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A qualitatively different manifestation of the Rayleigh instability is demonstrated, where, instead of the

usual extended undulations and breakup of the liquid into many droplets, the instability is localized,

leading to an isolated narrowing of the liquid filament. The localized instability, caused by a nonuniform

curvature of the liquid domain, plays a key role in the evaporation of thin liquid films off solid surfaces.
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The Rayleigh instability of slender liquid bodies, driven
by surface tension, is part of everyday experience and has
been systematically studied for well over a century [1,2].
Its manifestations are diverse, ranging from the breakup
into droplets of inviscid, viscous, and viscoelastic liquid
jets and bridges [1] to the pearling of fluid membranes [3].
The liquid bodies considered in earlier studies were usually
translation invariant along their long dimension, resulting
in unstable modes which were extended [1,2] or had a
steadily propagating front [4]. The propagation of forced
perturbations from a fixed nozzle were studied as well [1].
In this Letter we investigate a qualitatively different sce-
nario of the Rayleigh instability, in which the translation
invariance is broken by a nonuniform curvature, and show
that the fastest-growing mode of this instability is local-
ized. The localization is reminiscent of the problem of a
quantum particle moving inside a curved stripe [5,6].
When the latter system is transformed into an effective
one-dimensional problem, an attractive potential emerges,
whose minimum is located at the point of maximum cur-
vature, giving rise to bound (localized) states.

Thin liquid bodies are abundant in phenomena related to
wetting of solid substrates [2,7]. Two processes are par-
ticularly relevant to the current work: (i) the dewetting of a
nonvolatile, nonwetting film [2,8,9]; and (ii) the evapora-
tion of a volatile, totally wetting film [10–13]. Both pro-
cesses exhibit the kinetics of a first-order transition, where
dry domains [in (i)], or domains covered by a molecularly
thin liquid [in (ii)], nucleate and grow into a much thicker
film. Importantly, in both processes the dewetting front has
a long, slender rim of excess fluid [2]. The growing do-
mains may have a stable circular boundary [8,10] or evolve
through elaborate instabilities and patterns [10–14]. An
analogy has recently been drawn between the pattern for-
mation in the volatile case and Saffman-Taylor viscous
fingering in a Hele-Shaw cell having a time-varying thick-
ness [15]. The additional dynamics of the liquid rim at the
domain boundary, however, crucially affects the selection
of patterns in experiments, e.g., the doublon pattern shown
in Fig. 1, which is uncommon in Saffman-Taylor fingering
[11,15].

We model the droplet’s rim as a long, curved liquid strip
of uniform width w. It is parametrized using the locally
orthogonal triad (s, u, z) as depicted in Fig. 2, where u 2
½�w=2; w=2� and z 2 ½0; h�, hðs; uÞ being the local liquid
height. The rim is in contact with the wet and dry domains
at u ¼ �w=2 andw=2, respectively. The local curvature of
the center line (s, 0, 0) is denoted by �ðsÞ and taken as
positive when the rim curves away from the dry domain.
(In Fig. 2 � < 0.) We assume separation of time scales
between the growth of the finger and the faster develop-
ment of the rim instability, as observed in the evaporation
experiments. Thus, although the rim itself is a dynamic
effect, w and �ðsÞ can be taken as time independent.
Within the lubrication approximation (jrhj � 1) [16],

the equation of motion for the liquid is

@th ¼ �r � j; j ¼ � h3

3�
rp; (1)

where p is the liquid pressure, � its viscosity, and spatial
derivatives are in the (s, u) plane. In p we include con-

FIG. 1. Doublon patterns observed in the evaporation of water
off a clean mica surface [17]. Fingers of a molecularly thin water
film grow into a thicker film. A local indentation at the fingertip
leads to splitting and the formation of a liquid spine that
subsequently breaks into droplets. The fingers are hundreds
�m wide.
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tributions from the Laplace pressure and disjoining pres-
sure �ðhÞ (i.e., surface interactions) [7],

p ¼ ��r2h��ðhÞ; (2)

where � is the surface tension of the liquid. Substituting in
Eqs. (1) and (2) a small perturbation of the steady profile,
h ¼ h0 þ c , linearizing in c , and neglecting spatial de-
rivatives of h0, we obtain

@tc ¼ Ôc ; Ô ¼ ��0q
�4
0 ðr4 þ 2q20r2Þ: (3)

In Eq. (3) the Laplacian is given by [6]

r2 ¼ g�1=2@sg
�1=2@s þ g�1=2@ug

1=2@u;

gðs; uÞ ¼ ½1þ u�ðsÞ�2; (4)

and the following length and time scales appear:

q�1
0 ¼ ½2�=�0ðh0Þ�1=2; ��1

0 ¼ 12��=ðh30½�0ðh0Þ�2Þ:
(5)

In the systems under consideration the disjoining pres-
sure is usually governed by van der Waals interactions [7],
whereby �0 ¼ H=ð2�h40Þ, H� 10�13 erg being the

Hamaker constant. The length b ¼ ðH=�Þ1=2 is invariably
of molecular scale, �1 nm. Hence, the value of q�1

0 �
h20=b is primarily determined by the rim thickness h0,
which has very different values in the dewetting and
evaporation processes. In the dewetting case of Ref. [8]
h0 is about 50 �m, leading to q�1

0 of order meters and an

unphysically long ��1
0 . In the evaporation process of

Ref. [12], by contrast, h0 is of order 10 nm, yielding q�1
0

of micron scale and ��1
0 of order 10�2 s (though the latter

is highly sensitive to the thickness). The rim width w is of
mm scale in both cases; thus, wq0 � 1 for the dewetting
case, and wq0 � 1 for the evaporation one. As we shall
presently see, instability of the rim requires wq0 * 1,
which clarifies the strikingly different dynamics observed
in the two processes.
A key feature of the system is that the rim separates

domains of differing properties (Fig. 2). This implies
asymmetric boundary conditions at u ¼ �w=2 and, con-
sequently, sensitivity of the results to the curvature direc-
tion (sign of �). At the boundary with the thick liquid film
we impose a fixed height and a vanishing surface curvature,

u ¼ �w=2: c ¼ 0; r2c ¼ 0; (6)

thus ensuring that the pressure [Eq. (2)] changes continu-
ously between the rim and the film [18]. At the boundary
with the dry domain we assume a fixed contact angle and a
vanishing outward current,

u ¼ w=2: @uc ¼ 0; @ur2c ¼ 0: (7)

The operator Ô, as defined by Eq. (3) and the boundary
conditions (6) and (7), is Hermitian. In general it does not
commute with the Laplacian because of the spatially vary-

ing gðs; uÞ. In cases where Ô and r2 do commute, the

spectrum of Ô (denoted by �) can be written in terms of
that of r2 (�) as � ¼ ��0q

�4
0 �ð�þ 2q20Þ, and is thus

bounded from above by �0. Hence, in such cases the
fastest-growing mode has (at the most) a rate �0 as given
by Eq. (5).
In the simple case of a straight rim [13], � � 0, we have

½Ô;r2� ¼ 0. The eigenmodes of Ô in this case are ex-
tended,

c nq ¼ Aeiqsþ�nqt sin½knðuþ w=2Þ�; (8)

where A is an arbitrary amplitude, q the wave number
along the rim, kn ¼ �ðn� 1=2Þ=w (n ¼ 1; 2; . . . ) the
wave number in the transverse direction, and

�nq ¼ �0ðq2 þ k2nÞ½2q20 � ðq2 þ k2nÞ�=q40 (9)

is the growth rate. Unstable modes, having �nq > 0, are

obtained for a sufficiently wide rim, wq0 >�=ð2 ffiffiffi
2

p Þ; get-
ting fastest-growing modes of finite wavelength requires
the slightly stricter condition wq0 >�=2. These modes

have wave numbers qn ¼ ðq20 � k2nÞ1=2 and the maximum

growth rate � ¼ �0. In the case of a circular rim of fixed
curvature, � � �0 � 0, despite the nonuniformmetric g ¼
ð1þ �0uÞ2, Ô and r2 still commute due to rotational
symmetry. Hence, a finite uniform curvature cannot accel-
erate the instability beyond the rate �0.
We now address the interesting and practically relevant

case of a nonuniform curvature �ðsÞ. Motivated by the
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FIG. 2. Schematic view of the system and its parametrization.
A curved liquid rim of uniform width w, nonuniform curvature
�ðsÞ, and height profile z ¼ hðs; uÞ, lies at the interface between
a thick liquid film (wet domain) and a much thinner one (dry
domain).
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evaporation experiments (Fig. 1 and [10–13]) and inspired
by the quantum bound states (i.e., localized eigenmodes of
r2) found in a similar curved geometry [6], we look for a

localized unstable mode of Ô, whose growth rate exceeds
�0. To this end we employ a variational approach, which
sets a lower bound for the maximum rate according to

�max 	 ��½c � � hc jÔjc i=hc jc i; (10)

c ðs; uÞ being any trial function that satisfies the boundary
conditions (6) and (7).

For a general form of �ðsÞ it is difficult to construct a
good variational wave function which will satisfy the
boundary conditions. To simplify the analysis we assume
that the curvature is both small and slowly varying in
space. In this regime the wave function may be locally
approximated by that of a circular rim having curvature
�ðsÞ. This observation leads to the following choice of
variational wave function:

c ðs; uÞ ¼ A�ðs; uÞeiq1se�s2=a2 ; (11)

where

�ðs;uÞ¼
�
1��ðsÞw

�

�
k1

�
uþw

2

�
� 2

�

��
sin

�
k1

�
uþw

2

��

�
�
2�ðsÞ w

�2
k1

�
uþw

2

��
cos

�
k1

�
uþw

2

��
: (12)

Here k1 ¼ �=ð2wÞ, q1 ¼ ðq20 � k21Þ1=2, and the localization
length a serves as a variational parameter [19,20].
Equation (12) has been obtained from the asymptotic
form of the eigenmodes for a circular rim in the limit of
small curvature, while replacing �0 with the slowly varying
curvature �ðsÞ. For the sake of concreteness let us take

�ðsÞ ¼ �0e
�s2=�2

: (13)

Our calculation is performed to leading order in two small
parameters: 	 ¼ �0w and 
 ¼ ðq1aÞ�1. (Note that the
overall turn of the rim, �0�, may still be appreciable.)
The smallness of 
, implying that the localized mode
extends many wavelengths away from the tip, is an ansatz
to be confirmed below. In addition, we assume q0w � 1
(and thus q1w � 1) to be safely inside the unstable regime.
The trial function of Eqs. (11) and (12) satisfies the bound-
ary conditions for c ð�w=2Þ and @uc ðw=2Þ exactly, while
those for r2c ð�w=2Þ and @ur2c ðw=2Þ are violated only
at the orders 	2 and 	
2, respectively.

Within this approximation we obtain from Eq. (10)

��ðaÞ ¼ �0

�
1� 4

q21
q40

�
1

a2
þ

ffiffiffi
2

p
�0�

wa

��
: (14)

Maximizing �� with respect to a yields

a
 ¼ � ffiffiffi
2

p
w=ð�0�Þ

�max 	 ��ða
Þ ¼ �0

�
1þ 2q21�

2
0�

2

q40w
2

�
:

(15)

Thus, provided that the rim is negatively curved (�0 < 0 to
get a
 > 0), the fastest-growing mode is localized and
achieves a growth rate larger than �0. The required curva-
ture direction is in accord with the experiment, where the
instability occurs at the dry fingertips ([11] and Fig. 1).
Note that 
 ¼ ðq1aÞ�1 � j�0j�=ðq1wÞ � 1, and
�max=�0 � 1� 
2 � 1, which is consistent with the afore-
mentioned approximations. The main result, Eq. (15),
seems robust to the choice of trial function [20].
Two issues have remained unspecified in the discussion

above. First, for our choice of �ðsÞ Ô is symmetric in �s
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FIG. 3 (color online). Localized instability of a curved liquid
rim. (a) Longitudinal profile of the height perturbation along the
center line, c ðs; 0Þ. (b) Transverse profile at the tip, c ð0; uÞ.
(c) Two-dimensional topography, c ðs; uÞ. The parameters used
are �0=w ¼ �0:02, �=w ¼ 7, and q0w ¼ 2.
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and, therefore, the actual unstable mode must have a
definite parity [i.e., the eiq1s factor in Eq. (11) should be
replaced by either cosðq1sÞ or sinðq1sÞ]. In the even case
the perturbation is maximum at the tip, whereas in the
odd case it has a node there. Within our approxima-

tion the difference in �� between the two functions is

minute. If the overall turn is relatively small, j�0�j<
	1=2, we have a > �, and the even perturbation is found

to be slightly faster, with ð ��even � ��oddÞ=�0 ¼
½8q21�4

0�
6=ðq40w4Þ�e�q2

1
�2
. An example of an even unstable

mode is shown in Fig. 3. In the opposite case of j�0�j>
	1=2 we have a < �, and the growth rate of the odd

perturbation is slightly higher, ð ��odd � ��evenÞ=�0 ¼
2ðq1=q0Þ4e�q2

1
a2=2.

The second question concerns the sign of the localized
instability—whether it increases the liquid height at s ¼ 0
toward the formation of a droplet, or decreases it toward
pinch-off. A rigorous answer requires nonlinear analysis
that lies beyond the scope of the current work. Yet, since
the entire liquid film is unstable against evaporation, it is
plausible to expect that the rim should shrink at its tip. This
is also the direction required to account for the experimen-
tally observed doublon patterns (Fig. 1). By Darcy’s law
the velocity of the interface increases with the local film
height. Hence, a local indentation at the tip of a dry finger
advances more slowly than its shoulders, leading to the
shape of a finger split in two by a narrow liquid spine.

This work has two direct experimental implications. The
first relates to the stable radial growth of domains, found in
the dewetting of nonvolatile liquid films [2,8,9], vs the
unstable pattern formation observed in the evaporation of
volatile ones [10–13]. We have shown that the qualitatively
different dynamics in these two types of experiment can be
related to the stability vs instability of the accumulated
liquid rim at the domain boundary. The second implication
concerns the mechanism behind the patterns selected in the
evaporation process. The newly demonstrated effect—a
localized Rayleigh instability driven by the surface tension
of a nonuniformly curved liquid domain—is essential for
the pattern formation as it suppresses the Saffman-Taylor
instability at the fingertips. More broadly, since the relation
between inhomogeneity and localization is far more gen-
eral (encountered, e.g., in the effect of defects on electron
states in a solid), we expect related localization effects to
emerge in other scenarios of the Rayleigh instability.
Indicating these scenarios calls for further investigation.
Such localized instabilities, for example, may offer new
possibilities to control via curvature the precise location
where a liquid filament is to agglomerate into a drop or
pinch off.
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