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The apparently intractable shape of a fold in a compressed elastic film lying on a fluid substrate is found

to have an exact solution. Such systems buckle at a nonzero wave vector set by the bending stiffness of the

film and the weight of the substrate fluid. Our solution describes the entire progression from a weakly

displaced sinusoidal buckling to a single large fold that contacts itself. The pressure decrease is exactly

quadratic in the lateral displacement. We identify a complex wave vector whose magnitude remains

invariant with compression.
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Composite structures, containing a fluid substrate cov-
ered by a thin rigid layer, are commonly found in biologi-
cal tissues and synthetic coatings. Unlike a freely
suspended sheet, a supported layer has an intrinsic length
scale arising from the competition of bending and substrate
energy. Thus, e.g., a compressed sheet floating on a fluid

buckles at a wavelength � ¼ 2�½B=ð�gÞ�1=4, B being the
bending stiffness, � the fluid mass density, and g the
gravitational acceleration [1–8]. An analogous argument
holds for an elastic foundation [9].

In the elastic case, it has long been recognized that this
extended periodic wrinkling is always unstable against
localized folding for a sufficiently large system [10–14].
With a fluid substrate, the same instability obtains [15–19].
Such fold localization has been observed in diverse
fluid-supported films—from monolayers and trilayers
of nanometer-sized gold particles [15,16], through
submicron-thick polymer films [17], to 10-�m-thick plas-
tic sheets [15]. It has been suggested that the localized
folds, observed in certain surfactant monolayers at the
water-air interface upon sufficiently fast compression (al-
beit apparently without prior wrinkling) [20–25] and be-
lieved to be important for the function of lungs [26], may
be a manifestation of the same phenomenon [15,18].

The shape of the fold beyond infinitesimal amplitude has
only been known numerically [15,18]. The numerical stud-
ies showed puzzling regularities. For example, the surface
pressure appeared to vary exactly quadratically with the
displacement. Here, we account for these regularities by
solving the nonlinear equation for the fold shape exactly.
This allows a much deeper analysis of the phenomenon,
including its large-deformation limit and the point of self-
contact, which are central to the folding observed in ex-
periments. In a broader context, the current work adds an
item to the precious collection of exactly solvable non-
linear physical problems.

Consider a thin incompressible elastic sheet of length L,
width W, and bending modulus B. The sheet is uniaxially
compressed along the x direction and assumed to deform in

the xz plane while remaining uniform along the y direction;
see Fig. 1. Because of incompressibility, the configuration
of the sheet is completely defined by the profile of the
angle, �ðsÞ, that the local tangent to the sheet makes with
the x axis at arclength s. Alternatively, we can define a

height profile, hðsÞ, where _h ¼ sin� (the dot denoting an s
derivative). The region z < h is occupied by a fluid of mass
density � ¼ K=g. We focus here on localized deforma-

tions and therefore let L ! 1 and set � ¼ _� ¼ h ¼ 0 at
s ! �1.
The energy E ¼ Eb þ Es contains contributions from

bending, Eb ¼ ðWB=2ÞR1
�1 ds _�2, and from the substrate

energy, Es ¼ ðWK=2ÞR1
�1 dsh2 cos�. The displacement

along the direction of compression is

� ¼
Z 1

�1
dsð1� cos�Þ (1)

and is related to the pressure by P ¼ dE=d�. For brevity,
hereafter we use units where B ¼ K ¼ 1; i.e., we rescale

energy by B and length by ðB=KÞ1=4 and also let W ¼ 1.

The pressure P is scaled by ðBKÞ1=2.
Invoking a dynamical analogy where s stands for time,

we look for the stable configuration by minimizing the

action S ¼ R1
�1 dsLð�; h; _�; _hÞ,

L¼ 1
2
_�2þ 1

2h
2 cos��Pð1�cos�Þ�QðsÞðsin�� _hÞ; (2)
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FIG. 1. Schematic view of the system and its parametrization.
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where P and QðsÞ are Lagrange multipliers replacing,
respectively, the global constraint on � [Eq. (1)] and the
local one on the relation between h and �. {In the case of
an elastic foundation, the hydrostatic (h2=2) cos� term is
replaced by h2=2 [9].} We identify the conjugate momenta

as p� ¼ @L=@ _� ¼ _� and ph ¼ @L=@ _h ¼ Q and use

them to obtain the Hamiltonian, H ¼ p�
_�þ ph

_h�L.

Since L has no explicit dependence on s (the sheet is
translation-invariant), H is a constant of motion,

H ¼ 1
2p

2
�þph sin�� 1

2h
2 cos�þPð1� cos�Þ ¼ 0; (3)

where the last equality follows from the boundary condi-
tions at s ! �1. Equation (3) has the consequence that,
wherever the sheet is horizontal (� ¼ 0), we have
jp�j ¼ jhj, which leads to the geometrical constraint

� ¼ 0: j _�j ¼ jhj ¼ j €hj: (4)

Hamilton’s equation, _p� ¼ �@H =@�, yields the fol-

lowing equation of motion:

€�þ ðh2=2þ PÞ sin�þ ph cos� ¼ 0: (5)

Eliminating ph from Eqs. (3) and (5) and differentiating
the resulting equation with respect to s, we get

�
:::þ ð _�2=2þ PÞ _�þ h ¼ 0: (6)

Equation (6) coincides with Euler’s elastica problem
[9,27,28]. It expresses the balance of normal forces on an
infinitesimal section of the sheet. The last term, which
usually corresponds to an external normal force [27], arises
here from hydrostatic pressure. Another differentiation
yields the equation in terms of � alone,

�
::::þ ½ð3=2Þ _�2 þ P� €�þ sin� ¼ 0: (7)

Continuing to assume that � and its derivatives vanish at
infinity, we integrate Eq. (7) once to get

�
:::

_��1
2
€�2 þ 3

8
_�4 þ 1

2P
_�2 þ 1� cos� ¼ 0: (8)

At first glance, the nonlinear Eq. (8) does not seem likely
to lend itself to a closed-form solution. Inspection of the
equations above reveals, on the other hand, that they read-
ily yield the profile and all of its derivatives at s ¼ 0. Let us
specialize, for instance, to a symmetric deformation about
a downward-pointing fold at the origin [as in Fig. 2(a)],

where �ð0Þ ¼ €�ð0Þ ¼ 0. We can then apply Eqs. (6) and
(8) at s ¼ 0 and, thanks to the geometrical condition of

Eq. (4), solve for _�ð0Þ and �
:::ð0Þ,

_�ð0Þ ¼ �hð0Þ ¼ 2ð2� PÞ1=2 (9)

and �
:::ð0Þ ¼ �2ð3� PÞð2� PÞ1=2. Higher derivatives are

obtained from Eq. (7) and its successive differentiation.
The complete knowledge of the power series at s ¼ 0 hints
that the problem may be integrable.
Another indication is suggested by the integrable

physical-pendulum (PP) equation, €�þ q2 sin� ¼ 0,
whose solutions are

�ðsÞ ¼ �4tan�1ðAe�iqsÞ (10)

for any q andA. It is straightforward to show, by integrating
the PP equation once and differentiating it twice, that any
of its solutions also solves Eq. (7) for P ¼ q2 þ q�2 þ c,
where c is an integration constant (set hereafter to zero).
Thus, Eq. (10) gives complex solutions to Eq. (8), with the
specific complex wave vectors
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FIG. 2. (a) Symmetric and (b) antisymmetric configurations of the sheet in the xz plane as a function of decreasing pressure
(increasing displacement) from a point close to the instability threshold (Pc ¼ 2) down to self-contact. The curves are vertically shifted
by 3 from one another for clarity.
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q ¼ �k� i�; k ¼ 1
2ð2þ PÞ1=2;

� ¼ 1
2ð2� PÞ1=2;

(11)

and an arbitrary amplitude A (the latter following from
translation invariance). We note that k2 þ �2 ¼ 1, inde-
pendent of P, while k2 � �2 ¼ P=2. These solutions re-
semble the ‘‘kink’’ solutions of the sine-Gordon (SG)
equation [29,30], albeit in the complex plane. When line-
arized, they coincide with the ‘‘evanescent-wave’’ profile,
which can be stabilized adjacent to a boundary for P close
to the critical pressure Pc [18].

These findings indicate that Eq. (7) might belong to a
hierarchy of integrable nonlinear equations [30,31], in
which the PP equation is a lower-order member. A known
hierarchy of equations, referred to as the stationary-sine-
Gordon-modified-Korteweg–de Vries hierarchy [31], in-
deed contains the stationary SG equation, the PP equation,
and Eq. (7) as the first, second, and third members, respec-
tively. To our knowledge, equations in this hierarchy be-
yond the PP equation have not been linked before to
physical phenomena.

To construct localized real solutions out of the complex
ones given in Eq. (10), we borrow a scheme from the
SG problem. In ‘‘light-cone’’ coordinates [u ¼ ðxþ tÞ=2,
v ¼ ðx� tÞ=2], the SG equation, @xx�� @tt� ¼ @uv� ¼
sin�, is invariant to the scaling u ! qu, v ! v=q by an
arbitrary scale factor q. Given three known solutions of this
equation, �j (j ¼ 0; 1; 2), one can construct another solu-

tion, �3, using the implicit ‘‘ladder’’ rule [30], tan½ð�3�
�0Þ=4�¼ ½ðq1þq2Þ=ðq1�q2Þ�tan½ð�1��2Þ=4�, where q1
and q2 are arbitrary scale factors for �1 and �2. We
attempt the same procedure while substituting for q1
and q2 two of the specific P-dependent wave vectors
found in Eq. (11). Choosing �0 ¼ 0, �1 ¼ 4tan�1ðeiq1sÞ,
and �2 ¼ 4tan�1ðeiq2sÞ, with q1 ¼ k� i� and q2 ¼
�k� i�, we obtain the odd function tanð�3=4Þ ¼
ð�=kÞ sinðksÞ= coshð�sÞ. Using instead tanð�1=4Þ ¼ ieiq1s

and tanð�2=4Þ ¼ �ieiq2s, we get the even counterpart.
Substitution of these two functions into Eq. (8) confirms
that they indeed solve it exactly. Thus, the following are
exact localized shapes of the angular profile:

symmetric fold: �ðsÞ ¼ 4tan�1

�
� sinðksÞ
k coshð�sÞ

�
;

antisymmetric fold: �ðsÞ ¼ 4tan�1

�
� cosðksÞ
k coshð�sÞ

�
:

(12)

These functions match the ‘‘breather’’ solutions of the SG
equation [29] when those are projected onto the light cone
(s ¼ x ¼ t ¼ u, v ¼ 0). Because of the symmetries under
reflection about the z axis, reflection about the s (or x) axis,
and translation along s, the functions��ð�sþ s0Þ, where
�ðsÞ is either of the functions in Eq. (12) and s0 an
arbitrary constant, are solutions as well. The existence of

odd and even solutions then follows from the aforemen-
tioned ladder rule.
Evidently, the equations simplify when � becomes

small, as P ! Pc ¼ 2; then, e.g., the symmetric fold has
� ’ 4� sins= coshð�sÞ, which itself is vanishingly small.
This is the regime of incipient buckling discussed previ-
ously [1,2,5,18,19]. The buckling is always localized, but
the localization length diverges as the threshold is ap-
proached [18,19].
The solution implies very simple relations among the

pressure P, the displacement �, the central height jhð0Þj,
and the energies. The decay parameter is exactly linear in
the displacement, � ¼ �=8. Indeed, the expressions for k
and � [Eq. (11)] exactly match the complex wave vector
obtained from a linear analysis of the evanescent wave for
P ! Pc [18]. Consequently, the pressure is exactly qua-
dratic in �: P ¼ 2��2=16, as previously deduced in that
limit [18]. The maximum amplitude of a symmetric
deformation is jhð0Þj ¼ �=2. The bending and substrate
contributions to the energy are Eb¼� and Es¼
�ð1��2=48Þ. We note that the energies and pressures
are identical for the symmetric and antisymmetric cases.
Figure 2 shows the progression of the symmetric and

antisymmetric folds as the lateral displacement increases
and the pressure decreases. The configurations have been
calculated from Eq. (12) according to the parametrization:
xðsÞ¼R

s
0ds

0cos�ðs0Þ, zðsÞ¼hð0ÞþR
s
0ds

0 sin�ðs0Þ, where
hð0Þ is given for the symmetric fold by Eq. (9) and for the
antisymmetric one by hð0Þ ¼ 0.
The symmetric fold is found to contact itself at a

small positive pressure, P ’ 0:040 (corresponding to � ’
5:6 ’ 0:89�). Self-contact of the antisymmetric fold, by
contrast, requires a substantial negative pressure (i.e., ten-
sion) of P ’ �0:70 (� ’ 6:6 ’ 1:05�). Thus, in the case of
an antisymmetric configuration, the stress in the sheet
vanishes prior to self-contact. One can examine the solu-
tions also beyond self-contact, where they produce self-
intersecting configurations which are unphysical for a
sheet. In particular, at P ¼ �2, the oscillations in � dis-
appear. These configurations are shown in Fig. 3.
These remarkably simple yet exact results are conse-

quences of the high level of symmetry characteristic of
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FIG. 3. The fully ‘‘damped’’ self-intersecting configurations
obtained for P ! �2. (a) Symmetric configuration for
P ¼ �2 [�ðsÞ ¼ 4tan�1ðs= coshsÞ]. (b) Antisymmetric configu-
ration for P ¼ �1:9999; as P ! �2, the two loops are pushed
toward the boundaries, leaving a flat sheet (� ¼ 2�) in between.
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integrable nonlinear problems [30]. The case of an elastic
foundation [10] is physically less simple, since in-plane
shear forces (and not merely normal hydrostatic ones) are
exerted on the sheet. Although this problem is found to
obey the same constraint at extrema [Eq. (4)], it does not
exhibit the regularities described above.

The solution presented here provides precise knowledge
of shapes and energies in a large class of wrinkling and
folding systems. It enables a newmeans for making precise
force actuators and transducers on any scale where uni-
form, thin sheets can be made, for example. The solution
improves the prospects for understanding the unstable
motion resulting from folding [23–25] and the observed
buckling of nanoparticle monolayers into trilayers [16]. At
the molecular scale, it provides a starting point for quanti-
fying the effects of compressibility and self-attraction of
surfactant monolayers, as well as the influence of nonfluid
aspects of the substrate. More basically, compression-
induced folding appears to be a previously unrecognized
integrable solitary wave phenomenon, like the sine-
Gordon chain and the Korteweg–de Vries hydrodynamic
soliton. The results above may be used to construct more
complex, multiple-fold shapes. The fundamental reason
for the integrability of the problem remains to be under-
stood. It is to be hoped that this understanding will reveal a
broader class of physical systems which are integrable for
the same reason.
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