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Inspired by recent experiments, we present a phase-field model of microphase separation in an elastomer
swollen with a solvent. The imbalance between the molecular scale of demixing and the mesoscopic scale
beyond which elasticity operates produces effective long-range interactions, forming stable finite-sized
domains. Our predictions concerning the dependence of the domain size and transition temperature on the
stiffness of the elastomer are in good agreement with the experiments. Analytical phase diagrams, aided by
numerical findings, capture the richness of the microphase morphologies, paving the way to create stable,
patterned elastomers for various applications.
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Introduction—The interplay between elasticity and
phase separation has been widely explored in various
contexts since Cahn’s classic work from the 1960s on
spinodal decomposition [1]. For example, a mismatch in
the constituents’ elastic moduli in metallic alloys can either
hinder or speed up phase separation [2]. Similarly, elasticity
regulates the morphology of the phase-separated domains
in gels [3–5] and liquid-crystalline fluids [6], which can
lead to intricate patterns. Besides, mounting evidence
now indicates that phase separation and elasticity are both
crucial to the development of many membraneless organ-
elles within biological cells, rekindling interest in the
topic [7–11]. To sidestep the complexities of the biological
world, several experiments have been conducted with syn-
thetic, in vitromodel systems in the past few years [12–16].
The results of these experiments, along with related theo-
retical work [17–23], once again emphasize the influence
of elasticity on phase separation in soft matter systems.
A recent experiment showed elasticity-controlled micro-

phase separation to be a highly effective technique for
generating patterned elastomers with complex morpholo-
gies [24]. In the study, a temperature quench is used to
trigger microphase separation in elastomers swollen with a
solvent. The results are reminiscent of older observations of
phase separation and critical density fluctuations in swollen
gels as the temperature is lowered [25–28]. In the new
experiments, however, the elastomer does not fully phase
separate from the solvent, and instead forms stable bicon-
tinuous microstructures or droplets whose sizes are deter-
mined by the stiffness of the elastomer. This microphase
separation plausibly arises because of a pronounced differ-
ence in the length scales at which thermodynamics and

elasticity operate [24]. This is unlike previous examples,
where patterned phases were primarily seen in systems with
anisotropic elasticity or external stresses [29] or involving
nontrivial phenomena such as cavitation [18,30].
In this Letter, we introduce a phase-field model that

captures the key features of microphase separation in
swollen elastomers in the limit of weak segregation.
Recent theoretical work [31], also inspired by the afore-
mentioned experiments, has demonstrated that the length-
scale discrepancy between elasticity and thermodynamics
in elastomers can be resolved using nonlocal theories of
elasticity [32–34]. Nonlocal approaches have also been
employed in other systems with scale-dependent phenom-
ena, such as certain porous materials [35] and DNA
elasticity [36].
The stiffness of elastomers arise primarily due to strain-

induced changes in the configurational entropy of polymer
chains [37–39]. Our scaling results for the domain size and
microphase separation temperature, obtained by using
results from rubber (entropic) elasticity and incorporating
nonlocal effects, agree with the experimental observations.
We also highlight the diversity of the microphase mor-
phologies by constructing a phase diagram and supple-
menting it with numerical results. Put together, our findings
underscore an intricate coupling between thermodynamics
and elasticity, opening up novel ways to produce pattern-
able materials for various purposes.
Model—We consider a charge-neutral elastomer consist-

ing of a cross-linked polymer network isotropically swollen
with a solvent. Polymer-solvent interaction occurs over
typical intermolecular distances (e.g., the size of the solvent
molecules). On the other hand, the elastic response of the
elastomer stems entirely from the underlying polymer
network, which has a much larger, usually mesoscopic,
characteristic length scale (Fig. 1). Deformations of the*Contact author: manu.mannattil@posteo.net
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elastomer occurring below this length scale should not
engender a significant elastic response. Elastomers can
undergo large deformations during swelling, and they are
customarily studied using nonlinear elasticity [40].
However, once the elastomer is completely swollen, further
elastic deformations are well described using linear elas-
ticity in terms of a three-dimensional (3D) displacement
field uðxÞ defined over points x on the elastomer [41]. The
resulting strain field is ε ¼ 1

2
½∇uþ ð∇uÞT�, with ð∇uÞT

being the transpose of ∇u.
For a precise description of thermodynamic interactions

caused by compositional changes in the elastomer, the
continuum fields u and εmust both be defined at molecular
length scales. However, only those deformations occurring
above a much larger length scale stress the elastomer
substantially. To address this, we consider a constitutive
stress-strain relationship of the form

σðεÞ ¼ λðtr ε̄Þ1þ 2με̄; ð1Þ

where λ and μ are the Lamé parameters, 1 is the 3 × 3
identity matrix, and tr ε̄ denotes the trace of a coarse-
grained strain ε̄, defined by

ε̄ðxÞ ¼
Z

d3x0Khðx − x0Þεðx0Þ: ð2Þ

Here Khðx − x0Þ is an isotropic, scalar kernel that depends
only on the distance jx − x0j between two points x; x0 in
space. For concreteness, we use a normalized Gaussian
kernel KhðxÞ ¼ ð4πh2Þ−3=2e−jxj2=ð4h2Þ, with h being a
suitable mesoscopic length scale that controls the extent
of coarse-graining. Nonetheless, as we demonstrate in
Supplemental Material (SM) [42], our results are indepen-
dent of our choice for this kernel.
The stress σ computed using Eqs. (1) and (2) models the

correct elastic response of the elastomer, while simulta-
neously allowing us to use the strain ε to capture composi-
tional changes at molecular length scales. This model is a
particular instance of the Eringen framework [32–34] of
nonlocal elasticity, and it leads to an elastic energy density

wðεÞ of the form

wðεÞ ¼ λ

2
ðtr εÞðtr ε̄Þ þ μtr ðεε̄Þ; ð3Þ

obtained by contracting the strain ε with the stress σ in
Eq. (1) expressed in terms of ε̄. As the kernel Kh is positive
definite and normalized, wðεÞ remains positive, bounded
from below, and reduces to the usual Hookean energy
density in the limit h → 0.
Let the elastomer be isotropically swollen initially at a

temperature T with a constant volume fraction ϕ0 of the
polymer network. Compositional changes that occur as the
temperature is lowered cause the local network volume
fraction ϕðxÞ at a point x to deviate from ϕ0. The grand-
canonical free energy of the elastomer is then given by

F ½ψ ; ε� ¼
Z

d3x

�
fðψÞ þ 1

2
κj∇ψ j2 þ wðεÞ − ηψ

�
: ð4Þ

Here we have defined the order parameter (phase field)
ψðxÞ ¼ ϕðxÞ − ϕ� assuming that the homogeneous system
has a “critical” point ðϕ�; T�Þ, and take the free-energy
density fðψÞ to be in a Landau form

fðψÞ ¼ 1

2
aðT − T�Þψ2 þ 1

4
bψ4; ð5Þ

with a and b being positive phenomenological constants.
Contributions from polymer-solvent mixing are included in
this phenomenological fðψÞ, with the ψ4 term playing an
additional role in stabilizing phase separation. For polymer
networks cross-linked in solution, the critical temperature
T� is likely to be close to the theta temperature before
cross-linking [69]. Similar free-energy densities have been
used to model swelling and deswelling of gels [70–73].
Also included in Eq. (4) is the elastic energy density wðεÞ
and a gradient-squared term with an interfacial parameter
κ > 0 to penalize spatial variations in ψ . Finally, η is a
Lagrange multiplier to constrain the mean value of ψ to
ψ0 ¼ ϕ0 − ϕ�, thereby conserving the total volume of the
polymer network.
For small deformations of the elastomer close to the

critical point, the strain ε and the order parameter ψ are
related by a material conservation relation (SM [42]),

tr ε ¼ ∇·u ≈ −ϕ�−1ψ : ð6Þ

Compositional changes in the polymer volume fraction
during temperature quenches arise primarily via solvent
diffusion. This allows us to disregard shear deformations
and use Eqs. (3) and (6) to write the total elastic energy as a
binary interaction in ψ mediated by the coarse-graining
kernel Kh.
For linear stability analysis of Eq. (4), we express

the order parameter ψðxÞ and the kernel KhðxÞ in terms

FIG. 1. Displacements uðxÞ occurring below a characteristic
length scale h do not stress the elastomer significantly. Using a
coarse-grained strain field ε̄, such displacements are “blurred
away” and filtered out. In our model, we choose h as a multiple
nξ of the end-to-end distance ξ between adjacent cross-links of
the polymeric network within the elastomer.
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of their Fourier transforms, ψq ¼
R
d3x e−iq·xψðxÞ and

KhðqÞ ¼ e−h
2q2 . Upon expressing the quadratic part of

the total free energy in Fourier space, we find (SM [42])

F ½ψ � ¼ 1

2

Z
d3q
ð2πÞ3ψ−qFqψqþ

Z
d3x

�
1

4
bψ4 − ηψ

�
; ð7Þ

where Fq is the Fourier transform of the effective binary
interaction for ψ given by

Fq ¼ aðT − T�Þ þ κq2 þMe−h
2q2 : ð8Þ

Here q ¼ jqj and M ¼ ðλþ 2μÞ=ϕ�2 is the rescaled longi-
tudinal modulus [74,75] of the swollen elastomer.
The second term in Eq. (8), which favors long-range

(small q) modulations in ψ , measures the energy cost to
create interfaces. Meanwhile, the elastic term Me−h

2q2

favors short-range (large q) modulations. Hence, we
expect the emergence of a stable, spatially modulated
phase at an intermediate length scale, provided that the
elastic term is adequately large. The characteristic size of
the modulated phase scales as Λ ∼ 2πqm−1, where qm is the
wave number at which Fq acquires its minimum. From
Eq. (8), we see that Fq has a minimum at a nonzero qm
given by

q2m ¼ h−2 ln γ; ð9Þ

only if the dimensionless parameter γ ¼ Mh2=κ > 1. The
parameter γ, which measures the relative importance of
elastic and interfacial effects, is analogous to the (inverse)
elastocapillary number [20,76] and the Lifshitz point [77]
of Eq. (7) is located at γ ¼ 1 (SM [42]). If the elastic energy
cost exceeds the cost to form interfaces (γ > 1), the system
can minimize its total energy by creating many stable,
finite-sized domains, resulting in microphase separation.
Note that if h ¼ 0 in Eq. (2) and the system exhibits a local
elastic response, we can recover known results for swollen
polymer networks from the free energy in Eq. (7), such as
the onset of spinodal decomposition at temperatures where
the osmotic longitudinal modulus vanishes, negative
Poisson’s ratio, etc. [78] (SM [42]).
During a temperature quench from the uniform phase

with ψðxÞ ¼ ψ0, the onset of microphase separation
is indicated by linear instability in the order-parameter
fluctuations. Upon expressing ψðxÞ ¼ ψ0 þ δψðxÞ and
expanding the free energy in Eq. (7) up to Oðδψ2Þ in
the fluctuations δψðxÞ, we determine that the instability
arises at a temperature where Fq ¼ −3bψ0

2 and q ¼ qm.
This provides an estimate for the temperature Tmicro at
which microphase separation begins, which we find to be

Tmicroðψ0Þ ¼ T� − a−1
�
3bψ0

2 þMγ−1ð1þ ln γÞ�: ð10Þ

Clearly, Tmicro decreases linearly with the modulus M,
showing that deeper temperature quenches are required to
induce microphase separation in stiffer elastomers.
Comparison to experiments—Polydimethylsiloxane

(PDMS) elastomers, such as the ones used in the experi-
ments in Ref. [24], are susceptible to chain entanglement
effects that can alter their elastic response substantially,
particularly at low crosslink densities [79–82]. However,
based on the observed variation of the Young’s modulus
with cross-link density (detailed in the SM [42]), we judge
entanglement effects to be negligible, enabling us to use
classical rubber elasticity theory in our analysis.
Apart from the intermolecular distance, a relevant length

scale in elastomers is the root-mean-square end-to-end
distance ξ of the strands between adjacent cross-links in the
polymer network [83–86] (Fig. 1). Taking each strand to be
a freely jointed chain with a Flory ratio C∞ [37], composed
of N repeat units of length l, we have ξ2 ∼ 1

2
C∞Nl2

[38,86]. Here the factor of 1
2
is an estimate assuming the

network junctions have tetrafunctional connectivity. If the
strands and the repeat units have molecular masses ms and
mr, respectively, then N ¼ ms=mr. Assuming that the
elastomer has a mass density ρ, its Young’s modulus in
the dry state is Y ¼ 3ρkBT=2ms [39]. Using this expression
to writems and N in terms of Y, we find that the end-to-end
distance scales as [84,85]

ξ ∼ ð3B=YÞ1=2; ð11Þ
where B ¼ C∞ρl2kBT=ð4mrÞ is a material-dependent
parameter, with kB being the Boltzmann constant. See
SM [42] for further details. For PDMS elastomers we find
B ¼ 0.006 kPa μm2, which gives ξ ∼ 5 − 50 nm for the
experimental range of Y ∼ 10 − 800 kPa. Compared to ξ,
the intermolecular length scale (∼l) is of the order of a few
Å. The polymer network within the elastomer can be treated
as an elastic continuum only at length scales much larger
than ξ, but proportional to it. For this reason, we take the
coarse-graining length scale to be h ¼ nξ. Here, the phe-
nomenological factor n can be interpreted as the average
number of crosslinks we coarse grain over in each direction
(Fig. 1). Its value depends on the kernel used in Eq. (2), with
wider, long-range kernels giving smaller values for n.
In order to estimate the domain size Λ of the micro-

phases, we note that the rescaled longitudinal modulus M
of a swollen elastomer is related to its dry Young’s modulus
Y via M ∼ 1

3
ϕ�−5=3Y [28,42]. Interface formation occurs at

intermolecular length scales, so we estimate the interfacial
parameter as κ ∼ kBT=l [87]. With the choice h ¼ nξ, the
parameter γ is independent of Y, and using Eqs. (9) and (11)
we find the scaling

Λ ∼ 2π

"
3Bn2

Y ln
�
Bn2κ−1ϕ−5=3

�
	
#
1=2

: ð12Þ
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The scaling Λ ∼ Y−1=2 above is markedly different from
what one would expect on dimensional grounds alone (the
so-called rheological mesh size of polymer networks that
scales as ðkBT=YÞ1=3 [88,89]). In Fig. 2(a), we compare the
experimental results and Eq. (12) and find good agreement
between the two. Furthermore, as we see from Fig. 2(b),
the microphase separation temperature Tmicro linearly
decreases with Y, which is consistent with the prediction
of Eq. (10). Using the Tmicro data, one can estimate the
parameters ðϕ�; T�Þ appearing in Eq. (5). We show in the
SM [42] that these scalings for Λ and Tmicro are agnostic to
the choice of the kernel Kh in Eq. (2).
Close to the critical point, the microphase domain

boundaries are diffuse (weak segregation), and they are
well approximated as modulations in the order parameter ψ
with a wave number q ¼ qm [90,91]. A phase diagram in
the ðϕ0; TÞ plane constructed using this one-mode approxi-
mation is presented in Fig. 3(a), with the analytical steps
detailed in SM [42]. For simplicity, we have only examined
2D modulations in the phase diagram. Nonetheless, it
shows excellent agreement with the equilibrium phases
found by numerically minimizing the free energy in 3D
[Figs. 3(b) and 3(c)]. Near the critical point, there are three
distinct phases: a uniform phase, a droplet (hexagonal)
phase consisting of solvent-rich droplets embedded within
the elastomer, and a stripe phase composed of alternating
solvent-rich and solvent-deficient layers. An “inverted”
droplet phase also appears at low ϕ0.
In Fig. 3(a), the first-order phase-transition curves that

divide the different phases converge at a critical point T 0�,
where a second-order transition between the uniform and
the stripe phase is possible. The phase diagram has the

same topology as phase diagrams for block copolymers
[92,93] and other systems displaying modulated phases
[94–97], which are often characterized by a Landau–
Brazovskii free energy. We show in SM [42] that the free
energy in Eq. (7) can be simplified to this form, explaining
the generic nature of the phase diagram, which also has
regions of phase coexistence [42]. However, for the
experimental parameter ranges used here, the widths of
these regions are very small, and therefore are not depicted.
The absence of substantial regions of phase coexistence
may account for the apparent lack of hysteresis seen in the
experiments [24].
The phase diagram in Fig. 3(a) shows good agreement

with the experimental results and predicts the onset of
microphase separation well. Experimentally, droplets are
seen in soft elastomers with Y ≲ 40 kPa. Only bicontin-
uous structures (different from stripes and droplets) are
observed in stiffer elastomers. However, because of the
generic topology of the theoretical phase diagram, irre-
spective of the stiffness, we expect the droplet phase to
always appear first during an off-critical temperature

(a) (b)

FIG. 2. (a) Domain size Λ as a function of the Young’s modulus
Y of the dry elastomer (log-log plot). The circles indicate
experimental values of Λ for PDMS elastomers from Ref. [24],
showing the scaling Λ ∼ Y−1=2. The dashed line represents the
prediction from Eq. (12) with κ ¼ 0.013 kPa μm2 and fitting
parameters n ¼ 110, ϕ� ¼ 0.2. (b) Decrease in the microphase
separation temperature Tmicro with Y. The circles show the
experimental values of Tmicro for an initial swelling temperature
of 60 °C [24]. The crosses represent Tmicro estimated from
Eq. (10) using experimental values of the mean polymer volume
fraction ϕ0, with the dashed guideline illustrating the
inearity between Tmicro and Y. Other fitting parameters are
a ¼ 0.025 kPaK−1, b ¼ 2 kPa, and T� ¼ 70 °C.

(a)

(b) (c)

FIG. 3. (a) Phase diagram in the ðϕ0; TÞ plane for an elastomer
with a dry Young’s modulus Y ¼ 800 kPa. Here T is the
temperature, and ϕ0 is the mean polymer volume fraction. Other
parameters are the same as in Fig. 2. The solid curves show the
phase boundaries (binodals). Phase coexistence regions are not
depicted as they are very narrow. The dashed curve depicts the
microphase separation temperature TmicroðψÞ from Eq. (10) with
a shifted critical temperature T 0� ¼ Tmicroð0Þ. The open circles
represent experimental results from Ref. [24]. (b),(c) Equilibrium
morphologies of the elastomer obtained by numerically mini-
mizing the free energy, Eq. (7), with the corresponding ðϕ0; TÞ
values marked in (a). Solvent-rich (ϕ < ϕ0) and solvent-deficient
(ϕ > ϕ0) regions are highlighted in red and blue, respectively.
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quench. This suggests that some other mechanism is
responsible for the emergence of bicontinuous structures
in stiffer samples, e.g., shear deformations or nonlinear
effects, which we have neglected. Further consistency with
experiments is seen upon examining the static structure
factor, found using Eq. (7) as SðqÞ ∼ F−1

q . It peaks at
q ¼ qm, given in Eq. (9), and explains the smooth increase
of the scattering intensity at a fixed q during a temperature
quench as seen in the experiments (SM [42]).
Summary and outlook—Using a phase-field model for

swollen elastomers, we have predicted the possibility of a
microphase separation arising from an imbalance between
the intermolecular length scale and the mesoscopic coarse-
ness of network elasticity. The elastomer remains stable with
an intrinsically selected length scale if the free-energy
contribution from the network elasticity is adequately large
compared to the interfacial energy costs. Our scaling predic-
tions for the domain size Λ and the microphase separation
temperature Tmicro as a function of the elastic moduli are
consistent with recent experimental observations [24].
As the number of repeat units N between the crosslinks

follows the scaling N ∼ Y−1, we find Λ ∼ N1=2 and a linear
dependence between Tmicro and N−1. Intriguingly, similar
scaling behaviors have been experimentally observed in
crosslinked polymer blends [98,99] and were predicted
earlier by de Gennes [100] using a phenomenological
model that draws an analogy to electrostatics. The sim-
ilarity in the scaling suggests that the internal elastic
response of these blends may be nonlocal.
Our use of nonlocal elasticity was motivated by a recent

theoretical study [31] inspired by the same experiments on
elastomers. In this study, a one-dimensional (1D) nonlocal
model was used to obtain the scaling Λ ∼ Y−1=2h1=2κ1=4

in the strong-segregation limit, taking the nonlocality scale
h and the Young’s modulus Y to be independent.
This scaling is different from our 3D result for weak
segregation, Eq. (12), which also takes into account the
inter-dependence of h and Y, incorporating results from
rubber elasticity. Furthermore, our model predicts a first-
order transition from the uniform phase to various patterned
phases. Conversely, in the 1D nonlocal model, a line of
second-order transitions was predicted for large Y based
on detailed numerical analyses [31]. Differences in the
dimensionalities of the two models may explain this
discrepancy (SM [42]).
Microphase separation in elastomers closely resembles

that in block copolymers and other systems exhibiting
modulated phases [90]. As we discuss in SM [42], we
expect it to be a rich source of related phenomena such as
fluctuation-induced first-order transitions [93,101], Lifshitz
behavior [102,103], microemulsion phases, etc. [104,105].
Other experimentally relevant theoretical questions
include the kinetics of phase separation [70,106], effect
of quenched impurities and network heterogeneities
[107–109], volume phase transitions [110,111], etc.

Finally, extensions of our theory to ternary systems in
the strong segregation regime could help elucidate the non-
power-law scaling of the domain size observed in earlier
experiments [12].
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