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Screened Hydrodynamic Interaction in a Narrow Channel
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We study experimentally and theoretically the hydrodynamic coupling between Brownian colloidal
particles diffusing along a linear channel. The quasi-one-dimensional confinement, unlike other
constrained geometries, leads to a sharply screened interaction. Consequently, particles move in concert
only when their mutual distance is smaller than the channel width, and two-body interactions remain
dominant up to high particle densities. The coupling in a cylindrical channel is predicted to reverse sign
at a certain distance, yet this unusual effect is too small to be currently detectable.

DOI: 10.1103/PhysRevLett.89.188302 PACS numbers: 83.50.Ha, 82.70.Dd, 83.80.Hj
(a)

(b)

(c)

FIG. 1. Microscope images of silica colloidal spheres con-

sharply screens the hydrodynamic interaction and may
even change its sign.

fined in linear grooves (cf. Table I): (a) sample 1, 	 � 0:17;
(b) sample 2, 	 � 0:35; (c) sample 3, 	 � 0:36.
Diffusion along narrow channels is encountered in
various circumstances, such as transport in porous mate-
rials [1] and penetration through biological ion channels
[2]. Much attention has been devoted to the correlated
motion in so-called single-file systems due to the inability
of particles to bypass one another, leading to anomalous
diffusion [1,3]. The anomalous regime, however, sets in
only at long enough times when particle collisions be-
come appreciable [4]. Yet, if the channel is filled with
liquid, the motion of otherwise noninteracting Brownian
particles can become correlated at times shorter than the
collision time through the flow field that they create.
Indeed, when we observed the diffusion of micron-size
colloidal particles in a water-filled channel (Fig. 1), the
most striking feature was the occasional concerted mo-
tion of several close-by particles in a dynamical ‘‘train’’
lasting for a few seconds. In the current Letter we present
a quantitative study of this coupling.

When a particle moves through a fluid it creates a flow
that affects the velocities of other particles in its vicinity.
Recently there has been renewed interest in such hydro-
dynamic interactions, particularly in confined geome-
tries, due to their role in the behavior of colloidal
suspensions and the development of techniques using
digital video microscopy [5–10]. Colloidal particles in a
finite container [5], near a single wall [6–8], and between
two walls [6,9] were studied. The hydrodynamic interac-
tions in those geometries are always attractive (i.e., creat-
ing positive velocity correlations) and long ranged: in an
unbounded fluid the interaction decays with interparticle
distance x as 1=x [11]; the one between particles moving
near and parallel to a single wall decays as 1=x3 [7,12];
and for particles moving between and parallel to two
walls it decays as 1=x2 [13]. More constrained geome-
tries—perpendicular to the walls in a two-wall configu-
ration [13] and along a cylindrical tube [14,15]—are
essentially different, in that point disturbances should
create flows with an exponential spatial decay. Here we
demonstrate that confinement in a linear channel indeed
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The experimental system consists of an aqueous sus-
pension of silica colloidal spheres (density 2:2 g=cm3)
confined in long narrow grooves (see Fig. 1 and inset
of Fig. 4). The grooves were printed on a polydimethysi-
loxane substrate from a master pattern fabricated litho-
graphically on a Si wafer (Stanford Nanofabrication
Facility). A drop of suspension was enclosed between
the polymer mold and a cover slip with a spacer
( � 100 �m), so that the top of the groove was open to
a layer of fluid. Digital videomicroscopy was used
to extract time-dependent two-dimensional trajectories
of the spheres (time resolution 0.033 s). Details of
sample preparation and data analysis were described else-
where [4,16].

We studied samples of three different parameter sets,
i.e., different values of sphere radius a, channel width w,
channel depth h, and channel length L; see Table I and
Fig. 1. (Spheres of sample 1 were manufactured by Duke
Scientific and those of samples 2 and 3 by Bangs
Laboratory.) The ratio a=w ranges between 0:26 and
0:37; it is always larger than 1=4, such that spheres cannot
bypass one another. (Higher ratios pose a difficulty in
loading the spheres into the channel.) The linear packing
fraction 	 was determined as 	 � 2Na=l, where l is the
length of the channel section in the field of view (l �
106 �m for sample 1 and 220 �m for samples 2 and 3),
and N is the number of spheres in that section.

Studies of the equilibrium structure and single-particle
dynamics of sample 1 were previously reported [4,16].
These experiments show that the colloidal motion is
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FIG. 2. Collective (D�, upper curves) and relative (D�, lower
curves) pair diffusivities as a function of interparticle distance
x for various values of packing fraction 	. (a), (b), and (c)
correspond to samples 1, 2, and 3, respectively.

TABLE I. Parameters of the three experimental samples.

No. a (�m) w (�m) h (�m) L (mm)

1 0:79� 0:02 3:0� 0:3 3:0� 0:3 2
2 1:85� 0:05 5:0� 0:1 4:0� 0:5 10
3 2:57� 0:1 7:0� 0:1 4:0� 0:5 10
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tightly confined to the center of the groove, with
transverse fluctuations of less than 0:2a. The particle
pair potential consists of a short-ranged (screened
electrostatic) repulsion, extending to surface-surface sep-
arations of �0:2 �m, followed by a weak attractive well
of �� 0:3kBT (kBT being the thermal energy) at a sepa-
ration of �0:3 �m. At the range of the dynamic coupling
reported here the pair potential is practically zero [16].We
thus neglect in the current study any transverse motion
and direct interactions.

We choose to characterize the coupling by the collec-
tive and relative diffusion of particle pairs, i.e., the fluc-
tuations of their center of mass and mutual distance. We
define the collective diffusivity, D�, and the relative one,
D�, as

D��x� � h	x1�t� � x2�t�

2i=4t; (1)

where xi is the displacement of particle i during time t
and x is the short-time average distance between the
centers of the two spheres. The coefficients have been
defined such that, in the absence of coupling, they both
reduce to the self-diffusivity of a single particle, Ds.
In our data analysis D��x� were calculated from
the histogram of short-time (t < 0:2 s) trajectories,
i.e., the slope of the mean-square displacements,
	1=4N�x�


PN�x�
i�2 	xi�t� � xi�1�t�


2, as a function of t,
where N�x� is the number of nearest-neighbor pairs whose
mutual distance x falls in the range �x� �x=2; x� �x=2�.
(We took �x � 0:22a for all samples.) The tracking time t
must be kept sufficiently short, so that the spheres do not
cross over to the anomalous subdiffusion regime [4], and
their diffusion distance remains smaller than �x, so x can
be assumed constant. We verified that, within experimen-
tal error, the measured slopes were constant at least in the
range t � 0:1–0:5 s.

Figure 2 shows the measured collective and relative
diffusivities for the various samples. The diffusivities
sharply decay to Ds for interparticle distances larger
than about twice the channel width. Moreover, the cou-
pling is practically insensitive to changes in density up to
high values of 	, implying that three-body and higher
terms remain negligible. At 	 � 0:61 sample 1 exhibits a
considerable shift of the entire curves towards lower
diffusivity, i.e., a decrease in Ds [17]. These observations
are in essential contrast with the case of less confined
geometries, where the hydrodynamic interaction is long
ranged with significant many-body effects [5].
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We now turn to a theoretical estimate of the hydro-
dynamic coupling. The Reynolds number of the system is
of order 10�6. We need, in principle, to calculate the
Stokes flow due to the motion of two particles, subject
to no-slip boundary conditions at the surfaces of the
channel and particles [11,18]. This is technically very
hard and, furthermore, we seek a description of more
general applicability. We resort to three simplifications:
(i) The actual geometry of a partially open, rectangular
channel is replaced by an effective cylinder, of diameter
2R � �w, where � is a geometrical prefactor of order 1, to
be treated as a fitting parameter. We expect to obtain one
value of � for a square cross section (samples 1 and 2),
and another for a rectangular one (sample 3). Because of
the open top of the actual channel, we also expect the
effective cylinder to be significantly wider, i.e., � > 1.
(ii) The particle motion is assumed to be restricted to the
central axis of the channel. (As has been noted above, this
is a good approximation in our case.) (iii) The particle
size is assumed to be much smaller than both the channel
width, a � R, and the interparticle distance, a � x. This
requirement, though not strictly fulfilled in practice, al-
lows us to treat the effect of one particle on the flow near
the other and near the walls as if it were exerting a point
188302-2
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force on the fluid, i.e., to consider merely the fundamental
solution (Green’s function) of the Stokes flow in the
channel. (This is sometimes referred to as the stokeslet
approximation [12].)

The displacement fluctuations of a particle pair are
used to define a two-particle diffusion tensor,
hxi�t�xj�t�i � 2Dij�x�t, i; j � 1; 2, which can be de-
composed into a self-diffusion term and a coupling one:
Dij � �ijDs � �1� �ij�Dc�x�. The two eigenvalues,
D� � Ds �Dc�x�, are the collective and relative diffu-
sivities of the pair as defined in Eq. (1). Usually particles
entrain one another and Dc > 0, i.e., the hydrodynamic
interaction enhances the collective mode and suppresses
the relative one.

To leading order in a=R and a=x, the flow field induced
by the motion of one particle in the vicinity of the other is
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that of a point force. This fluid velocity per unit force is
the change in the mobility of the entrained particle. Thus
Dc�x� ’ kBTG�x�, where G is the xx component of the
Stokes-flow Oseen tensor (Green’s function) in a channel.
Using the diffusivity in an unbounded fluid, D0 �
kBT=�6��a� (� being the fluid viscosity), we define
two rescaled coupling diffusivities,

���� �
D���� �Ds

�a=R�D0
; � � x=R; (2)

which are experimentally measurable and, within our far-
field approximation, parameter free (apart from the un-
known geometrical factor �).

We now substitute the known solution for the Oseen
tensor at the center of a cylindrical tube [14,15] to obtain
���� � ��3=4�
X1
n�1

	an cos��n�� � bn sin��n��
e
��n� ’

�
�3=�2��; � � 1;
��3=4�	a1 cos��1�� � b1 sin��1��
e

��1�; � � 1:
(3)
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FIG. 3. Rescaled coupling diffusivity � ( � ��) as a
function of rescaled interparticle distance � � x=R [Eq. (3),
solid curve]. At very small distances the curve approaches the
algebraic �1=� dependence as in an unbounded fluid (dotted
line). At large distances it decays exponentially (dashed line).
For � * 2:14 the coupling becomes negative (inset).
In Eq. (3) un � �n � i�n are the complex roots
of the equation u	J20�u� � J21�u�
 � 2J0�u�J1�u�, and
�an � ibn� � 2f�	2J1�un�Y0�un� � un�J0�un�Y0�un� �
J1�un�Y1�un��
 � ung=J

2
1�un� [Jk and Yk being the Bessel

functions of the first and second (Neumann) kind]. The
coupling as a function of distance is depicted in Fig. 3. For
� � 1 the particles are insensitive to the walls and the
coupling approaches the algebraic �1=� dependence as in
an unbounded fluid [11]. Yet, for � > 1 the confined
geometry becomes manifest; the sum is dominated by
its first term and the interaction decays exponentially with
distance. (The coefficients of this term are a1 ’ �0:0370,
b1 ’ 13:8, �1 ’ 4:47, and �1 ’ 1:47.)

The sharp screening beyond the confinement length is
unique to the linear geometry and is caused by the bound-
ary conditions at the channel walls. We may visualize the
boundary conditions as replaced by an infinite series of
image forces transverse to the channel axis, accompany-
ing the moving particle [12]. At distances larger than the
channel width the images cancel the effect of the actual
force. Small oscillations on top of the exponential decay
make the coupling change sign at � ’ 2:14 (Fig. 3, inset).
This is a very peculiar effect, implying that for large
distances the particles inhibit each other’s motion rather
than aid it. Physically, this arises from flow rolls that form
along the channel [15]. Unfortunately, as seen in Fig. 3,
even if the effect still exists in our partially open channel,
it is far too small to be currently detectable [19].

In Fig. 4 we have replotted the experimental data of
Fig. 2, scaled according to Eq. (2), with � � 2:44 for the
square cross section (samples 1 and 2) and � � 2:72 for
the rectangular one (sample 3). The data for different
channel widths, sphere sizes, and densities collapse onto
two universal curves for the collective and relative dif-
fusivities. The collapse confirms that the observed cou-
pling is well described by a two-body hydrodynamic
interaction within a first-order approximation in a=w.
Moreover, considering our crude approximations, the
agreement between the universal curve and Eq. (3) is
remarkable. The stokeslet approximation thus provides a
surprisingly reasonable description of the hydrodynamic
interaction even for relatively large particles and short
interparticle distances. We can further use the fitted � to
calculate the expected self-diffusivity which, at the same
level of approximation [11], is given by Ds ’ D0�1�
2:104 44a=R�, R � �w=2. This yields for samples 1, 2,
and 3 Ds ’ 0:16, 0:045, and 0:040 �m2=s, respectively.
Although these values are not far off the measured (low-
density) ones—0.11, 0.036, and 0:028 �m2=s— the
differences, compared to the good agreement in Fig. 4,
188302-3



-1.5

-1

-0.5

0

0.5

0 0.5 1 1.5 2 2.5 3

∆

x/R

w

R

a h

FIG. 4. Rescaled coupling diffusivities � as a function of
rescaled interparticle distance � � x=R for all the data of Fig. 2.
The solid line is the theoretical curve for a particle in a
cylindrical tube (Fig. 3). The inset shows a cross section of
the sample cell with its theoretical effective cylinder.
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indicate that the self-diffusivity is more sensitive than the
two-particle coupling to higher orders in a=w [20].

A small but systematic discrepancy between the calcu-
lation and experiment is seen in Fig. 4 as the distance
becomes very small. This deviation naturally marks the
breakdown of the x � a assumption. The observed trend
can be understood by considering the extreme case of two
particles in contact. The relative diffusivity then vanishes,
hence � ! �Ds=�D0a=R�, whereas the collective one
becomes equal to twice the self-diffusivity of a rigid train
of two touching particles, 2D2. Since, evidently,D2 <Ds,
we have � ! �2D2 �Ds�=�D0a=R�< j�j, in accord
with the observed asymmetry.

Another important consequence of the screened cou-
pling is that concerted motion of neighboring particles
becomes appreciable at a sharply defined density, compa-
rable to 1=R; this dynamic clustering will be studied in
more detail in a future publication. Our results suggest
that a tube-stokeslet approximation [i.e., Eq. (3)] should
give a good estimate of the hydrodynamic interaction in
any linear geometry, provided that the particles are re-
pelled from the walls and one has an estimate for the
geometrical factor �. Although we have discussed only
freely diffusing particles, since mobilities are propor-
tional to diffusivities, the same conclusions apply to
driven motion as well [21] and should also bear upon
motion and patterning in microfluidic systems [22].
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