membrane poses a kinetic

barrier to the permeation of water and water-soluble molecules

into and out of the vesicle. Consequently, the permeability

coefficients of various solutes across various membranes span

a very wide range of values.5 For example, the permeability

coefficients of water, urea, and potassium ions through the

membranes used in the current work are of the order, respec-

tively,5 of 102, 10�2, and 10�8 mm s�1. This implies that the time

scales for permeation of water and the solutes examined here are

well separated. Thus, the vesicles can safely be assumed to reside

in a semi-permeable regime, in which their volume quickly

(essentially immediately) re-adjusts through osmosis to a change

in the number of enclosed solute molecules. As more solute

molecules enter, therefore, the vesicle progressively swells—first
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approaching a spherical shape (the ‘‘ironing’’ stage), subse-

quently inflating as a sphere (the stretching stage), and eventually

rupturing (osmotic lysis).6

In an earlier theoretical work we argued that a vesicle in such

a semi-permeable regime should reach the end of the ironing

stage (i.e., the maximum volume-to-area ratio) critically, through

a continuous transition.7 That theory was restricted to

unstretchable membranes. Here we extend the theory to the

experimentally relevant case of stretchable membranes, finding

a slightly modified but similar form of criticality. We then

confirm the existence of the critical scaling behavior in experi-

ments and utilize it to obtain a reliable measurement of perme-

ability coefficients.

A crossover between two stages of vesicle swelling is well

known in micropipette-aspiration experiments.8 The stages are

distinguished by a markedly different dependence of surface

tension on surface strain—in the first stage the dependence is

exponential, while in the second it is linear.8–10 The essential

difference between this scenario and the one addressed here lies

in the different control parameters. In the former case the

swelling is controlled by a hydrostatic pressure difference,

whereas in the latter it is controlled by the number of encapsu-

lated solute molecules. As a result, the two crossovers are not

equivalent. As will be presented below, in fact, the monitored

swelling of our vesicles, with its two distinct stages, occurs within

the linear regime—i.e., the tension depends linearly on strain

throughout the observed transition.

We begin by describing the experimental setup in Sec. II and

the direct experimental results in Sec. III. The analysis of the

experimental data requires a revised theory, which is presented in
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Sec. IV. In Sec. V we apply the theory to the experimental results

to demonstrate data collapse onto a master curve—i.e., the law

of corresponding states—and extract additional information,

such as the permeability coefficients and the number of surface

bending modes contributing to vesicle thermodynamics. Finally,

we discuss the various results and their significance in Sec. VI.
II. Experimental setup

D-(+)-Glucose, D-(+)-sucrose, glycerol, urea, and ethylene glycol

were purchased from Fluka (Buchs, Switzerland). Methanol and

chloroform were purchased from Kemika (Zagreb, Croatia).

1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) was

purchased from Avanti Polar Lipids (Alabaster, USA). All the

solutions were prepared in double-distilled sterile water.

A suspension of POPC giant unilamellar vesicles (GUVs) in

0.1 or 0.2 mol L�1 1 : 1 sucrose/glucose solution was prepared

using an electroformation method, described in ref. 11 with some

modifications.12,13 Lipids were dissolved in a mixture of chloro-

form/methanol (2 : 1, v/v) to a concentration of 1 mg mL�1. A

volume of 25 mL of the lipid solution was spread onto a pair of Pt

electrodes and dried under reduced pressure (water aspirator; z
60 mmHg) for 2 h. The electrodes were then placed into an

electroformation chamber, which was filled with 0.1 or

0.2 mol L�1 sucrose. AC current (8 V, 10 Hz) was applied, and the

voltage and frequency were reduced in steps to the final values of

1 V and 1 Hz.13 Subsequently, the chamber was first drained into

a beaker and then flushed with an equal volume of isomolar

glucose solution, thus resulting in a suspension of GUVs con-

taining entrapped sucrose in a 1 : 1 sucrose/glucose solution,

which increases the contrast in a phase contrast setup and

facilitates vesicle manipulation.14 This procedure yields mostly

spherical unilamellar vesicles, with diameters of up to 100 mm.

An inverted optical microscope (Nikon Diaphot 200, objective

20/0.40 Ph2 DL) with micro-manipulating equipment (Narishige

MMN-1/MMO-202) and a cooled CCD camera (Hamamatsu

ORCA-ER; C4742-95-12ERG), connected via an IEEE-1394

interface to a PC running Hamamatsu Wasabi software, was

used to obtain phase contrast micrographs. In the streaming

mode, the camera provides 1344 � 1024 12-bit grayscale images

at a rate of 8.9 images/s.

In the experiment, an individual spherical GUV is selected,

fully aspirated into a glass micropipette whose inner diameter

exceeds the vesicle’s diameter, and transferred from a solution

containing solutes of very low membrane permeability (1 : 1

glucose/sucrose) into an iso-osmolar solution of a more perme-

able solute (glycerol, urea, or ethylene glycol), where the content

of the micropipette is released, and the micropipette is subse-

quently removed. Vesicle response is recorded using a CCD

camera mounted on the microscope. The radius of the vesicle’s

cross-section was determined from the recorded series of images

using a least-squares procedure.15
Fig. 1 Typical swelling curve, showing the change in the observed

(larger) radius of an oblate spheroidal POPC vesicle as a function of time

due to inward permeation of urea. The decreasing part of the curve

corresponds to the ironing stage, and the increasing one to the stretching

stage. The minimum of the curve is defined as (t ¼ 0, R1 ¼ R0). The

present analysis concerns the swelling up to the point of first rupture

(R1 ¼ Rrup).
III. Experimental results

Once the vesicle is released and gets in contact with the target

solution, a transient increase of its cross-sectional radius, R1, is

observed. We attribute it to a small hypotonicity of the outer

solution, causing the vesicle to slightly deflate and change its
2186 | Soft Matter, 2012, 8, 2185–2193
shape from a sphere into an oblate spheroid.16,17 Gravity should

lead to a small deviation of the shape from a perfect oblate

spheroid,16 which we neglect here. A more important effect of

gravity is the breaking of the problem’s rotational symmetry,

such that the observed lateral radius, R1, is always the spheroid’s

larger radius. On a longer time scale than the transient deflation,

the vesicle inflates due to solute permeation and the accompa-

nying osmosis (i.e., water influx). This causes the vesicle to

become more spherical, making the observed R1 decrease (see

Fig. 1). This is the ironing stage, where the swelling increases the

volume-to-area ratio. After a certain time,R1 reaches a minimum

and starts increasing (see again Fig. 1). This marks the crossover

to the stretching stage, where the vesicle continues to swell

essentially as an inflating sphere. When the membrane reaches

a critical strain, it ruptures, and the vesicle bursts. Subsequently,

the membrane is resealed and another cycle of swelling

commences. The repeated burst–swelling cycles were analyzed

elsewhere.13 In the present work we focus on the swelling that

precedes the first burst.

The ironing and stretching stages are clearly distinguished in

Fig. 1 as the decreasing and increasing parts of the swelling curve,

respectively. To have a systematic definition of the time axis for

all vesicles we define t ¼ 0 at the minimum of the curve. We

associate the radius at that minimum,R0, with the relaxed area of

the vesicle, A0 h 4pR0
2. (We return to examine this assumption

in Sec. VI.) From each such curve we also extract the radius at

rupture, Rrup. This yields a direct measurement of the mem-

brane’s rupture strain,

3rup ¼ (Rrup/R0)
2 � 1. (1)

Fig. 2(a)–(c) show the swelling curves measured for POPC

vesicles of broadly distributed sizes due to the permeation of

three different solutes: urea, glycerol, and ethylene glycol. Each

of these curves has the typical shape shown in Fig. 1, yet the

polydispersity of the vesicles flattens them once they are dis-

played together. This is demonstrated in Fig. 3, where we have
This journal is ª The Royal Society of Chemistry 2012



Fig. 2 Swelling curves forPOPCvesicles under thepermeationof (a) urea,

(b) glycerol, and (c) ethylene glycol. Outer solute concentrations are 0.1M,

0.2 M (left-pointing arrows), and 0.11 M (right-pointing arrow in (b)).

Fig. 3 The swelling curves of Fig. 2(a) replotted using the same colors

after being rescaled by their minima.

Fig. 4 Histogram of measured rupture strains for POPC vesicles. The

distribution has a mean of 0.055 and standard deviation of 0.02.
replotted the swelling curves for urea after rescaling the ordinate

of each of them by its minimum radius,R0. Fig. 3 shows that such

a simple size rescaling does not collapse the data onto a master

curve. A more detailed analysis of the temporal swelling curves

requires a theory, which is presented in the next section. In Fig. 2

it is apparent, nonetheless, that there is no correlation between

the transition width (sharpness of the curve’s minimum) and the

vesicle size. We return to this point in Sec. V.

A dataset that can be presented without further analysis is the

one for 3rup, the critical surface strain at rupture, calculated from

the directly measured values of R0 and Rrup according to eqn (1).

Since rupture is a result of pore formation, which is a nucleated
This journal is ª The Royal Society of Chemistry 2012
event,18,19 the critical strain as measured in individual vesicles is

a stochastic variable. Fig. 4 shows the histogram of measured

rupture strains. From this distribution we get 3rup¼ 0.055� 0.02,

i.e., about 5 percent, which agrees with known values for the

maximum sustainable strain of lipid bilayers.8
IV. Theory

Models of vesicles usually focus on the statistical mechanics of

the membrane under the appropriate constraints, the starting

point being the Helfrich Hamiltonian.1,2,9,10,16 In the current work

we choose a different, more general description, based on the

thermodynamics of small systems.20 This is because the

phenomenon of main interest here—the transition between the

ironing and stretching stages—arises from competition between

volume and surface effects, which is independent of the detailed

interactions. Since the transition is of a mean-field type,7 such

a thermodynamic description should be sufficient.

We consider a dilute solution enclosed in a membrane vesicle.

This system is in thermal and pressure contact with a much larger

solution having temperature T and pressure po. The system is at

thermodynamic equilibrium. Thus, its temperature is T.

However, since we deal with strong surface effects, the system’s

equilibrium pressure may deviate from the outer pressure po. The
Soft Matter, 2012, 8, 2185–2193 | 2187



enclosed solution contains Q solute molecules.† Although Q in

the experiment changes with time, we assume, because the solute

has much lower permeability than water, that the system is at all

times in quasi-equilibrium, given the instantaneous number of

enclosed solute molecules, Q(t). Due to the fast water exchange,

we treat both the volume V and surface area A of the vesicle as

free, independent thermodynamic variables. Alternatively, one

can define a reduced volume,

yðV ;AÞ ¼ 6
ffiffiffi
p

p V

A3=2
˛ð0; 1Þ; (2)

which characterizes the deviation of the vesicle from a perfect

spherical shape, and consider v and A as the thermodynamic

variables.

We divide the Gibbs free energy of the system into three-

dimensional (volume) and two-dimensional (surface)

contributions:

G ¼ G3D + F2D. (3)

Taking the enclosed solution to be ideal and dilute, we write its

Gibbs free energy as

G3D ¼ kBTQ

�
ln

�
Qyw

V

�
� 1

�
þ poV ; (4)

where yw is the molecular volume of water.

As to the surface, we distinguish between in-plane (stretching)

and out-of-plane (bending) degrees of freedom, and assume that

the vesicle is sufficiently large such that the two are decoupled,

i.e., contribute additively to the Helmholtz free energy,

F2D ¼ Fs + Fb. (5)

We further assume that the membrane’s in-plane free energy is

minimum for a certain relaxed area, A0, and expand it to leading

order about that minimum,

Fs ¼ K

2A0

ðA� A0Þ2; (6)

where K is the membrane’s stretching modulus. In the bending

free energy we include only the contribution from undulation

entropy, which, assuming small fluctuations about a spherical

shape, is given by7

Fb ¼ � 1

2
NkBT lnð1� yÞ; (7)

where N is the total number of independent bending modes

contributing to the membrane’s thermodynamics. Eqn (7), which

describes the suppression of bending fluctuations as the vesicle

approaches the maximum volume-to-area ratio (y / 1), is the

only statistical-mechanical input to the theory. It is analogous to

an equipartition principle; here each bending mode contributes

an equal amount of (kBT/2)|ln(1 � y)| to the free energy.7 Thus,

this expression holds quite generally for nearly spherical vesicles,
† In the experiment described above the vesicle actually contains two
solutes—one that permeates the membrane and another that is trapped
inside the vesicle. Analysis for an ideal solution, containing Q1

molecules of the former and Q2 molecules of the latter, leads to
identical results once we take Q ¼ Q1 + Q2.
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regardless of their detailed properties. Eqn (7) also provides the

crucial coupling betweenG3D and F2D, since v depends on bothV

and A according to eqn (2).

The number of modes affecting the thermodynamics,N, which

should be proportional to the number of lipid molecules in the

membrane (i.e., to the membrane’s relaxed area A0), is a priori

unknown. Further discussion of this number, its dependence on

membrane’s parameters, and its link to other theoretical treat-

ments of membrane fluctuations, is deferred to Sec. VI. Here we

prefer to leave it unspecified and extract it from the experiment.

The number of modes is used to define an intensive area, or

effective patch size, ahA/N, having the relaxed value a0hA0/N.

One could add, of course, various other contributions to the

free energy of the vesicle, such as the membrane’s bending

energy, surface–surface and surface–solute interactions (e.g.,

electrostatic ones), gravitational energy, etc. All these, however,

do not significantly change when the vesicle becomes spherical

and begins to stretch. In other words, in the limit (to be studied

below) where (1 � y) becomes singular, these contributions are

non-singular, and, hence, cannot affect the critical behavior in

the transition region.

Eqn (3)–(7) define the Gibbs free energy of our finite-size

system as a function of (T, po, Q, N) and also V and A. The

equilibrium free energy as a function of (T, po, Q, N) alone is

obtained by minimizing G with respect to the volume and area of

the vesicle. Note that by using this procedure we circumvent

altogether the subtle and controversial issue of membrane

tension (see, e.g., ref. 20–23 and references therein). The Laplace

tension and surface pressure of the membrane emerge naturally

from the minimization with respect to V and A, respectively.

That is also the reason why we have formulated the Helmholtz

(rather than Gibbs) free energy of the surface, to avoid specifying

any thermodynamic variables pertaining to the surface other

than T, A, and N. Another related subtlety is that K ¼ A(v2F2D/

vA2) at fixed y (rather than fixed V), otherwise there would be

another contribution to the stretching modulus from changes in

the volume-to-area ratio.

The minimization leads to the following two equations:

1

2
dN

y

1� y
þ
�
a

a0

�3=2

y ¼ Q

Qc

(8)

2dN

3dK

aða� a0Þ
a20

þ
�
a

a0

�3=2

y ¼ Q

Qc

; (9)

from which one can calculate y and a. In eqn (8) and (9) we have

defined

Qc h
poV0

kBT
; V0 h

A
3=2
0

6
ffiffiffi
p

p ; (10)

along with two small parameters,

dN h
N

Qc

� N�1=2; dK h
kBT

Ka0
� K�1; (11)

the first related to the vesicle’s finite size, and the other to the

membrane’s finite stretchability.

Before proceeding, it is instructive to examine eqn (8) and (9)

in two limits. The first is the ordinary thermodynamic limit of

infinite system size (N / N, dN / 0) while keeping the
This journal is ª The Royal Society of Chemistry 2012



stretching modulus finite. In this case eqn (8) and (9) become

degenerate and yield the expected equilibration of inner and

outer pressures, kBTQ/V ¼ po. The second limit is that of an

unstretchable membrane (K / N, dK / 0). In this case eqn (9)

imposes a ¼ a0, and eqn (8) then yields the behavior that was

studied in ref. 7, with criticality of y asN/N. Outside these two

limits we get from these equations the relation

dK
y

1� y
¼ 4aða� a0Þ

3a20
; (12)

which demonstrates the actual interplay between the volume-to-

area ratio and surface strain. We see that the vesicle can never

attain a perfect spherical shape (y¼ 1), because this would require

unphysical strain (a / N). The deviation of the area from its

relaxed value is inversely proportional to the deviation of the

shape from a perfect sphere. This relation becomes more sensitive

the smaller the value of dK—i.e., the vesicle should be strongly

swollen, 1� y� dK� 1, to get an appreciable strain (a� a0)/a0.

To present the detailed behavior of the transition, we define

a control parameter q, proportional to the number of enclosed

solute molecules, and an order parameter M, measuring the

deviation from a spherical shape,

q h Q/Qc � 1, M h 1 � y. (13)

Solving eqn (8) and (9) in the vicinity of the transition, we get

MðqÞ ¼ D ~Mðq=DÞ; D ¼ ½2dN þ ð9=2ÞdK �1=2
~MðxÞ ¼ ð ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ x2
p � xÞ=2:

(14)

Thus, as q increases from negative to positive values,M crosses

over from appreciable values, M x |q|, to very small ones, M x
D/(4q). The crossover occurs over a range of q defined by D. In

the limit D / 0 the point (q ¼ 0, M ¼ 0) becomes a singular

corner where dM/dq undergoes a discontinuous jump. The finite

size of the vesicle and the stretchability of the membrane both

contribute to the broadening of the transition. If we take dK ¼ 0,

eqn (14) properly coincides with the critical behavior in the case

of an unstretchable membrane.7 Which of the two broadening

effects dominates in practice is determined by the ratio

dN

dK
� K=R0

po
;

where the right-hand side reflects the competition between

surface (numerator) and volume (denominator) effects.

Substituting eqn (14) in eqn (12), we obtain for the surface

strain, 3 h (a � a0)/a0 ¼ (3/4)dKM
�1. Yet, since the scaling

function satisfies [ ~M(x)]�1 ¼ 4 ~M(�x), we can rewrite this

result as

3ðqÞ ¼ 2

3½1þ ð4=9ÞðdN=dKÞ�D
~Mð�q=DÞ: (15)

Thus, up to a prefactor, the strain’s behavior is a mirror image of

that of M. As q increases from negative to positive values, 3

changes from very small values, �D/|q|, to appreciable ones, �q.

Similarly, combining eqn(8), (12), and (14), we get for the Lap-

lace tension,

gðqÞ ¼ R

2

�
kBTQ

V
� po

�
x

3kBT

4a0
½MðqÞ��1 ¼ K3ðqÞ; (16)
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i.e., the surface tension follows the same behavior as the strain,

becoming appreciable only for sufficiently large, positive q. Eqn

(16) implies that within the transition region the tension is in the

so-called linear regime,8,9 where it is proportional to the surface

strain. Substituting the rupture strain found above, 3rup x 0.05,

and Kx 240 mN m�1,24 we obtain a rupture tension of the order

of 10 mNm�1, which is in line with previously reported values8 of

5–10 mN m�1.

Eqn (14) [equivalently, (15) or (16)] describes a law of corre-

sponding states for osmotically swollen, nearly spherical vesicles.

It predicts that, upon rescaling, the swelling (i.e., volume-to-area

ratio, strain, or tension) of such vesicles, regardless of their size,

composition, and the nature or concentration of solute, could be

collapsed onto a single universal curve defined by the function
~M(x). Thus, despite the many physical parameters affecting the

process, only two parameters actually suffice to completely

characterize the osmotic swelling of any nearly spherical

vesicle—the location of the transition, Qc, and its width, D.

An interesting consequence of the competition between surface

and volume effects is found when we examine the vesicle’s

swelling beyond the transition, well into the stretching stage. In

this case, q [ D, eqn (15) becomes

3 ¼ 2

3

q

1þ ð4=9ÞdN=dK ¼ 2

3

kBTQ=V0 � po

po þ ð4=3ÞK=R0

: (17)

Upon replacing the surface strain of a spherical vesicle with its

relative volume change, (V � V0)/V0 ¼ (3/2)3, and the outer

pressure of a dilute solution with its concentration, po ¼ kBTco,

eqn (17) reproduces a known result,25 which was used in earlier

analyses of the stretching stage.13,25 As we have seen above, if

dN/dK � 1, the finite stretching modulus determines the transi-

tion width D [eqn (14)]. At the same time, according to eqn (17),

the relatively small value of K in this case makes the swelling

beyond the transition insensitive to K. Being governed by volume

effects, the growth in the stretching stage is then simply

proportional to the increasing number of enclosed molecules.13

V. Data analysis

Let us first check which of the broadening factors—finite size or

stretchability—is dominant in the experiment. The stretching

modulus of a POPC bilayer is K x 240 mN m�1.24 Our vesicles

have R0 � 20–50 mm, and the outer concentration is co � 0.1–

0.2 M. We get dN/dK � K/(R0kBTco) � 0.01–0.1. Hence, the

transition width is governed by the finite stretching modulus and

is expected, therefore, to be independent of vesicle size,

Dx

�
9

2
dK

�1=2

¼
�
9kBT

2Ka0

�1=2

: (18)

As noted above, this implies also that the stretching stage

following the transition is insensitive to the value of K, with

3(q [ D) x (2/3)q.

To further check the theoretical predictions of the preceding

section, we need to relate them to the experimental observables

demonstrated in Fig. 1—i.e., the temporal change in the principal

radius of an oblate spheroidal vesicle, R1(t).

We begin with the time axis. The membrane permeability

coefficients of the examined solutes are of the order5,13,26 P �
10�2 mm s�1 , the vesicles are of radii R0 � 20–50 mm, and the
Soft Matter, 2012, 8, 2185–2193 | 2189



Fig. 5 The experimental data of Fig. 2 replotted using the same colors

after being transformed according to eqn (20). The dashed gray line

shows the theoretical master curve, f ðxÞ ¼
	 ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ x2
p

� x

1=2

.

swelling process lasts about t � 10–100 s. We have (P/R0)t �
0.001–0.05, implying that the concentration of permeating solute

inside the vesicle never exceeds a few percent of its outer con-

centration. Hence, throughout the observed swelling we may

assume dQ/dt ¼ PA0co, leading to

q ¼ (3P/R0)t + const. (19)

Thus, the time axis, up to a linear transformation that depends

on vesicle size, is equivalent to our control parameter.

Next, we should adapt the theoretical scaling relations, eqn

(14) and (15), so that they could be applied to the measured

swelling curves, R1(t). This calculation is presented in the

Appendix. Given the experimentally measured dependence,

[R1(t)/R0]
3 � 1h gexp(t), we find that the following scale and shift

transformation:

f ðxÞ ¼ ð15D=8Þ�1=2�
gexp½x� ð151=3=4ÞD�1=3� � xD

þ 3ð151=3=4ÞD2=3
�
;

(20)

where x ¼ q/D and q ¼ (3P/R0)t, should collapse the data onto

the universal function

f ðxÞ ¼
	 ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ x2
p

� x

1=2

: (21)

The rescaling scheme defined in eqn (20), which has been

dictated by the nature of the experiment, is not as elegant as the

theoretical law of corresponding states, eqn (14). Nevertheless,

the two are equivalent and similarly straightforward. We have

applied the scheme to the data of Fig. 2 while using the perme-

ability P (which merely scales the horizontal axis) and the tran-

sition widthD as two fitting parameters. The results are presented

in Fig. 5, showing successful data collapse, within the transition

region and above it, onto the predicted universal curve, eqn (21).

Theoretically, successful data collapse is expected in the vicinity

of the transition. We obtain data collapse also above the tran-

sition, throughout the stretching stage, for technical reasons

explained in the Appendix. Below the transition (i.e., for suffi-

ciently negative x ¼ q/D), the different swelling curves in Fig. 5

depart from the universal behavior. The entropy effects respon-

sible for this departure, which set in at sufficiently low surface

tension, will be described in Sec. VI.

In Fig. 6 we present the fitted values for the POPC-

membrane permeability coefficients of the three examined

solutes. The values for the permeability of urea [Fig. 6(a)] are

narrowly distributed and concentration-independent, yielding

P ¼ 0.013 � 0.001 mm s�1. This agrees well with the result of

0.014 mm s�1, obtained for 0.1 mm-radius DOPC vesicles by

Paula et al.5 using dynamic light scattering, despite the different

phospholipid and the large difference in the sizes of the studied

systems. For glycerol we get values that significantly increase

with glycerol concentration [Fig. 6(b)]: P ¼ 0.0053, 0.0074, and

0.019 � 0.006 mm s�1 for co ¼ 0.1, 0.11, and 0.2 M, respec-

tively. The last value agrees with the value of 0.021 � 0.008 mm

s�1, extracted for the same vesicles, at co ¼ 0.2 M glycerol, from

a different analysis of the stretch–burst cycles that follow

vesicle rupture.13 A glycerol permeability of 0.027 mm s�1 was

reported for 0.1 mm-radius DOPC vesicles by Paula et al.5 and

by Dordas and Brown,26 both at co ¼ 0.4 M. These results are
2190 | Soft Matter, 2012, 8, 2185–2193
not inconsistent with ours, especially given the concentration

dependence. For ethylene glycol we obtain more broadly

distributed values that depend on concentration [Fig. 6(b)]: P ¼
0.046 � 0.006 and 0.085 � 0.01 mm s�1 for co ¼ 0.1 and 0.2 M,

respectively. The only previously measured permeability for

ethylene glycol that we are aware of is 0.88 mm s�1, obtained by

Orbach and Finkelstein27 using conductivity measurements for

a flat egg-PC membrane. This value is larger than ours by an

order of magnitude. We note, though, the very different

conditions under which the two experiments were conducted.

All permeability values reported here, including the concen-

tration-dependent ones for glycerol and ethylene glycol, are

consistent with those found from the alternative analysis of

stretch–burst cycles (unpublished results).
This journal is ª The Royal Society of Chemistry 2012



Fig. 6 Permeability coefficients as a function of outer solute concen-

tration for urea (a) and all three solutes (b). Uncertainties in individual

fitted values are smaller than the scatter for different vesicles. Filled

symbols at co ¼ 0.4 M are results for DOPC vesicles taken from ref. 5.

The lines are guides to the eye.

Fig. 7 (a) Transition width vs. vesicle radius, exhibiting no correlation

between the two variables. (b) Histogram of effective patch size values,

obtained from the measured D of panel (a) using eqn (18) and K ¼
240 mN m�1. Inset shows the resulting number of effective bending

modes vs. vesicle area.
We now turn to the second fitting parameter—the transition

width, D. It is found to lie in the range 10�3–10�2 and be

uncorrelated with the vesicle size (Fig. 7), as predicted above. The

small values of D establish the self-consistency of our analysis for

the crossover between the two swelling stages as a slightly

broadened phase transition, and thus explain the success of the

resulting data collapse. The rather broad distribution of these

values imply that the transition width is affected by a stochastic

variable. Of the three parameters appearing in eqn (18)—T, K,

and a0—only the effective patch size a0 may be responsible for

such stochasticity. In Fig. 7(b) we show the distribution of patch

sizes, as arising from eqn (18) using the measured D and K ¼
240 mN m�1. The mean patch size is a0 x 0.01 mm2, which is

much smaller than the vesicle area, but much larger than the

molecular size. Such a patch contains about 104–105 lipids. In the

inset of Fig. 7(b) we recast the same data in terms of the number

of effective bending modes, N ¼ A0/a0. The number of modes is

broadly distributed in the range 105–107, making its increasing

trend with vesicle area hardly discernible.
VI. Discussion

The experimental results presented above confirm the critical

nature of the osmotic swelling of vesicles, as was first suggested in

ref. 7. It is important to note that a similar critical scaling is

absent in the case of hydrostatic swelling, as in vesicle aspiration
This journal is ª The Royal Society of Chemistry 2012
experiments.8 To adapt our formulation to such a case we should

merely replace the solute contribution to the Gibbs free energy

(the first term in eqn (4)), with (– pinV), where pin is the inner

hydrostatic pressure. Repeating the minimization procedure

presented in Sec. IV, we find that eqn (12) remains unchanged,

while the swelling order parameter becomes

M ¼ 1� y ¼ dN

2ðpin=po � 1Þ: (22)

Thus, our formalism applies in this case only for sufficiently large

inner pressures, pin/po > 1 + dN/2 (to ensure a positive y). Similar

to q¼Q/Qc� 1, we may define a swelling control parameter, q0 ¼
pin/po � 1, yet its value is restricted to q0 > dN/2. Consequently,

eqn (22) yields a moderate decrease of M from appreciable to

small values, M � 1/q0—i.e., a gradual approach to a spherical

shape. Another way to demonstrate the non-criticality of the

hydrostatic-pressure case is to recognize that, once both po and

pin are specified, the surface tension of a nearly spherical vesicle is

simply given by Laplace’s law rather than the more elaborate

critical expressions of eqn (14)–(16). This underlines the special

thermodynamic behavior of osmotically stressed vesicles, as was

indicated before in a more general statistical-mechanical

context.28 The key difference between osmotically swollen and

directly pressurized vesicles lies in the fact that the pressure

difference of the former depends on the volume for a given

number of encapsulated solute molecules [cf. eqn (4)], whereas
Soft Matter, 2012, 8, 2185–2193 | 2191



the pressure difference of the latter is a given constraint. This

makes the statistical ensembles of (T, po,Q,N) and (T, po, pin,N)

not equivalent.28

We have shown how the data collapse for different vesicle sizes

can be utilized to obtain a sensitive measurement of the

membrane permeability coefficients of various solutes. This

ability is particularly well demonstrated in the case of urea

(Fig. 6(a)). Overall, the permeability values that we have

obtained are in accordance with previously published ones. (See

the detailed account in the preceding section and Fig. 6(b).) In

addition, we have found an increasing concentration dependence

of the permeability for glycerol and ethylene glycol. While we are

not aware of an earlier report of such an effect, it is in line with

strong evidence for the affinity of polyols to lipid headgroups29,30

and may account for the large range of values reported in the

literature for the permeability coefficients of these solutes. The

affinity should make the solute concentration adjacent to the

membrane larger than in the bulk solution, leading to an

apparent permeability coefficient which is larger than the actual

one. More extensive measurements of the apparent permeability

as a function of concentration might allow an extraction of the

solute–membrane affinity parameters. At higher concentrations

the solute may also disrupt the membrane structure, thus

affecting the actual permeability31 and possibly other membrane

properties.32

The transition width, and the corresponding effective

membrane patch a0, have been found to be broadly distributed

(Fig. 7). The origin of this stochasticity is not yet clear. It may be

that a0 is sensitive to the presence of membrane impurities.

Nevertheless, the analysis of transition widths has enabled us to

obtain information regarding the number of independent

bending modes, N, which contribute to the thermodynamics of

the vesicle in the transition region. To our knowledge this vari-

able has not been experimentally accessed before. For the vesicles

used here, having R0 x 20–50 mm, we have found numbers N �
105–107, which are large but much smaller than the number of

lipid molecules in the vesicle (about 1010).

To account for these intermediate values of N we should link

our thermodynamic formulation to the more detailed statistical

mechanics of fluctuating vesicles. The definition of N in Sec. IV

has been through the surface entropy of a nearly spherical

vesicle, eqn (7), where each of the N modes contributes an equal

amount of (kBT/2)| ln(1� y)| to the free energy.7 Examining more

closely the partition function of a fluctuating vesicle within

Helfrich’s model,10 we find that these modes, whose contribution

is singular in (1 � y), belong to the small-wavenumber (tension-

dominated) portion of the fluctuation spectrum. Their number is

N x gR2
0/k, (23)

where k is the membrane’s bending rigidity. Eqn (15), (16), and

(23) then allow a theoretical estimate of N. At the transition we

have g x (2/3)KD ~M(�1) (cf. Fig. 5), which for24 K x
240 mN m�1 and D x 0.004 (Fig. 7(a)) yields g x 0.8 mN m�1.

This value of about 1 mN m�1 is in line with that obtained for

nearly spherical vesicles in aspiration experiments.8 Substituting

it, together with24 k x 10kBT (24) and R0 x 20–50 mm, in

eqn (23), we get N � 107, which is in the range of values that we

have found experimentally.
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Eqn (23) implies, in fact, that N is not constant but increases

with the degree of swelling (i.e., with g). Hence, sufficiently far

below the transition g will be too small, and the theory should

fail. (Far beyond the transition, on the other hand, the behavior

is dominated by surface strain and unaffected by these entropy

considerations.) Combining eqn (16) and (23), we find that the

theory should break down for M T 3kBT/(16pk) x 0.006. With

D x 0.004 this occurs for x ( �1.3, which is consistent with the

region where the data collapse begins to fail (see Fig. 5).

Thus, the assumption of a swelling-independent N is the main

limitation of the model and should be improved in future studies.

Other assumptions are less significant. For example, the relaxed

area of the vesicle,A0, is actually slightly smaller than the assumed

value of 4pRmin
2, where Rmin is the minimum of the experimental

R1(t) curve. The calculation given in the Appendix implies that

R0/Rmin x 1 � (151/3/4)D2/3. For our broadest transitions this

deviation amounts to less than 3%.As shown inRef. 7, accounting

for additional factors such as a non-ideal solute does not affect the

universal behavior in the vicinity of the transition.

Appendix

In this appendix we adapt the theoretical scaling relation

obtained in Sec. IV to the observables in the experimental

swelling curves. The result is the scaling transformation that

should be applied to the experimental data to achieve data

collapse.

Consider an oblate spheroid of principal radii R1 and R2 < R1,

and small eccentricity e¼ [1� (R2/R1)
2]1/2� 1. The volume of the

spheroid is V¼ (4p/3)R1
2R2, and its area is A¼ p{2R1

2 + (R2
2/e)

ln [(1 + e)/(1 � e)]}. From this we get y x 1 � e4/15 + O(e6),

leading to e2 x (15M)1/2 + O(M), and R2/R1 ¼ (1 � e2)1/2 x 1 �
(15M)1/2/2 + O(M). Now we have, on the one hand, y/y0 ¼
(A/A0)

3/2y ¼ (1 + 3)3/2y, and, on the other hand, y/y0 ¼
(R1/R0)

3(R2/R1). Equating these two expressions while using the

result above for R2/R1, we obtain

(R1/R0)
3 � 1 x (15M)1/2/2 + 33/2. (A1)

The correction to this expression is O(M). In the transition

region this correction, as well as 3, are negligible (�D) compared

to theM1/2 term (�D1/2). Above the transition, at the point where

3 becomes comparable to M1/2, we find 3 � M1/2 � D2/3, whereas

M � D4/3. Thus, eqn (A1) contains the leading terms within the

transition region as well as above it. Using eqn (14), (15), and the

property ~M(�x) ¼ ~M(x) + x, we rewrite eqn (A1) as

ðR1=R0Þ3 � 1x ð15D=8Þ 1=2
f ðq=DÞ þ q

f ðxÞ ¼
	 ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ x2
p

� x

1=2

; (A2)

where we have omitted another term of order M and also the

ratio dN/dK.

Eqn (A2), as required, contains the experimental observable

R1/R0 rather than our order parameter M. Yet, we need to take

one last step before we can apply it to the experimental data. The

expression in eqn (A2) has a minimum at [q x (151/3/4)D2/3,

(R1/R0)
3�1 x 3(151/3/4)D2/3], which is shifted from the one that

we have defined for the experimental curve, [q¼ 0, (R1/R0)
3� 1¼

0] (cf. Fig. 1). In other words, the actual relaxed radius is slightly
This journal is ª The Royal Society of Chemistry 2012



shifted from the minimum of the measured swelling curve. To

correct for this �D2/3 error, we ought to shift the experimental

curves accordingly. If [R1(t)/R0]
3 � 1 ¼ gexp(t) is the measured

dependence, as a function of q, then the following scaling and

shifting transformation,

f ðxÞ ¼ ð15D=8Þ�1=2
n
gexp

�
x� ð151=3=4ÞD�1=3

�� xD

þ 3ð151=3=4ÞD2=3
o

x ¼ q=D; q ¼ ð3P=R0Þt;

(A3)

should collapse the data onto the universal function f(x) defined

in eqn (A2). This is the transformation used in Sec. V.
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