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The effect of hydrodynamic interaction on the separation dependence of the center of mass and relative
pair diffusion coefficients of colloid particles in a quasi-one-dimensional system, including the influence
of proximate walls, is calculated using the method of reflections. There is excellent agreement between the
theoretical predictions and the experimental data. We show that the separation dependence of the relative
pair diffusion coefficient has an oscillatory structure on the scale length of the correlation length in the
system, and we directly relate that oscillatory structure to the pair correlation function of the system.
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Relatively little is known about the diffusion dynamics
of a pair of interacting particles in a dense medium. In
particular, the dependences of the relative and center of
mass pair diffusion coefficients on the pair separation are
not known, although it is expected that excluded volume
and other interactions between the pair will influence those
dependences. At the molecular level, this lack of informa-
tion is a consequence of the unavailability of appropriate
probes of pair motion. The situation is somewhat different
for colloid systems with particles large enough to be im-
aged with a visible light microscope. In this Letter, we
show, both theoretically and experimentally, that the rela-
tive pair diffusion coefficient in a quasi-one-dimensional
(QI1D) fluid is a decaying oscillating function of the pair
separation that approaches the single particle self-diffusion
coefficient at large pair separation, while the center of mass
pair diffusion coefficient is a smooth function of the pair
separation. To our knowledge this is the first theoretical
and experimental study of the properties of the pair diffu-
sion coefficient in a dense Q1D fluid. Some properties of
the pair diffusion dynamics in a quasi-two-dimensional
fluid are reported in [1], but the oscillatory structure in
the relative pair diffusion coefficient was not analyzed.
Although the hydrodynamic interaction between colloid
particles differs from, say, the Lennard-Jones type interac-
tion between Ar atoms, we expect all the qualitative fea-
tures of the pair diffusion coefficient to be the same in the
two cases. We also expect the qualitative features of the
pair diffusion coefficient to be the same in Q1D and true
1D systems. We note that the pair diffusion coefficients
play an important role in some formulations of the kinetic
theory of liquids [2]. We also note that diffusion in a Q1D
channel is important in processes as diverse as transport
through a zeolite [3] and transfer of species across biologi-
cal membranes [4].

The fundamental dynamics of colloid particles has long
been described by a combination of single particle
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Brownian motion and hydrodynamic coupling between
the particles. To characterize the diffusion of a pair of
particles in a Q1D channel, one commonly uses the center
of mass (D') and relative (D~) diffusion coefficients.
However, we prefer to analyze the properties of D, and
D, because of their close relation to the mobility of the
pair of particles [see Eq. (1)]. Of these four diffusion
coefficients, only two are independent and the relation
among them is given in (1) below.

A recent experimental and theoretical study of the in-
fluence of hydrodynamic interactions on D, of a pair of
particles in a Q1D channel, by Cui, Diamant, and Lin [5],
reveals that the interaction between particles is screened on
the scale length of the channel width. The Cui-Diamant-
Lin analysis of this system was based on the approxima-
tions that the particle radius is very small relative to both
the channel width and the mean spacing between particles,
and that the particle motion is restricted to be along the axis
of the channel. With the approximations mentioned, the
effect of one particle on the flow can be treated as if it
exerts a point force on the liquid [6,7]. The general features
of the dependence on particle separation of D, at large
particle separation are correctly accounted for. However,
this analysis cannot capture effects that arise from the
competition between excluded volume and hydrodynamic
interactions; hence it does not explain the observed oscil-
lations in the pair diffusion coefficients as a function of pair
separation. That analysis, based on a point force hydro-
dynamic treatment, also cannot evaluate the single particle
self-diffusion coefficient. In fact, the self-diffusion coeffi-
cient of each particle in a pair was taken to be known and
equal to the experimentally observed single particle self-
diffusion coefficient. Furthermore, as the hydrodynamic
interactions were parametrized by the single particle dif-
fusion coefficient at infinite dilution, this analysis is den-
sity independent and is limited to the low colloid
concentration domain.
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In this Letter we use the so-called method of reflections
to evaluate the diffusion coefficients of a dense Q1D
colloid fluid. By inclusion of higher and higher order
reflections we can, in principle, compute the influence on
the diffusion coefficients of hydrodynamic interactions
between particles and between the particle and the walls
to arbitrary accuracy. We are also able to directly compute
the self-diffusion coefficient and incorporate its density
dependence into our analysis.

This Letter is concerned primarily with understanding
the origin of the structure displayed in the pair diffusion
coefficients as functions of the pair separation. We report a
calculation of the influence of hydrodynamic coupling
between pairs of colloid particles and the walls of a Q1D
channel, and each other, on the pair diffusion coefficients.
Similar to the Stokeslet analysis, this method exploits the
fact that when the particle velocity is very small the hydro-
dynamic interactions between particles and between each
particle and the walls can be described by the linear
Navier-Stokes equation for incompressible stationary
flow. The analysis has been shown to quantitatively predict
the concentration dependence of the one particle diffusion
coefficient in a Q1D system [8]. The exact triplet correla-
tion function of a one-dimensional fluid of hard rods is
used in our analysis, noting that the treatment of hydro-
dynamic interaction between pairs of particles inevitably
requires integration over the two- and three-particle distri-
bution functions. The separation dependence of the pair
self-diffusion coefficient is predicted to have a decaying
oscillatory form, as is found by the experiments reported in
this Letter. We note that the pair diffusion coefficients
reported here differ from those reported in [5] because in
that Letter only nearest neighbor pairs were considered,
whereas in this Letter all pairs are considered.

We have described elsewhere [8] the application of the
method of reflections to the calculation of hydrodynamic
interactions in a Q1D colloid system confined in a cylin-
drical capillary with radius R, and length L >> R, inside
of which is a viscous fluid (viscosity w) containing equal
size solid spheres with radius a. The separation between a
pair of spheres is denoted r. The viscous fluid would be at
rest if unperturbed. We assume that the centers of the
spheres are on the central axis of the capillary and that
they can only move parallel to that axis. The reader is
referred to [8] and references cited therein for details of the
method.

The experimental studies were carried out using the
same setup as in [5] in an open rectangular channel, but a
different counting methodology was applied. The center of
mass and relative diffusion coefficients in the Q1D colloid
system are denoted D™ and D~ with D* = ((Ax;(¢) =
Ax,(1)]?)/4t with Ax;(1) the displacement of particle i in
time ¢. In the present analysis the average (- - -) is taken
over all observed pairs whose separations fall in the range
r = or, whereas in [5] the average was taken only over

those nearest neighbors whose separations fell in this
range. Note that

D*(r) + D™ (r) _ (2(Ax))* + 2(Ax)*)(r)
2 8t

Dt (r) — D (r) <4Ax1Ax2>(r)
2 8t

The use of a cylindrical capillary to calculate the hydro-
dynamic interactions is an approximation. We argue that
this model is appropriate because the tangential velocity of
the viscous fluid in the square open channel must be zero at
the walls, and there must be some surface with zero tan-
gential fluid velocity that connects the lips, and thereby
defines the effective fourth wall of the channel. Although
crude, the model does capture the essential feature that the
tangential velocity of the liquid in contact with the walls is
Zero.

To evaluate the hydrodynamic interactions, imagine that
the only external force acting on the system, F| =
6mpal;, is applied on particle 1 along the capillary
axis. Thus for single particle diffusion in a solution, the
important results previously obtained [8] are
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with g,(x) and g3(0, r, x) the pair and triplet correlation
functions of the liquid, respectively, i the particle packing
fraction, and U, and U, the velocities of particle 1 and
particle 2 along the axis of the confining cylindrical cap-
illary that result from the hydrodynamic interaction with
other particles and the wall. The function y,, represents the
effects of the wall, and the function y,(r) represents the
effects of interactions between particles with separation r.
The other terms in (1) and (2) are
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where 8 = a/R,, Ky(«) is the modified Bessel function of
the second kind of order 0, and /,(«) is the modified Bessel
function of the first kind of order 0.

Using the relationship between the mobilities of parti-
cles 1 and 2 along the capillary axis and the diffusion
coefficients, we have

1 U U,
M1 = —L =D, =-"D,
6mpa U, U, @
L Uy, Uy
M2 6mpa U, 12 U, 0

where D, is the infinite dilution single particle self-
diffusion coefficient in an unconfined (3D) system.

To calculate the diffusion coefficients of a given pair, we
note that D,(r) differs from the single particle diffusion
coefficient Dy because we consider two particles, one at
the origin and one at r, in which case the probability
density for finding another particle at x is changed from
(n/0)ga(x) to (n/o)lg3(0,r,x)/gs(r)]. For a one-
dimensional fluid of hard rods, the superposition approxi-
mation to the triple correlation function is exact, so that
g3(0, 7, x) = g,(0, r)g2(r, x)g2(0, x). Thus we claim that

Dy (r, m) B
Dulrm) Xoo + X () + f g2(lxDgx(lr
DO O J)-x

= x)x, (Ix])dx. (&)

From our earlier study of the concentration dependence of
the single particle diffusion coefficient in the Q1D channel,
we know that y,, is dependent only on the parameter a/R,,
and x,(r) is dependent only on x and a/R,.

We have carried out experimental and theoretical evalu-
ations of pair diffusion coefficients for several values of the
packing fraction and the ratio of the particle radius to the
capillary radius. Figure 1 shows D(r, ), D,(r, 1), and
D*(r, m) for the cases n = 0.61, a/Ry, = 0.15 and 1 =
0.39, a/R, = 0.15. All of the diffusion coefficients have

been normalized so that D,,(r, y) and D*(r, ) approach
unity when the separation between the particles of the pair
is infinite. Figure 1 shows that there is only a minor
discrepancy between theory and experiment at very small
separations which, we claim, can be removed by taking
higher order reflections into account. To our knowledge,
these are the first theoretical and experimental results
pertinent to the spatial dependence of the pair self-
diffusion coefficient as a function of pair separation.

We now consider the shape of D,(r, i) as a function of
r. This structure has an uncanny resemblance to the struc-
ture of the Q1D pair correlation function, which suggests
the following argument. If we define f(r, )=
1 — Dy,(r, 7)/Dg(n), we can write

DSD(On)f(r, n) = xp(r) + g [j; g (IxDga(1r — xI)

- 1]Xp(|x|)dx (6)

Figure 2 displays x,(p) for a typical value of a/R, =
0.3, with p = x/ o the scaled separation. With the approx-
imations  x,(p) =0 for |p|=2 and g,(p)x,(p) =
MO(lp| — 1)8(lp| — 1), with @ the unit step function,
the last equation takes the form

Dg(n)
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FIG. 1 (color online). Comparison between theory and experi-
ment at a/Ry = 0.15 and (a) n = 0.61, (b) n = 0.39. The solid
lines are theoretical results, and the circles are the experimental
observations.
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FIG. 2. x, as a function of scaled separation p =r/o at
ll/RO = 03

for p > 2. We expect that, because of the character of the
pair correlation function at small separation, |g,(p — 1) —
1| > |g2(p + 1) — 1| and then, as neither Dgy(n)/D, nor
M are dependent on p, we have

Dy, (p, )
Ds(ﬂ)

for p > 2. We show in Fig. 3 the validity of Eq. (8) for
colloid packing fractions » = 0.7 and 5 = 0.5 respec-
tively; very good agreement is found in both cases. The
small phase shift that appears in both cases, we argue,
arises from the &-function approximation we make. And
from the figures, we see that the higher a/R,, is, the better
the approximation is, which is confirmed as we have
observed that the peak in the function y, gets narrower
when a/R, is bigger.

With the above argument, we predict that for softer
particles or binary mixtures the peaks in the function
D,,(r, n) and the relative diffusion coefficient will shift
to larger separation as compared to those for their hard
particles counterparts, as a result of the change in the pair
correlation function.
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FIG. 3. Comparison between g,(p — 1) —1 and f(p) at
a/Ry = 0.4 or a/Ry = 0.15 and (a) n = 0.7, (b) n = 0.5. All
f(p) are rescaled so that they are suitable to be put into one
figure.
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