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Enhanced Dispersion Interaction in Confined Geometry
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The dispersion interaction between two pointlike particles confined in a dielectric slab between two
plates of another dielectric medium is studied within a continuum (Lifshitz) theory. The retarded
(Casimir-Polder) interaction at large interparticle distances is found to be strongly enhanced as the
mismatch between the dielectric permittivities of the two media is increased. The large-distance
interaction is multiplied due to confinement by a factor of (33y°/2 + 13y~3/2) /46 at zero temperature,

and by (59> + y~2)/6 at finite temperature, y =

€in(0)/€,,(0) being the ratio between the static

dielectric permittivities of the inner and outer media. This confinement-induced amplification of the
dispersion interaction can reach several orders of magnitude.
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The dispersion interaction acts between any two polar-
izable objects, thus being one of the most ubiquitous
interactions in Nature [1-3]. It plays a central role in
numerous phenomena in chemical physics and materials
science, including gas-liquid condensation, capillarity [4],
intersurface interactions [5], and colloid stability [6].

The dispersion interaction is a fluctuation-induced cou-
pling between two polarizable particles mediated by the
electromagnetic field. In an unconfined system at zero
temperature there is a single length scale with which the
interparticle distance R is to be compared, i.e., the charac-
teristic wavelength A, of photon absorption by the parti-
cles, typically in the ultraviolet to visible range. London’s
calculation [7], valid in the nonretarded limit R << A,
yields the potential U(R) = —[(3h/m) [§ déa?(i¢)IR™,
where a(w) is the frequency-dependent polarizability of
the particles. Casimir and Polder [8] recast the problem in
quantum-electrodynamic terms, whereby the interaction
arises from the effect of the particles on the zero-point
modes of the electromagnetic field. For R < Ay the
Casimir-Polder result coincides with London’s, yet in the
retarded limit, R > A, the interaction decays as R77,
UR) = —[(23/(4m)hca?(0)]JR™7 [9]. As a result, the
dispersion interaction between two particles in the retarded
regime (typically R > 0.1 wm) is extremely weak and has
not been directly observed. (Particle-surface and surface—
surface interactions across such micron-scale distances are
much stronger and were successfully measured in the
1990s [10,11].) In this Letter we demonstrate that this
weak particle-particle interaction can be dramatically am-
plified in confined geometries.

At a finite temperature 7 another length scale appears,
i.e., the thermal wavelength Ay = fic/T =~ 7.6 pum at room
temperature. (The Boltzmann constant is set hereafter to
unity.) As was shown in Ref. [12], retardation and finite-
temperature effects are intertwined. For R >> Ay, the
Helmholtz free energy of interaction returns to a R™6
dependence, F(R) = —3Ta?*(0)R™°.
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The theory of dispersion interactions was extended by
Lifshitz et al. to the case where the interacting objects as
well as the intervening space are continuous media [13,14].
In this continuum theory the material response to electro-
magnetic fields is assumed to be fully captured by the
complex, frequency-dependent dielectric permittivity
€(w) [15]. The current work is based on such a continuum
approach. Despite the strong underlying assumption (after
all, the media themselves consist of discrete polarizable
particles), the Lifshitz theory has been widely used and
experimentally corroborated [5]. It is expected to yield
valid results so long as the distance between the two
particles is much larger than the intermolecular distances
in the materials.

In various circumstances particles are spatially confined,
e.g., in porous media, micro-cavities, biological constric-
tions or nanofluidic devices. Such confinement introduces
a new length scale, the separation / between the bounding
surfaces. The dispersion interaction between a single par-
ticle and confining surfaces has been extensively studied in
the context of cavity QED [10,16]. The effect of confine-
ment on the interaction between two particles, however,
has been only partially addressed. Confinement by two
metallic plates (i.e., the limit where the permittivity of
the outer medium €,,; — o0) was found to drastically affect
the interaction between two pointlike particles in vacuum
at zero [17] and nonzero [18] temperatures. The non-
retarded interaction between particles confined by two
dielectric plates at T = 0 was addressed within a single-
image approximation in Ref. [19]. We follow the lines of
Mahanty, Ninham, Bostrom, and Longdell [17,18] and
extend their theory to the general and more practical case
of arbitrary permittivities of both inner and outer media,
discovering a dramatic enhancement for experimentally
relevant values of €;, and €.

The system under consideration is schematically shown
in Fig. 1. Two pointlike, isotropic particles of polarizability
a(w) are embedded in a slab of thickness 4 and dielectric
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FIG. 1. Schematic view of the system and its parameters.

permittivity €;,(w). The slab is bounded by two semi-
infinite media of dielectric permittivity €., (w). We use
cylindrical coordinates, r = (p, ¢, z), the Z axis taken per-
pendicular to the bounding surfaces. For simplicity we
specialize to the symmetric case where the particles lie
on the slab midplane, z = h/2, connected by the vector
R = (R, 0,0). All materials are assumed nonmagnetic.

We employ the semiclassical scheme introduced by
Mahanty and Ninham, which accurately reproduces the
London and Casimir-Polder results [20]. In this theory
the energy of interaction at 7 = 0 is given by [1]

T=0:.UR)= —87Thf dfﬁaz(ig)
0

XTi{G(R,i§)G(-R,if)] (D

and the Helmholtz free energy at finite 7 by

70 FR) = ~@aPTS a(ig,)(e/c)
n=0

X Tr[G(R, i£,)G(-R, i£,)]
&, = Qme/Ap)n, @

the prime indicating that the n = 0 term is multiplied by
1/2.InEgs. (1) and 2) R =r — r/, and G(r, ¥/, w) is the
dyadic Green tensor of the electric-field wave equation,

VXVXG —¢,(0)w?/cH)G =18 —71), 3)

where I is the identity tensor and €,, = €;, or €., depend-
ing on whether r lies in the inner or outer medium. (The
position r’ is taken inside the slab.) The boundary condi-
tions in the current case are continuity across the bounding
surfaces of the tangential components of both the electric
and magnetic fields. This imposes continuity on Z X G and
ZXV XGacross z=0and z = h.

Thus, this scheme reduces the problem to finding the
Green tensor G(r, r’, w) of Eq. (3) with the aforementioned
boundary conditions. The derivation is technically compli-
cated and can be found in Refs. [21,22]. In the symmetric
case of interest, r' = (0,0, 41/2) and r = (R, 0, h/2), the
tensor becomes diagonal,

=[p?x(e? + t)(e” + u)Jo(x) + (x*(e® + tu)
—e"(p* + )t + u))J,(x)]/[g(e” — 1)
X (e’ +u)],
g. = —x(e” + u)Jo(x)/[q(e” — w)], )

where J,(x) are Bessel functions, and the following abbre-
viations have been used: y = €;,/€qu, p = R{fel/z/c, qg=
@2+ pH2 s =2+ p2 /Y2 1=(q—19)/(q+s),
u=I(q—vs)/(qg+vys), and v = hq/R. Given €, oy (i§)
and a(i¢), one can substitute Eq. (4) in Eq. (1) or (2) and
calculate numerically the interaction potential.

It is instructive, however, to first analyze the interaction
in several asymptotic limits. We begin with the small-
distance limit, recovering the known results for unconfined
particles. For R < h the expressions for g; are expanded
to leading order in large v, whereupon the integration
in Eq. (4) can be carried out analytically. Substituting
the result in Eq. (1), we get U(R) = —(h/m)R© X
[ dée (3 + 6p + 5p* +2p + ph)a?(if)/ el (i€). In
the nonretarded limit, R < A, we take the leading order
in small p, for which the London result is recovered,

o(i¢)
f LF

(&)

with the appropriate correction due to the fact that the
particles are not in vacuum (€;, # 1). In the retarded limit,
R > A, the integral over ¢ is dominated by small (static)
&¢. An asymptotic analysis then recovers the Casimir-
Polder result with the correction for €;,, # 1,

T=0, R < h, Ay: UR) =

2
T=0 A <R<hUR) = _%?(0)' ©)
4are;) “(0)R’

Similarly, substitution of the asymptotic Green tensor

for R < h in Eq. (2) yields F(R)=—2TR®Y/®, X

’2”"(3 +6p, +5p; +2p; + pp)a’(i€,)/ €,(i€,), where

= R¢, €] 12 /¢ Subsequently taking the limit R << Ay,

we expand to leading order in small p,, [23] and recover the

known result for the nonretarded interaction at finite tem-
perature [24],

6T i’ a’(i€,)
RS m(i€n)
In the other limit, R >> Ay, the sum is dominated by the
n = 0 term, leading to the known retarded interaction at

T>0, R< hAr: F(R) =
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finite temperature [12],

3Ta?(0)

T7>0, -
eizn(O)R6

A <R< h: F(R) = 8)

We now turn to the more interesting asymptotic limit
of large R where confinement sets in. In the limit R > h
the expressions for g; in Eq. (4) are expanded to lead-
ing order in small v, and the integration in Eq. (4) is
performed analytically. The result is substituted in
Eq. (1) to yield U(R) = —(h/2m)R™® [ dée P[(5 +
Yy HHU0+2y ™ )p+ (T +3y )PP + 2+ 2y Hp +
(1 + v p*1a’(i€)/ u(ié), where p=y~"?p. In the
nonretarded regime, this expression is expanded to leading
order in small p, leading to

T=0, h <R <K Ay
_3n e (i) 5y2(i€) + y 2 (ié)
UR) = 7R Jo "° EL(if) 6 - O

Equation (9) gives the nonretarded interaction under con-
finement. It reduces to the London result, Eq. (5), for y =
€in/ €oue = 1. This result has a rather restricted validity as it
requires that 4 be much smaller than A,. (A detailed
discussion of the confined nonretarded interaction will be
given elsewhere.) In the retarded regime the integral is
dominated by small ¢, leading to

T =0,
23hca(0) 33y5/2 + 13y73/2
4e*(0)R’ 46 ’
(10)

where we have written y(0) = vy for brevity. This retarded
interaction under confinement converges to the Casimir-
Polder expression, Eq. (6), for y = 1.

At finite temperature we substitute the asymptotic Green
tensor for R>> h in Eq. (2), resulting in F(R) = —TR™® X

oe P[(5+y ) +(10+2y )p, + (T +3y 4)ph +
Q2+2y )P + (1 +y )pila’(ié,)/ €ulié,),  where
D, = RE, eé{f /c. For R << Ap we take the leading order
in small p, [23] and get

R> h, Ay: UR) = —

T>0, h< R < \p:
_ 6T &' d%(i€,) 57°(i,) + v (i)
FR = =355 =0 : T

This is the extension of Eq. (7) to the confined case. For
R > Ar, the n = 0 term dominates the sum, yielding
B 3Ta?(0) 59> + y 2
€2 (0)R® 6
(12)

T>0, R> h, A;: F(R) =

which extends Eq. (8) to the confined geometry.
Equations (10) and (12) are our central results. They
account for the large-distance, retarded dispersion interac-

tion between the confined particles at zero and finite tem-
perature, respectively. Comparing with Egs. (6) and (8), we
see that the confinement is manifest as a factor dependent
on the ratio y(0) between the static dielectric permittivities
of the inner and outer media. This factor can be as small as
0.78 [Eq. (10)] or 0.75 [Eq. (12)], but increases indefinitely
with the permittivity mismatch. The divergence of the
interaction energy for v — 0 or o is obviously unphysical.
Although Egs. (10) and (12) are asymptotically correct for
any finite mismatch, as y becomes increasingly large or
small one must go to ever larger interparticle distances for
these asymptotes to hold. Ultimately, in the limits y —
0, o their range of validity disappears, and the large-
distance interaction obeys a different power law [17,18].
(Detailed analysis of this behavior will be given else-
where.) The main point, however, is that the amplification
factor can be very large for reasonable values of . For
example, for particles embedded in a polar liquid [ €;,(0) =
80] which is confined by glass plates [ €,,(0) = 4] at room
temperature, one gets an amplification factor of about 300.
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FIG. 2. Potentials of interaction as obtained from numerical
integration of Egs. (2) and (4). The interaction free energy is
scaled by —7/RS. (a) Polystyrene particles in water between two
glass plates at T = 300 K. Solid, dashed, and dotted curves
correspond, respectively, to an unconfined system, 4 = 1 um,
and 2 = 0.1 pum. (b) Polystyrene particles in a hydrocarbon slab
embedded in water at 7 = 300 K. Solid and dashed curves
correspond to an unconfined system and 7 = 3 nm, respectively.
Insets in both panels present the ratio between the confined and
unconfined potentials, the dash-dotted lines showing the asymp-
totic amplification factor of Eq. (12).
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If the outer medium is a gas (a freestanding film, €,,, = 1),
the factor increases to about 5000 [25].

Finally, we present results from numerical integration of
Egs. (2) and (4) for two examples of practical interest. This
requires expressions for €(i£) of the various media, for
which we use the Ninham-Parsegian representation [2,26],
an empirical fit based on electromagnetic absorption spec-
tra of the materials. In the first example two polystyrene
particles are confined in a slab of water between two glass
plates at room temperature. The function €;,(i¢) for water
is found in Refs. [2,6] and that for silica glass, €,,(i£), in
Ref. [26]. For a(i&) we took the excess Clausius-Mossotti
polarizability [5] of a polystyrene sphere, a(i&)/V =
[3€in(ié)/(4m) Leps(ié) — €in(i€)]/[€ps(ié) + 2€i,(i€)], V
being the particle volume and epg(i¢) the permittivity of
polystyrene, found in Refs. [2,6]. The resulting potentials
for two interplate separations, # =1 and 0.1 um, are
shown in Fig. 2(a) along with the unconfined potential.
The interaction per volume squared has been scaled by
—T/R®. The curves, therefore, represent the effective
Hamaker coefficient (divided by 7%, in units of T) as a
function of interparticle distance. The unconfined potential
clearly exhibits the crossover from the nonretarded R~
regime at small R to the retarded R™’ dependence at
intermediate distances, and then back to the R decay
due to temperature. The confined interaction deviates from
the unconfined one at distances R = h. The amplification
increases moderately with distance until saturating to the
asymptotic value given in Eq. (12). In the second example
two polystyrene particles are confined in a hydrocarbon
slab of thickness # = 3 nm, which is embedded in water.
This may mimic small hydrophobic inclusions in a bio-
logical membrane. For the oily environment we used the
permittivity €;,(i¢) of pentane [1]. As is seen in Fig. 2(b),
the amplification becomes significant only at R = 10A.
This is because for smaller distances retardation has not
yet set in. (Note where the unconfined potential departs
from its nonretarded R ~° behavior.)

The confinement-induced enhancement of the retarded
dispersion interaction can be viewed as a consequence of
multiple-reflection wave guiding of the electromagnetic
radiation between the boundaries. Despite the demon-
strated strong effect the interaction remains weak. In the
example presented in Fig. 2(a), for instance, the interaction
free energy for h = 1 yum and R = 10 um is about 3 X
1079 T/um®. Nevertheless, to achieve the same energy
without confinement one would have to set the interparticle
distance at about 2 um. Thus, besides the fundamental
significance of the strong confinement effect reported
here for particle interactions in confined systems, it may
become useful also in extending the range of observation
of the Casimir-Polder interaction.
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