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We study the overdamped sedimentation of non-Brownian objects of irregular shape using fluctuating
hydrodynamics. The anisotropic response of the objects to flow, caused by their tendency to align with
gravity, directly suppresses concentration and velocity fluctuations. This allows the suspension to avoid the
anomalous fluctuations predicted for suspensions of symmetric spheroids. The suppression of concen-
tration fluctuations leads to a correlated, hyperuniform structure. For certain object shapes, the anisotropic
response may act in the opposite direction, destabilizing uniform sedimentation.
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Sedimentation, the settling of colloidal objects under
gravity, is a fundamental and ubiquitous physical process
whose details are still under debate (see the reviews in
Refs. [1,2]). The related process of bed fluidization is
widely used in reactors, filtration, and water treatment [3].
Long-range hydrodynamic correlations among settling
objects lead to complex many-body dynamics, exhibiting
strong fluctuations and large-scale dynamic structures even
for athermal (non-Brownian) objects with negligible inertia
[4–7]. One of the key issues is the extent of velocity
fluctuations of the sedimenting objects about their mean
settling velocity. A famous prediction by Caflisch and
Luke [8] stated that the magnitude of the velocity fluctua-
tions of individual objects should diverge with system size.
Over the years there has been evidence from theory and
simulations both in favor of [9–14] and against [1,15–17]
this prediction. Experimentally, the indefinite growth of
velocity fluctuations with system size has not been
observed [5,6].
To resolve the Caflisch-Luke paradox, several screening

mechanisms have been suggested: a characteristic screen-
ing length emerging from correlations between concen-
tration fluctuations (the structure factor of the suspension)
[15], e.g., as a result of stratification [14,18], inertial effects
[17], side-wall effects [17]; and noise-induced concentra-
tion fluctuations [1,16].
Earlier theories have considered symmetric objects,mostly

spheres. Spheroids [19,20], rodlike objects [21–27], and
permeable spheres [28] were studied as well. In various
scenarios, including applications involving fluidizedbeds, the
suspensions contain objects of asymmetric shapes. In the
present work we address the sedimentation of a large class of
irregular objects that are self-aligning [29]. Under gravity, in
addition to settling, such an individual object aligns an

eigendirection with the driving force. This should be dis-
tinguished from symmetric objects like rods, which align
with flow lines [19,23] rather than with an external force of
fixed direction. In general, these objects are chiral and thus
also rotate about the force direction in a preferred sense of
rotation. Both the eigendirection and angular velocity are
determined by the object’s geometry and mass distribution
[29]. The hydrodynamic pair interactions between self-
aligning objects have been studied in Refs. [30,31]. Unlike
spheres, the objects respond anisotropically to nonuniform
flow. This fact, as shown below, suppresses fluctuations for
arbitrarily weak inhomogeneity (unlike the case of spheres
studied in Ref. [16]).
We begin with a qualitative description of the effects

studied here.Consider a suspension of objects sedimenting in
a viscous fluid of viscosity η under a force F in the −z
direction. The mean concentration is c0. Let us imagine a
sinusoidal variation cðxÞ about c0, of wavelength λ, in the
transverse x direction, creating vertical slabs of heavier
and lighter weights. This creates a velocity variation UðxÞ.
To find the amplitude of this variation we balance the change
ingravitational forcewith the change inviscous drag (per unit
area of the slab), cλF ∼ ηU=λ, resulting inU ∼ cλ2F=η. This
indefinite increase of U with λ is a manifestation of the
Caflisch-Luke problem. The relative velocity of the slabs
creates a vorticityω of orderU=λ ∼ cλF=η. For spheres, this
vorticity merely rotates the objects. Self-aligning objects, by
contrast, are tilted away from their aligned state. Their
misalignment, proportional to ω, makes them glide in the
x direction with velocity U⊥ ∼ γacλF=η, where a is the size
of the object and γ a proportionality coefficient. The time
derivative of concentration, arising from the gradient of flux,
reads _c ∼ −c0U⊥=λ ¼ −ðγac0F=ηÞc. Now, if the coefficient
γ is positive, the response suppresses the inhomogeneity,
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whereas if it is negative the inhomogeneity is enhanced. This
is a mechanism of either screening or instability. In addition,
the independence of the last relationon λ implies (for γ > 0) a
nondiffusive fast relaxation over large length scales. As
shownbelow, this leads to a hyperuniformdynamic structure.
By equating the diffusive and nondiffusive relaxation rates of
a slab, Dλ−2 ¼ γac0F=η, where D is the hydrodynamic
diffusion coefficient, we find a typical wavelength above
which hyperuniformity sets in, ξ ¼ ½γac0F=ðηDÞ�−1=2. Note
that the mechanism just described does not work for
concentration variations in the z direction [32].
To study these effects in more detail we use the

framework of fluctuating hydrodynamics. Similar con-
tinuum approaches were used for spheres by Levine,
Ramaswamy, Frey, and Bruinsma (LRFB) [16], and by
Mucha et al. [14]. We consider an athermal inertialess
suspension. The system depends on the following parame-
ters: the gravitational force on a single object F, the solvent
viscosity η, the characteristic size of the objects a, and
the mean concentration of objects c0. In addition, a self-
aligning object has an alignability parameter α, giving the
slowest relaxation rate of a misaligned orientation toward
alignment, τ−1align ¼ αF=ðηa2Þ [29]. This parameter is deriv-
able from the object’s shape and mass distribution alone.
The stochastic response of the suspension is characterized

by a phenomenological diffusion coefficientD,measurable in
experiments [4], and fluctuating object fluxes fðr; tÞ, treated
as a Gaussian white noise with variance hfiðr; tÞfjðr0; t0Þi ¼
2c0Nδijδðr − r0Þδðt − t0Þ [1,16]. The parameters D and N,
which originate in the complex many-body interactions
excited by the forceF at eachobject, are in general anisotropic
[4,16,33]. Yet, unlike the LRFB model, the effects discussed
below do not depend crucially on this anisotropy; we there-
fore neglect it for the sake of simplicity. In addition,
D may depend on the volume fraction due to shear-induced
diffusion [34]. As this dependence was experimentally
found to be weak [4,33], we neglect it as well.
We employ the following three additional assumptions.

(1) The suspension is dilute, having a volume fractionφ ≪ 1,
such that direct interactions between the objects are negli-
gible, and the hydrodynamic interaction is well described by
its two leading multipoles. (2) The suspension is non-
Brownian, i.e., the thermal Péclet number Fa=ðkBTÞ ≫ 1,
where kBT is the thermal energy. However, there is no
restriction on the sedimentation Péclet number, defined as
Pe≡ F=ðηDÞ. (3)We assume strong alignability, i.e., that the
rate of alignment, τ−1align, is much faster than the interaction-

induced vorticityω ∼ 1=ðηl2Þ, where l ∼ aφ−1=3 is the typical
distance between objects. The resulting criterion α ≫ φ2=3

improves with dilution.
The advection-diffusion equation for the fluctuations of

object concentration about c0, cðr; tÞ, reads

∂tcþ∇ · ½ðcþ c0ÞU� ¼ D∇2cþ∇ · f; ð1Þ

where U is the objects’ velocity fluctuation field about the
mean settling velocity. The velocity fluctuation of the fluid
surrounding the objects, vðr; tÞ, is described by an incom-
pressible, overdamped Stokes flow, with force monopoles
originating from concentration fluctuations [35],

viðr; tÞ ¼
Z

d3r0Gijðr − r0Þcðr0; tÞFjðr0Þ þOðaÞ

¼ −F
Z

d3r0Gizðr − r0Þcðr0; tÞ þOðaÞ: ð2Þ

Here, GijðrÞ ¼ ð8πηrÞ−1ðδij þ rirj=r2Þ is the Green’s
function of Stokes flow (the Oseen tensor) [36].
A pointlike object (a → 0) is merely advected by the

flow, i.e., U ¼ v. However, for nonzero a the two velocities
do not coincide. To leading order in a they are bound to
satisfy a relation of the form

Ui ¼ vi þ aΦikj∂jvk þOða2Þ: ð3Þ
The constant tensorΦ depends on the objects’ orientations
and shapes, and is assumed to be independent of c [37]. The
difference between U and v, and the fact that the effective
response Φ is anisotropic, lead to a new advective term in
Eq. (1), which corresponds to an object flux with nonzero
divergence, ∂iUi ¼ aΦikj∂i∂jvk þOða2Þ ≠ 0. The second
term in Eq. (3) is at the core of the present theory; the
existence of asymmetry in Φikj, demanded phenomeno-
logically for self-aligning objects, entails the effects
described below [for spheres the second term in Eq. (3)
vanishes, and the higher-order terms are divergenceless].
The anisotropic response has two contributions: one from a
direct translational response to shear flow, and the other due
to the object’s gliding response mentioned above [38].
We proceed by substituting Eqs. (2) and (3) into Eq. (1)

and Fourier transforming the resulting equation [ðr; tÞ →
ðq;ωÞ]. This leads to

− iω~cðq;ωÞ þ c0aF
η

�
γ
q2⊥
q2

þ γ̄
q4⊥
q4

�
~cðq;ωÞ

þ iF
Z

qi ~Gi3ðq0Þ~cðq − q0;ω − ω0Þ~cðq0;ω0Þd3q0dω0

¼ −Dq2 ~cðq;ωÞ − iq · ~fðq;ωÞ; ð4Þ
where we used the fact that q0i ~Gijðq0Þ ¼ 0. We denote
by ⊥ the horizontal components (x, y) of a vector. The
coefficients γ and γ̄ are effective response parameters
resulting from the response tensor Φ (specifically,
γ¼Φzzz−Φz⊥⊥−Φ⊥⊥z, γ̄¼Φ⊥⊥zþΦ⊥z⊥þΦz⊥⊥−Φzzz).
The second term in Eq. (4) corresponds to linear screening,
which is nonzero for any wave vector q ∦ ẑ. This term
makes a simple perturbation theory in small concentration
fluctuations valid, allowing us to neglect the third, non-
linear term that underlies the LRFB model. In addition,
to facilitate the analysis, we omit the term proportional
to γ̄, which does not affect the following calculations. We
thus have
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− iω~cðq;ωÞ þ γ
c0aF
η

q2⊥
q2

~cðq;ωÞ

¼ −Dq2 ~cðq;ωÞ − iq · ~fðq;ωÞ: ð5Þ
By equating the diffusive and screening terms in Eq. (5),
we obtain the characteristic length that we qualitatively
inferred above

ξ ¼
�
γc0aF
ηD

�
−1=2

¼ aγ−1=2φ−1=2Pe−1=2: ð6Þ

Results.—We now summarize the main results, which
are readily obtained from Eqs. (2)–(5). We begin with the
expressions for the concentration and velocity correlation
functions at steady state (ω → 0):

SðqÞ ¼ h~cðq; 0Þ~cð−q; 0Þi ¼ N
D

q2

q2 þ ξ−2ðq⊥=qÞ2
; ð7Þ

h ~Uiðq; 0Þ ~Ujð−q; 0Þi ¼
NF2

D

~GizðqÞ ~Gjzð−qÞq2
q2 þ ξ−2ðq⊥=qÞ2

; ð8Þ

where SðqÞ is the static structure factor of the suspension.
Figure 1(a) shows SðqÞ along different directions of q. The
structure factor decays to zero at small q, as q2, in all
directions except ẑ, where it is a constant at small q. Next,
the velocity point-correlation functions are obtained by
inverting back to real space and taking the limit r → 0,

hU2
zð0Þi ¼ 6hU2⊥ð0Þi ¼

3

64
φ
N
D
ξ

a

�
F
ηa

�
2

¼ 3

64

N
D

�
D
a

�
2

γ−1=2φ1=2Pe3=2: ð9Þ

Finally, we give the asymptotic expressions at large
distances (r ≫ ξ) for the two-point correlations in real
space. For the concentration correlations we get

Dξ3

c0N
hcð0ÞcðrẑÞi ¼ 12

π

ξ5

r5
;

Dξ3

c0N
hcð0Þcðrr̂⊥Þi ¼

Γ2ð5=4Þ
2

ffiffiffi
2

p
π2

ξ5=2

r5=2
; ð10Þ

where Γ is the gamma function. The weaker decay ∼r−5=2
applies strictly within the ðx; yÞ plane. For the velocity
correlations we get

C⊥⊥ðrẑÞ ¼
8ξ3

πr3
; C⊥⊥ðrr̂⊥Þ ¼

ξ

πr
; ð11Þ

CzzðrẑÞ ¼
4ξ

πr
; Czzðrr̂⊥Þ ¼

2ξ

πr
; ð12Þ

where CijðrÞ≡ hUið0ÞUjðrÞi=hU2ð0Þi. Despite the emer-
gence of the characteristic length ξ, the concentration and
velocity correlations remain long ranged, decaying alge-
braically with distance. In Fig. 1(b) we present the spatial
correlations at steady state along with their asymptotic
power laws.
Discussion.—Let us now discuss the consequences of

these results. The velocity autocorrelation of an object is
given, up to corrections of Oða=ξÞ, by the point correlation
of Eq. (9). From this expression we immediately see how
the finite ξ regularizes the velocity autocorrelations, thus
removing the Caflisch-Luke problem [8] for the irregular
objects considered here. Indeed, in the limit γ → 0 (no self-
alignment) the autocorrelation diverges, requiring a different
regularization mechanism [14,16]. Figure 2 illustrates
another view of the physical mechanism behind the regu-
larization [46]. A concentration fluctuation within a small
volume of the suspension creates a flow, which advects
objects in and out of the region. Spherical objects respond to
the flow isotropically, leading to mutual cancellation of the
influx and outflux [Fig. 2(a)]. The dipolar, nondivergence-
less flow of irregular objects, as described by Eq. (3),
perturbs this balance, compensating for the deficiency or
surplus of objects in the region [Fig. 2(b)].
As a simple example we treat the specific shape of self-

aligning spheroids, i.e., spheroids whose center of mass is
displaced from their centroid; see inset of Fig. 3(a). The
corresponding response parameter γ is shown in Fig. 3(a) as
a function of the spheroid’s aspect ratio κ and the off-center
position of the forcing point χ. As the offset χ is reduced, the
object is more easily tilted by the flow, thus strengthening
the suppression [Fig. 3(a)]. At the same time, however, the
object becomes less alignable. Since our calculation is linear
in the tilt [38], i.e., it assumes strong alignability, it becomes
invalid before the case of a symmetric spheroid (χ → 0) is
reached. The unshaded area in Fig. 3(b) indicates this rough
validity regime, which involves also the volume fraction φ.
The boundary of this regime gives, roughly, the parameters
corresponding to maximum suppression (maximum γ).
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FIG. 1. (a) Static structure factor of
the suspension [Eq. (7) with N ¼ D].
The blue dotted curves, which corre-
spond to differentq ∦ ẑ, decay to zero
at small q as ∼q2. (b) Normalized
two-point velocity correlations, to-
gether with their asymptotic behavior
[Eqs. (11) and (12)].
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In all of the above we have implicitly assumed that the
effective response parameter γ is positive, leading to a
positive ξ2. As γ → 0þ, the characteristic length ξ becomes
indefinitely large. In fact, γ may be of either sign, as we now
show for self-aligning spheroids [38]. The response param-
eter resulting from this calculation, shown in Fig. 3(a),
reveals a region of negative γ as a function of the spheroid’s
aspect ratio κ. As is clear from the mechanism described
above (Fig. 2), a negative γ implies deregularization, i.e.,
instability in the sedimentation of such objects, with

unstable structures of size ∼
ffiffiffiffiffiffiffiffi
−ξ2

p
. The instability clearly

calls for additional theoretical and experimental studies.
As described byEq. (7) andFig. 1(a) (in the case of positive

γ), for any wave vector q ∦ ẑ the structure factor decays to
zero for small wave vectors as SðqÞ ∼ q2. This implies

hyperuniformity of the fluctuating suspension [47,48] in
any direction but ẑ. Calculating the fluctuation δN in the
number of objects within a spherical subvolume of radius R,
we find δN2 ∼ R3ðR=ξÞ−1, i.e., a variance that grows as the
surface area rather than thevolume [48]. The hyperuniformity
is also manifest in the long-range concentration correlations
in the transverse direction, as given in Eq. (10). In the ẑ
direction SðqÞ is constant for small q, implying normal
Poissonian fluctuations. The angular dependence of the
suppression has been qualitatively explained above. For q ≠
qz and q < ξ−1 the vorticity-tilt effect (with rate Dξ−2)
dominates diffusion (with the slower rate Dq2), while for
q ¼ qz this effect is absent. Several systems exhibiting
hyperuniformity have been recently studied [47,49–51].
Our system is different in several essential aspects: (1) it is
dynamic, corresponding to continually changing configura-
tions rather than a static absorbing state; (2) it does not require
tuning of a control parameter to a critical value; (3) rather than
eliminating collisions, it suppresses both positive and neg-
ative concentration fluctuations [52].
It has been assumed for simplicity that all the objects

are identical, but the qualitative conclusions apply in more
general scenarios. The key requirement is that the system
contains self-aligning objects, possessing the dipolar aniso-
tropic response treated above. Not all the objects in the
suspension need to be self-aligning, and the self-aligning
ones do not need to be identical. In any of these scenarios
they will tilt and glide in response to the nonuniform flow,
thus producing the suppression or instability mechanisms
discussed here.
We now compare our screening mechanisms with the

ones suggested for the sedimentation of spheres. Those
theories also yielded suppression of fluctuations, but out
of different physics. (Indeed, hyperuniformity was found
in numerical simulations [53] and experiments [54] of
sedimenting spheres.) In the theory of Ref. [16] the effects
result self-consistently from the nonlinear coupling between

FIG. 2. Illustration of the mechanism regulating concentration
fluctuations. A concentration fluctuation makes a force fluc-
tuation δF (green solid arrow), which in turn creates a flow
fluctuation (flow lines). (a) Spherical objects respond isotropi-
cally to this flow, with velocities (magenta dashed arrows) along
the direction of the flow lines; thus, there is no net flux of objects
into the small volume element around the fluctuation. (b) Self-
aligning spheroids have an anisotropic response, leading in this
example to a total outflux of objects. The resulting flow of objects
has a nonzero divergence, which reduces the concentration
fluctuations.
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FIG. 3. (a) Effective response parameter γ describing suppressed fluctuations for γ > 0 as predicted for sedimentation of self-aligning
spheroids (inset). The spheroid’s response is calculated as a function of its geometry, characterized by the aspect ratio κ, and the
displacement of the forcing point (red dot) from the centroid, given by χκp. Here, p ¼ κ−1=3a is the spheroid’s minor axis. Prolate self-
aligning spheroids (κ > 1) cause suppression. For spheres (κ → 1) our suppression mechanism disappears (γ → 0). For κ < 1 the
response parameter γ becomes negative so that the uniform suspension becomes unstable. (b) Validity region of the present theory for
self-aligning spheroids. The offset χ should be larger than φ2=3hðκÞ [where the function hðκÞ is given in the Supplemental Material [38]]
to ensure the assumed strong alignability.
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concentration and velocity fluctuations, giving ξLRFB∼
aφ−1=3Pe−2=3. A related study [1,55] suggests that the
spherical objects might self-organize into structures that
glide similarly to our self-aligning objects. The mechanism
of Ref. [14] relies on a steady concentration gradient
(stratification), yielding ξstrat ∼ aφ−1=4Pe−1=4.Which of these
is the actual screening mechanism for spheres remains an
open question. If the LRFB mechanism is the one that
operates for spheres, then, for asymmetric objects, our linear
mechanism with ξ ¼ aγ−1=2φ−1=2Pe−1=2 should replace the
nonlinear one; the linear glide solution is perturbatively stable
against the nonlinear term at steady state [38]. If stratification
is the active mechanism for spheres, then screening will be
caused by a combination of both stratification and asymme-
try. Another distinctive feature of the asymmetry mechanism
is that it remains in place as the system approaches detailed
balance (D ¼ N), whereas the LRFB screening disappears
[16]. Thus, we expect the present mechanism to hold for an
arbitrarily small sedimentation Péclet number (while keeping
the thermal Pe large).
Conclusion.—The findings presented above for asym-

metric dispersions can be checked experimentally, e.g.,
using light scattering or video microscopy. Our results
highlight the different physics underlying the sedimenta-
tion of irregular objects as compared to spheroidal ones.
This includes a distinctive, direct, screening mechanism, a
different length scale ξ beyond which hyperuniformity sets
in, and unstable dynamics for certain object shapes. These
results may offer new means of controlling the stability of
driven suspensions such as fluidized beds.
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