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The viscoelastic response of complex fluids is length- and time-scale dependent, encoding information
on intrinsic dynamic correlations and mesoscopic structure. We study the length scale above which bulk
viscoelasticity sets in, and the material response that precedes it at shorter distances. We show that the
crossover between these two regimes may appear at a surprisingly large distance. We generalize the
framework of microrheology to include both regimes and apply it to F-actin networks, thereby extracting
their dynamic correlation length from their bulk and local viscoelastic properties.
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Most fluids in nature and industry are complex, or
structured [1], in the sense that they include mesoscopic
elements in between the molecular and macroscopic scales.
For example, in suspensions, micron-scale solid particles
are dispersed in a molecular fluid, and in polymer gels the
polymer chains form a network embedded within a
molecular solvent. Consequently, the response of complex
fluids to stress is characterized by intermediate length and
time scales.
The bulk viscoelastic response of such materials is

commonly measured using macrorheology [2]. Similar
information, for a wider frequency range and smaller
material quantity, can be extracted from microrheology
by following the motions of embedded tracer particles
[3–8]. In one-point (1P) microrheology [3–5] the thermal
fluctuations of a single particle are used to infer the
viscoelastic properties of the medium via a generalized
Stokes-Einstein relation (GSER). It has been found that this
measurement is affected by the local environment of the
tracer particle [9,10], and thus, may fail to reproduce the
material’s bulk response. Two-point (2P) microrheology [6]
overcomes this obstacle by tracking the correlated motions
of particle pairs as a function of their separation. 2P
measurements have focused on asymptotically large sep-
arations, where the pair correlation has a universal form due
to momentum conservation.
The current Letter addresses two questions: (i) Beyond

what length scale does the bulk viscoelastic behavior
emerge? (ii) What is the material response at smaller length
scales? We find that the leading correction to the asymp-
totic behavior at large distances, referred to, hereafter, as
the subdominant response, may be unexpectedly large,
causing the bulk response to set in at surprisingly large
distances. The physical origin of the subdominant response,
which is unique to complex fluids, is different from that of
the asymptotic one. It is related as well to a conservation
law (of fluid mass rather than momentum), resulting in a

generic system-independent form. The study of this dis-
tinctive regime leads to a more complete description of the
complex-fluid response.
We first derive the generic form of the subdominant

response and, subsequently, confirm the general predictions
in a specific theoretical example, the two-fluid model of
polymer gels [8,11,12]. Extending the framework of micro-
rheology to include the subdominant term, we validate its
significant effect in a model experimental system,
entangled F-actin networks of various concentrations.
We set the stage by recalling the classical Stokes problem

of a rigid sphere of radius a, driven by a steady force F
through an incompressible fluid of viscosity η [13]. The
fluid velocity at position r away from the sphere’s center is
given by vðrÞ¼v1þv2, with v1α ¼ð8πηrÞ−1ðδαβþ r̂αr̂βÞFβ

and v2α ¼ a2ð24πηr3Þ−1ðδαβ − 3r̂αr̂βÞFβ, where Greek
indices denote the coordinates (x, y, z), and repeated
indices are summed over. The dominant term at large
distances, v1, is the flow due to a force monopole F. Its r−1
decay is dictated by momentum conservation, ensuring that
the integrated momentum flux (proportional to ∇v1 ∼ r−2)
through any closed surface around the sphere remain fixed.
This dominant response can be decomposed into longi-
tudinal and transverse components (force and velocity
parallel and perpendicular to r, respectively), v1∥ ¼
ð4πηrÞ−1F∥, v1⊥ ¼ ð8πηrÞ−1F⊥, both of which are pos-
itive. Turning to the subdominant v2, we point out the
largely overlooked fact that it is actually made of two
contributions, having the same spatial form but opposite
signs and different physical origins, v2 ¼ v2f þ v2m. The
first, v2f ¼ 3v2, is the flow due to a force quadrupole
Qγαβ ¼ 1

2
a2δγαFβ. We focus our attention on the opposite

contribution, v2m ¼ −2v2. It is the flow due to a mass
dipole m ¼ −½a2=ð3ηÞ�F ¼ −2πa3U, created opposite
to the direction of the sphere’s displacement, where
U ¼ ð6πηaÞ−1F is the sphere’s velocity. The net subdomi-
nant term introduces a negative correction to the
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longitudinal response, v2∥ ¼ −a2ð12πηr3Þ−1F∥, and a
positive correction to the transverse one,
v2⊥ ¼ a2ð24πηr3Þ−1F⊥. Since the simple fluid has no
intrinsic length scale, these corrections vanish as a → 0.
Now, contrast the above with the case of an isotropic

viscoelastic medium [14], having a frequency-dependent
complex shear modulus GðωÞ ¼ G0ðωÞ þ iG00ðωÞ [i.e.,
bulk shear viscosity ηbðωÞ ¼ GðωÞ=ð−iωÞ]. Dynamic cor-
relations in the medium (as measured, e.g., by dynamic
scattering) decay with a characteristic correlation length ξd,
which in polymer solutions is believed to coincide
with the static mesh size ξs [11]. Consider a sphere of
radius a, driven through the medium by an oscillatory
force Fe−iωt. At sufficiently large distances the medium
velocity must be dominated by the monopolar v1α ¼
ð8πηbrÞ−1ðδαβ þ r̂αr̂βÞFβ, for the same momentum-con-
servation reasons given above. This is the basis of present
2P microrheology [6–8]. The two subdominant r−3 con-
tributions, however, become separated. Consider first the
limit a=ξd → 0, for which the separation is largest.
(Because of the intrinsic length scale ξd, v2 does not
vanish in this case.) The force quadrupole,Q ∼ ξ2dF, creates
a flow v2f ∼ ξ2dðηbr3Þ−1F, dependent (like the monopolar
v1) on bulk viscosity. By contrast, the mass dipole in this
limit arises from fluid displacement at scales smaller than
ξd, where the relevant viscosity is the solvent’s, η; hence,
m ∼ −ðξ2d=ηÞF, creating a flow v2m ∼ −ξ2dðηr3Þ−1F. Thus,
v2m is enhanced relative to v2f by a factor of ηb=η, which is
typically very large. In such a case of a large contrast
between local and bulk response, the mass-dipole term
takes over the subdominant response and changes its sign,
v2α ≃ v2m;α ∼ −ξ2dðηr3Þ−1ðδαβ − 3r̂αr̂βÞFβ. This has two
distinctive consequences: (a) The corrections to the longi-
tudinal and transverse responses flip signs, v2∥ ¼
ξ2dðηr3Þ−1F∥, v2⊥ ∼ −ξ2dðηr3Þ−1F⊥. (b) The crossover to
the asymptotic r−1 term is pushed further to a distance
rc ∼ ðηb=ηÞ1=2ξd ≫ ξd. In the opposite limit of an arbitrar-
ily large sphere, a=ξd → ∞, only bulk properties matter,
and we have Q ∼ a2F, m ∼ −ða2=ηbÞF, making v2f and
v2m comparable again. To interpolate between the two
limits, we define a local viscosity at the scale of the probe,
ηl ≡ F=ð6πaUÞ, as determined from the sphere’s velocity
[15]. Additionally, dimensionless scale functions may be
introduced, satisfying Q ¼ a2fðξd=aÞF and m ¼
−ða2=ηlÞgðξd=aÞF, such that both fðxÞ and gðxÞ inter-
polate between values ∼1 for x ≪ 1 and ∼x2 for x ≫ 1.
We demonstrate the validity of these predictions in the

two-fluid model of a dilute polymer gel [8,11,12]. In this
model, an incompressible viscous fluid with velocity field
vðr; tÞ, pressure field pðr; tÞ, and viscosity η, is coupled to a
dilute elastic (or viscoelastic) network with displacement
field uðr; tÞ and Lamé coefficients μ and λ via a mutual
friction coefficient Γ [16]. For a point force acting on the
fluid component, one obtains for the fluid-velocity
response in Fourier space [ðr; tÞ → ðq;ωÞ] [8]

vαðq;ωÞ ¼
1þ ðηb=ηÞξ2dq2
ηbq2ð1þ ξ2dq

2Þ ðδαβ − q̂αq̂βÞFβ; (1)

with ηb ¼ η − μ=ðiωÞ and ξ2d ¼ ημ=½Γðμ − iωηÞ�. Inverting
back from q to r while assuming ηb ≫ η, we get at large
distances the two predicted terms, v≃ v1 þ v2, where

v1α ¼
δαβ þ r̂αr̂β
8πηbr

Fβ; v2α ¼−ξ2dðδαβ − 3r̂αr̂βÞ
4πηr3

Fβ: (2)

These results are for the limit a=ξd → 0, where ηl → η. We
have calculated also the fluid-velocity response of this
model to a forced rigid sphere of finite radius a. The ξ2d
coefficient in Eq. (2) is then modified to a2gðξd=aÞ with
gðxÞ given below [17]. The dominant response becomes
equal to the subdominant one at the distance

rc ¼ a½2ðηb=ηlÞgðξd=aÞ�1=2; gðxÞ ¼ x2þ xþ 1=3: (3)

These expressions were obtained assuming ηb=ηl ≫ 1 and
an incompressible network (λ → ∞ or Poisson ratio
σ ¼ 1=2). A large ηb=ηl ratio is expected, e.g., for small
probes in stiff polymer networks [18]. Effects of com-
pressibility [19] are found not to change Eq. (3) appreciably
for σ as low as 0.4 [17].
Let us summarize the three main characteristics of the

subdominant response, expected in a complex fluid with a
large ηb=ηl contrast: (a) a positive r−3 decay of the
longitudinal response; (b) a negative transverse response;
(c) a crossover to the asymptotic response at a distance
much larger than the correlation length [20].
We use thermally equilibrated, homogeneous samples of

entangled F-actin networks, whose rheology has been thor-
oughly characterized in recent years [6,21–24]. It is well
established that 1P microrheology underestimates the bulk
viscoelastic moduli of these networks, whereas a more
accurate measurement is obtained by 2P microrheology
[6,22–24]. The large contrast between the bulk and local
moduli makes these networks a good model system for
checking the aforementioned predictions. F-actin networks
have the additional benefit of an easy control over the
network’s mesh size, ξs ¼ 0.3=

ffiffiffiffiffi

cA
p

, determined by the
monomer concentration cA (cA in mg=ml and ξs in μm) [25].
Entangled F-actin networks were polymerized from

purified monomer G-actin in the presence of passivated
polystyrene colloidal particles of radii a ¼ 0.245 and
0.55 μm (Invitrogen) [26]. We set the average filament
length to be ≈13 μm by addition of capping protein. The
actin concentrations were cA¼0.46–2 mg=ml, correspond-
ing to ξs ¼ 0.44–0.21 μm, respectively. Immediately after
polymerization the sample was loaded into a glass cell,
previously coated with methoxy-terminated polyethylene
glycol to prevent binding of the network to the glass [26].
After equilibration for 30 min at room temperature, samples
were fluorescently imaged at λ ¼ 605 nm. Tracer particle
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motion from approximately 8 × 105 frames per sample was
recorded at a frame rate of 70 Hz and tracked with accuracy
of at least 13 nm [27].
We start by characterizing the viscoelastic properties of

the F-actin networks using conventional 1P and 2P micro-
rheology. In 1P microrheology, one measures the ensem-
ble-averaged mean-squared displacement (MSD) of
individual tracer particles along any axis x as a function
of lag time τ, MSD1PðτÞ≡ hΔx2ðτÞi, and extracts from it
the viscoelastic moduli, G0ðωÞ and G00ðωÞ, using the GSER
[3,7,28]. In 2P microrheology, one measures the ensemble-
averaged longitudinal (parallel to r) and transverse
(perpendicular to r) displacement correlations of particle
pairs as functions of interparticle distance r and lag time τ,
D∥ðr; τÞ, D⊥ðr; τÞ [6]. At sufficiently large distances,
both correlations decay as r−1, D∥ ≃ AðτÞ=r and D⊥≃
AðτÞ=ð2rÞ. The common practice is to use this asymptote
to define a “two-point mean-squared displacement,”
MSD2PðτÞ≡ 2AðτÞ=ð3aÞ [29], and extract from it
the viscoelastic moduli using again the GSER [6].
Figures 1(a) and 1(b) show the 1P and 2P MSD’s measured
in an actin network and the moduli extracted from them.
The measurements demonstrate the much softer local
environment probed by the 1P technique, compared to
the bulk response probed by the 2P one. These results are in
quantitative agreement with previous studies on F-actin
networks [6,22,23].
A closer look at the 2P longitudinal correlation reveals

a positive r−3 decay preceding the asymptotic r−1 one
[Fig. 1(c)]. The crossover between the two regimes appears

at a distance rc ¼ 4.4 μm, an order of magnitude larger
than the network mesh size ξs. For r < rc the transverse
correlation is found to be negative [Fig. 1(d)]. Thus, the
three qualitative features mentioned above for the inter-
mediate response are verified.
Now,we extend the formalismofmicrorheology to include

the response at intermediate distances. This has two goals:
(a) to validate in more detail the theoretical predictions;
(b) to provide a quantitative analysis to be used in future
studies of other complex fluids. We focus on the longitudinal
displacement correlation, D∥ðr; τÞ, which is stronger than
the transverse one, and apply it in the time (rather than
frequency) domain to minimize data manipulation.
The correlation can be well fitted over both large and

intermediate distances by

D∥ðr; τÞ ¼ AðτÞ=rþ BðτÞ=r3: (4)

There are three directly measured quantities: MSD1PðτÞ;
AðτÞ or, equivalently, MSD2PðτÞ; and BðτÞ. We need to
relate them to the frequency-dependent coefficients appear-
ing in Eq. (2). At sufficiently large distances, r ≫ a, the 2P
coupling mobility coincides with the fluid velocity
response at a distance r away from an applied unit force.
Using Eq. (2), we get, for the longitudinal part of that
mobility, M∥ðr;ωÞ ¼ ð4πηbrÞ−1 þ a2gðξd=aÞð2πηlr3Þ−1.
From the fluctuation-dissipation theorem D∥ðr;ωÞ ¼−ð2kBT=ω2ÞM∥ðr;ωÞ, where kBT is the thermal energy.
Comparing this with Eq. (4), we identify

AðτÞ ¼ ½kBT=ð2πÞ�F−1fð−ω2ηbÞ−1g; (5)

BðτÞ ¼ðkBT=πÞa2gðξd=aÞF−1fð−ω2ηlÞ−1g; (6)

where F−1 denotes the inverse Fourier transform.
Equation (5) merely restates the basic relation used in

standard 2P microrheology to measure the bulk viscoelastic
moduli. Equation (6) represents our extension. Its left-hand
side is a directly measurable coefficient, BðτÞ, while its
right-hand side depends on two dynamic characteristics of
the fluid, ηl and ξd. The local response is obtainable from
the 1P measurement. According to the GSER, MSD1PðτÞ ¼
½kBT=ð3πaÞ�F−1fð−ω2ηlÞ−1g [29]. Substitution in Eq. (6)
yields a relation separating the time-dependent observables
MSD1PðτÞ and BðτÞ from the structural features to be
characterized, BðτÞ=MSD1PðτÞ¼3a3gðξd=aÞ. Equivalently,
we may examine the crossover distance

rcðτÞ ¼ ½BðτÞ=AðτÞ�1=2 ¼ a½2gðξd=aÞ�1=2½HðτÞ�1=2;
HðτÞ≡MSD1PðτÞ=MSD2PðτÞ; (7)

where thestructuralpart isagaindecoupled fromameasurable
time-dependent function, HðτÞ, characterizing the ratio
between the bulk and local responses. In Fig. 2(a), the
experimentally measured rc is plotted as a function of lag

FIG. 1 (color online). Microrheology of entangled F-actin net-
works. (a) MSD1P (green) and MSD2P (red) as a function of lag
time, for ξs ¼ 0.3 μm and a ¼ 0.245 μm. (b) The storage modulus
G0ðωÞ (open symbols) and loss modulus G″ðωÞ (filled symbols),
extracted from the MSD1P (green) and MSD2P (red) curves of
panel (a). (c) Longitudinal and (d) transverse displacement
correlations as a function of particle separation at lag time τ ¼
0.014 s for ξs ¼ 0.44 μm and a ¼ 0.55 μm. The crossover dis-
tance rc (blue dashed line) is defined at the intersection of the fitted
dominant (r−1) and subdominant (r−3) power-law decays of D∥.
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time, exhibiting a nonmonotonic dependence. Yet, by replot-
ting rc against ½HðτÞ�1=2, Fig. 2(b), the linear dependence
predicted by Eq. (7) is verified.We repeated the analysis for a
set of actin networks of different concentrations (i.e., different
mesh sizes) and for two different bead sizes. Since the static
and dynamic correlation lengths, ξs and ξd, should be com-
parable [11], and ξs and a are comparable in our experiment,
the results should be sensitive to the interpolation function
gðξd=aÞ defined in Eq. (3). In Fig. 3(a), rc for all the experi-
ments is plotted as a function ofH1=2. All curves are linear, as
predicted, and fall into two clusters (open and filled symbols)
corresponding to the two particle sizes. Differentiation of
Eq. (3) shows that rc should increase with either ξs or a at
constant H, which is confirmed in Fig. 3(a). For a more
quantitative validation, we rescale all the measurements ac-
cording to the scheme suggested by Eq. (7) and obtain convin-
cingdata collapse [Fig. 3(b)]. Furthermore, the resultingmaster
curve fits well the theoretical scale function of Eq. (3) using a
single free parameter— a constant ratio of order unity between
the static and dynamic lengths, ξd ¼ bξs, with b≃ 1.2–1.3.
One of the new insights in the current Letter is that the

local viscoelastic properties of the medium affect its
response over length scales much larger than the correlation
length and probe size. Moreover, there are scenarios in

which the dominant momentum term in the complex-fluid
response is suppressed, leaving the subdominant mass term
as the sole correlation mechanism at large distances. We
mention three examples. (a) For a very stiff matrix, as in the
case of a fluid embedded in a solid porous medium, the
crossover to the asymptotic term will be pushed to
arbitrarily large distances. (b) In a thin film of gel supported
on a rigid substrate, the momentum term will be suppressed
at distances larger than the film thickness, whereas the mass
term will be enhanced by such confinement. This qualita-
tively accounts for the dipolar shape of the 2P response
previously reported for such a system [30]. (c) At suffi-
ciently short time (high frequency), the diffusive momentum
term is cut off beyond a certain distance (viscous penetra-
tion depth), whereas the mass disturbance, propagating via
much faster compression modes, is not. All three scenarios
obviously require further quantitative investigation.
Another intrinsic length scale affecting the dynamics of

actin networks is the filament length [23]. Its value in the
current Letter (13 μm) is much larger than ξs and a. For
shorter filament lengths, there are subtle effects related to
the local environment of the probe [17,23]. Additional
length scales, not present in the current system, can arise
from sample heterogeneity [31].
Extracting spatiotemporal characteristics such as the

dynamic correlation length can be achieved, for example,
by various dynamic scattering techniques [2]. The inter-
mediate response itself, however, despite its significant
effect demonstrated here, is averaged out in such scattering
measurements by virtue of the spatial symmetry of the
corresponding dipolar term.
The analysis presented here, clearly, is not restricted to

actin networks. It is applicable to any complex fluid with a
sufficiently large ηb=ηl contrast [18]. (As “local” refers to
the scale of the probe, the contrast can be enhanced by
reducing the probe size down to a ≪ ξd, whereupon the
local response becomes that of the molecular solvent.) In
particular, our findings show that bulk viscoelasticity
inadequately describes micron scale stiff biopolymer gels
such as the cellular cortical network.
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