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Structured viscoelastic substrates as linear foundations
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The linear (Winkler) foundation is a simple model widely used for decades to account for the surface response
of elastic bodies. It models the response as purely local, linear, and perpendicular to the surface. We extend this
model to the case in which the foundation is made of a structured material such as a polymer network, which has
characteristic scales of length and time. We use the two-fluid model of viscoelastic structured materials to treat a
film of finite thickness, supported on a rigid solid and subjected to a concentrated normal force at its free surface.
We obtain the foundation modulus (Winkler constant) as a function of the film’s thickness, intrinsic correlation
length, and viscoelastic moduli, for three choices of boundary conditions. The results can be used to readily
extend earlier applications of the Winkler model to more complex, microstructured substrates. They also provide
a way to extract the intrinsic properties of such complex materials from mechanical surface measurements.
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I. INTRODUCTION

The Winkler (or linear) foundation is arguably the simplest
model for the surface response of an elastic solid [1–3]. It
assumes that a normal surface displacement uz(ρ) at a point
ρ = (x, y) on the surface, and the restoring force per unit area,
fz(ρ), are related linearly and completely locally,

fz(ρ) = −kuz(ρ), (1)

as if a local perpendicular spring of spring constant (per unit
area) k resisted the displacement. Since its introduction over a
century and a half ago, the Winkler foundation has been used
to model a remarkable variety of surface phenomena. For a
recent review, see Ref. [3]. These include, in particular, the ad-
hesion, delamination, and buckling of slender bodies (beams,
plates, shells) supported on elastic or liquid substrates. Re-
cent representative works are on the localized buckling of
supported thin sheets [4], and the delamination of sheets and
cylindrical shells off soft adhesive substrates [5,6]. Various
extensions and refinements of the model have been developed
over the years [3].

As noted already by Biot [7], there are questions concern-
ing the relation of Eq. (1) to the properties of the elastic
substrate. For example, the Boussinesq problem [8,9], ad-
dressing the response of a semi-infinite elastic bulk to a
concentrated surface force, yields a highly nonlocal response,
with the normal displacement decaying only as 1/ρ from the
point of forcing. This is a consequence of the absence of
lengthscale in linear elasticity. Specifically, taking fz(ρ) =
Fzδ(ρ), we have [8]

uz(ρ′) = 1 − ν

2πG

1

|ρ − ρ′| Fz, (2)
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where G is the material’s shear modulus and ν is its Poisson
ratio. The contrast between the two pictures is seen also in the
difference between the units of k (force/length3) and those
of the substrate’s elastic moduli (force/length2). The missing
lengthscale may be provided by the wavelength of an imposed
undulating displacement [7,10], or by a finite thickness h of
the substrate [1,11]. In the latter, more common case, assum-
ing that the substrate is attached on its other side to a much
more rigid solid, the surface response is cut off at distances
ρ � h from the forcing point. Thus, if one examines the sur-
face over lengthscales significantly larger than h, the response
will look sharply localized and may be approximated by a δ

function, reproducing Eq. (1) with k ∼ G/h. Specifically, the
following relation has been derived [11]:

k = 2(1 − ν)G

(1 − 2ν)h
. (3)

A formal asymptotic analysis [12] and systematic ex-
pansion [13] have been presented, obtaining the Winkler
foundation as the small-h reduction of three-dimensional elas-
ticity. In the present work, we introduce another scheme of
systematic reduction. The reductions turn a flat elastic surface
effectively into a layer of identical perpendicular springs of
fixed lateral density. If the material is incompressible, the
change in density caused by loading the perpendicular springs
must be compensated by a change in their lateral density
(i.e., a change in k), which the model does not allow. This
is the origin of the divergence of k as given by Eq. (3) for
ν → 1/2. Thus the incompressible limit requires a different
theory [3,13,14]. A systematic expansion in small h, which
has recently been presented [13], obtains the response to a
surface force as a combination of a term proportional to the
local force and another term proportional to its surface second
derivative. The additional term removes the divergence in the
incompressible limit.
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The most straightforward way to generalize the results
above to the case of a linear viscoelastic foundation [15]
is to consider a frequency-dependent response, fz(ρ, ω) =
−k(ω)uz(ρ, ω),

k(ω) = 2[1 − ν(ω)]G(ω)

[1 − 2ν(ω)]h
, (4)

resulting from the foundation’s complex viscoelastic mod-
uli. In the present work, we would like to go further. Most
soft materials have at least one intrinsic lengthscale ξ that is
much larger than the molecular size [16,17]. For example, in
polymer gels ξ is the so-called mesh size—the characteristic
distance between cross-links or entanglement points in the
polymer network. This correlation length is typically a few
nanometers to a few tens of nanometers, and in biological gels
such as semiflexible actin networks it may reach a fraction
of a micron. The intrinsic lengthscales are accompanied by
intrinsic timescales, making the viscoelastic response of these
materials both time- and space-dependent [18,19].

Our goal is to calculate the generalized coefficient k(ω) for
such a viscoelastic structured substrate. The potential benefit
is twofold. First, predictions based on the elastic Winkler
foundation concerning various phenomena such as wrinkling
and delamination may be extended to a wider range of com-
plex substrates. Conversely, this variety of phenomena (for
example, wrinkling of supported sheets) may be exploited to
tap into the structure and viscoelasticity of the supporting
material. Our continuum approach is valid for lengthscales
larger than the correlation length (mesh size). Thus the rel-
evant regime for our analysis of the Winkler-like limit is

ξ � h � λ, (5)

where λ is the lengthscale of experimental interest (e.g., the
wrinkle wavelength).

Recently, we have presented a solution to the Boussinesq
problem for structured materials, i.e., the surface response of
a semi-infinite bulk of such a material [20]. In the present
work, we analyze the opposite limit, of a thin film attached to
a rigid solid [21]. As in Ref. [20], the analysis is based on the
two-fluid model—a minimal model of a structured material,
made of viscous and (visco)elastic coupled components, with
emergent lengthscales and timescales [22–26].

In Sec. II we briefly review the two-fluid model and define
its specific application for the present problem. Section III
presents the results, focusing on the effective Winkler coef-
ficient k and its dependence on the correlation length ξ and
the viscoelastic modulus of the film. In Sec. IV we discuss
implications of the results for distinctive behaviors that can
be checked experimentally, and their possible use for the
characterization of structured materials.

II. MODEL

We consider a film made of a structured medium and occu-
pying the region −h < z < 0. At the (x, y, z = −h) plane, the
film is attached to a rigid substrate. At the (x, y, z = 0) plane,
it is free apart from a localized perpendicular force applied at
the origin, fz(ρ) = Fzδ(ρ), where ρ = (x, y). See Fig. 1.

We use the two-fluid model [22–27] to describe the struc-
tured medium. The model has two components—a semidilute

FIG. 1. Schematic view of the system and its parameters.

polymer network and a structureless host fluid. See the
schematic illustration in Fig. 1. The network is described as
a (visco)elastic medium, whose deformation is defined by a
displacement field u(r, ω), which is a function of position
r = (ρ, z) and frequency ω. The corresponding stress tensor
is

σ
(u)
i j = 2G0[ui j − (ukk/3)δi j] + K0ukkδi j, (6a)

where ui j ≡ (∂iu j + ∂ jui )/2 is the network’s strain tensor, and
G0 and K0 are its shear and compression moduli, which may
be frequency-dependent. In what follows, we use instead of
K0 the network’s Poisson ratio, ν0 = (3K0 − 2G0)/[2(3K0 +
G0)]. The host fluid is described as viscous and incom-
pressible, having a flow velocity field v(r, ω), pressure field
p(r, ω), and the stress tensor

σ
(v)
i j = −pδi j + 2η0vi j, (6b)

where vi j ≡ (∂iv j + ∂ jvi )/2 is the fluid’s strain-rate tensor,
and η0 its shear viscosity.

The two components are coupled through mutual friction
characterized by a coefficient �. This coefficient is related
to the correlation length ξ , � ∼ η0/ξ

2 [28]; see also below.
The frictional force density is proportional to the local relative
velocity of the two components, v − iωu, thus maintaining
translational symmetry. Neglecting inertia, we write the gov-
erning equations for the three fields (u, v, p) as

0 = ∇ · σ
(u)
i j − �(iωu − v), (7a)

0 = ∇ · σ
(v)
i j − �(v − iωu), (7b)

0 = ∇ · v. (7c)

The first two equations describe the local balance of forces on
the two components. The third accounts for the incompress-
ibility of the host fluid.1

Equations (6) and (7) are supplemented by boundary con-
ditions at the two bounding planes. At the rigid substrate, both
components are taken to be stationary,

u(ρ,−h) = v(ρ,−h) = ∇ρ p(ρ,−h) = 0. (8)

At the free surface, we consider three cases corresponding to
three different experimental limits:
BC1: The force is applied to both components, and they are
strongly coupled,

σ
(u)
iz (ρ, 0) + σ

(v)
iz (ρ, 0) = fz(ρ)δiz, iωu(ρ, 0) = v(ρ, 0).

(9a)

1In principle, the incompressibility constraint should apply for the
whole composite material; yet, assuming a semidilute network, one
may apply it approximately to the fluid component alone.
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BC2: The force is applied to the network only, and the two
components are strongly coupled,

σ
(u)
iz (ρ, 0) = fz(ρ)δiz, iωu(ρ, 0) = v(ρ, 0). (9b)

BC3: The force is applied to the network only, and the two
components are weakly coupled (i.e., the fluid surface is left
stress-free),

σ
(u)
iz (ρ, 0) = fz(ρ)δiz, σ

(v)
iz (ρ, 0) = 0. (9c)

Equations (6)–(9) define our model.
The two-fluid model has a characteristic timescale, η0/G0,

and a characteristic lengthscale, (η0/�)1/2. Based on these we
define, as in earlier works,

G ≡ G0 + iωη0, ξ ≡
(G0η0

G�

)1/2

, (10)

as the viscoelastic shear modulus and correlation length of
the composite material. In the limit of low frequency we
have G � G0, and ξ � (η0/�)1/2 as anticipated above. The
limit of a structureless medium is obtained for ξ → 0, i.e.,
� → ∞, whereby the two components are strongly coupled
everywhere and move as one.

III. RESULTS

Solving the linear model, Eqs. (6)–(9), is straightforward
but cumbersome, producing complicated expressions. We
outline the steps of the solution,2 which can be simply re-
produced, and then we focus on the main results and useful
asymptotic limits.

The first step is to transform all the functions into
Fourier space along the two lateral axes, g̃(q, z, ω) ≡∫

dρ e−iq·ρg(ρ, z, ω). This transforms Eqs. (7) into a set of
seven second-order ordinary differential equations in z for
ũ(q, z, ω), ṽ(q, z, ω), and p̃(q, z, ω). The concentrated sur-
face force density is transformed into a constant, f̃z(q) = Fz.

The second step is to obtain the general solution of these
equations, which is simplified by decoupling the fields u and
v [26]. The solution contains 14 unknown amplitudes. They
are found by imposing the 14 boundary conditions (8) and (9).
This provides the solution to all fields.

In the third step, we extract from the solution the perpen-
dicular response of the network at the surface,

ũz(q) = G̃(q)Fz. (11)

In the present axially symmetric problem, the response de-
pends only on q ≡ |q|. Figure 2 shows the resulting response
functions for the three boundary conditions (solid curves).
Once G̃ is normalized by h/G, and q is normalized by ξ−1,
the response function depends on the dimensionless param-
eters h/ξ , ν0, and G/(iωη0). To simplify the dependence
on frequency, we focus hereafter on the common case of a
sufficiently rigid network such that, for all relevant frequen-
cies, G/(iωη0) 
 1. In this limit, the response is inversely

2In the present special case of a normal surface force, the solution
can be simplified by exploiting the problem’s axial symmetry. For the
sake of future extensions of the theory, we describe the more general
derivation.

FIG. 2. Perpendicular surface response, normalized by h/G, as
a function of wave vector, normalized by ξ−1. The normalized func-
tions depend on the dimensionless parameters h/ξ , ν0, and G/(iωη0).
We have used h/ξ = 10 and ν0 = 0.4. For G/(iωη0) we have taken
large values (>103), where the normalized function becomes inde-
pendent of this parameter. The solid lines show the results for the
three sets of boundary conditions. The results for BC1 and BC2 are
hardly distinguishable for this value of h/ξ (lower curve, overlapping
black and green); the small difference is shown in the inset. The
upper red curve shows the results for BC3. The two asymptotes given
by Eqs. (12) and (15) are shown by the dotted and dash-dotted lines,
respectively.

proportional to G, and thus its dependence on frequency is
dominated by the prefactor 1/G(ω). [Away from this limit,
the dependence on G/(iωη0) is more complicated and cannot
be presented concisely; fortunately, the deviation from the
limit is hardly relevant experimentally.] Hence, after normal-
ization by h/G, the response function becomes independent
of G/(iωη0). The response functions for the first two sets
of boundary conditions, BC1 and BC2 [Eqs. (9a) and (9b)],
are hardly distinguishable (inset). At small and large q, the
function has the following asymptotes:3

G̃(q) =
{

const, qh � 1,
1−ν0

G
1
q , qh 
 1.

(12)

These asymptotes are also shown in Fig. 2. The constant
asymptote at qh � 1 is of particular interest, as will be dis-
cussed shortly.

The final step is to relate the response function with the
Winkler constant. In the limit qh � 1, G̃ describes the per-
pendicular surface response at distances much larger than

3The large-q asymptote given in Eq. (12) holds if h �
[G/(ωη0)]1/2ξ ≡ . In the opposite limit of thick or soft substrate,
h 
 , the asymptote is the same for q−1 �  � h, and changes to
(2Gq)−1 for  � q−1 � h. The latter coincides with the perpendic-
ular response of the Boussinesq problem (semi-infinite substrate).
More details on these regimes can be found in Ref. [20]. They are
less relevant in the present work, which focuses on the qh � 1 limit.
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FIG. 3. Dependencies of the Winkler constant, normalized by G/h, on film thickness and the network’s Poisson ratio, for the three boundary
conditions. In both panels, the upper curve (overlapping black and green) shows the results for BC1 and BC2, and the lower red curve
corresponds to BC3. Panel (a) shows the dependence on h/ξ using ν0 = 0.4. The inset presents the same data multiplied by ξ/h, demonstrating
that without the normalization by G/h all boundary conditions yield decreasing functions. Panel (b) shows the dependence on ν0 using h/ξ =
10. A large value (>103) has been taken for G/(iωη0), where the normalized Winkler constant becomes independent of this parameter.

the substrate’s thickness. This is exactly the limit where the
Winkler-foundation description should hold. Indeed, in this
limit G̃(q) ∼ const, which is inverted into G(ρ) ∼ δ(ρ), i.e.,
a completely local response. Thus the Winkler constant is
directly related to the constant asymptote of the response at
small q,

k = [G̃(q = 0)]−1. (13)

Equation (13) provides a general scheme for reducing three-
dimensional elasticity into the Winkler surface response.

Following the normalization and the large-stiffness as-
sumption discussed above, we define a normalized Winkler
constant, which is a function of h/ξ and ν0 alone,

k̂(h/ξ, ν0) ≡ (h/G)k. (14)

Figure 3 shows the dependencies of k̂ on h/ξ for a given
ν0 = 0.4 [panel (a)], and on ν0 for a given h/ξ = 10 [panel
(b)], for the three sets of boundary conditions. Once again, the
differences between the results for BC1 and BC2 are insignif-
icant. The behavior for BC3, Eq. (9c), is markedly different,
showing even an opposite trend as a function of h. Note, how-
ever, that after division by h to remove the normalization, all
curves decrease with h; see the inset of panel (a). In addition,
the asymptotic values of k̂ for large h differ between BC1,2
and BC3 [panel (a)]. All results diverge for an incompressible
substrate, ν0 → 1/2 [panel (b)].

Next, we specialize to the qh � 1 asymptote of G̃ in the
thick-substrate limit, h/ξ 
 1. Asymptotic analysis yields

BC1, BC2 : k̂(h/ξ → ∞, ν0) = 2(3 − 4ν0)

1 − 2ν0
. (15)

For BC3, we have not been able to derive such a simple
asymptote; as seen in Fig. 3(a), the asymptotic value for BC3
differs from Eq. (15).

The limit h/ξ 
 1 holds also when ξ → 0, i.e., when the
medium is taken as structureless. Thus the result from the
two-fluid model should converge in this limit to the classical

result for a structureless medium. Equation (15) coincides
with Eq. (3), however, only in the sense that both diverge
for ν = ν0 = 1/2. This is because our composite medium
has been taken as overall incompressible.4 We have verified
that, once the viscous component is removed from the model,
Eq. (3) is recovered exactly.

We are mainly interested in the effect of the substrate’s
structure (i.e., ξ ) on the Winkler constant. To examine the de-
viations of the results from the structureless limit of Eq. (15),
we define the ratio

ˆ̂k(h/ξ, ν0) ≡ k̂(h/ξ, ν0)/k̂(∞, ν0). (16)

In particular, the divergence with ν0 → 1/2 has been scaled
out. In this limit, we obtain the closed-form expression,

BC1, BC2: ˆ̂k(h/ξ, 1/2)

= (h/ξ )2(1 + e−2h/ξ )

(h/ξ )2 − 2 + 4e−h/ξ + [(h/ξ )2 − 2]e−2h/ξ
. (17)

In the limit h → ∞, this expression reduces to 1 as required.
The leading-order correction in small ξ/h is

BC1, BC2, ξ/h � 1: ˆ̂k(h/ξ, 1/2) � 1 + 2ξ 2/h2. (18)

Figure 4(a) shows the thickness dependence of ˆ̂k for ν0 = 1/2
according to Eq. (17). Appreciable deviation (at least 1%)
from the structureless limit is found for h � 10ξ . Finally, in
Fig. 4(b) we examine how the dependence on the Poisson ratio
deviates from its large-h asymptote, Eq. (15), for h = 10ξ .
The deviation is small, about 2%, for all reasonable values
of ν0. For ν0 → 1/2 the results for BC1 and BC2 converge,
as Eq. (17) holds for both boundary conditions. For lower
values of ν0 the behavior slightly differs between BC1 and

4Similarly, the results of the two-fluid Boussinesq problem coincide
in the limit ξ → 0 with the classical one only for ν0 = 1/2 [20].
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FIG. 4. Deviations of the Winkler constant from its structureless (large-thickness) limit. The panels show (a) the dependence on the
normalized thickness h/ξ for ν0 = 1/2, and (b) the dependence on the Poisson ratio ν0 for h/ξ = 10, once the h → ∞ value [Eq. (15)]
has been factored out. In (a) the two boundary conditions BC1 and BC2 give identical results [Eq. (17)]. In (b) the deviations in the two cases
(upper black curve for BC1; lower green curve for BC2) differ qualitatively. The dominant dependence, however, which has been factored out
in this figure, is identical for the two boundary conditions.

BC2. Recall, however, that the dominant dependence on ν0,
Eq. (15), has been factored out in Fig. 4(b). This dominant
behavior is identical for BC1 and BC2.

IV. DISCUSSION

Out of the various results obtained above, the most useful
for experiments may be the prediction for the Winkler con-
stant in the limit of thick (but finite), close to incompressible,
structured substrate. Collecting Eqs. (14), (15), and (18), we
get the relation

h 
 ξ, ν0 � 1/2 : k = G(ω)

h

2(3 − 4ν0)

1 − 2ν0

(
1 + 2ξ 2

h2

)
,

which is valid for both boundary conditions BC1 [Eq. (9a)]
and BC2 [Eq. (9b)]. The more elaborate Eq. (17) readily
extends this relation to films whose thickness is not much
larger than their correlation length h � ξ . These relations can
be used to extract the substrate’s viscoelastic shear modulus
G(ω), correlation length ξ , and the network’s Poisson ratio ν0

(an elusive property) from various surface measurements, e.g.,
the wrinkling of a thin rigid sheet supported on the substrate.

The relation between Eq. (19) and the simple viscoelastic
result, Eq. (4), is subtle, since ν (the Poisson ratio of the bulk
material) and ν0 (the Poisson ratio of the bare, solvent-free
network) are different parameters. Only when both ν and
ν0 are equal to 1/2 do both the structureless and two-fluid
models describe an overall incompressible material, and the
two results coincide—they diverge. (The same was found in
Ref. [20] for two nondivergent results.) The practical con-
clusion is the following. If the film is appreciably far from
the incompressible limit, and if its thickness is much larger
than its correlation length, then Eq. (4) can be used. If it is
essentially incompressible, or if h is not much larger than ξ ,
Eq. (19) should be used. The important novelty to bear in
mind, however, is the dependence of Eq. (19) on the corre-
lation length ξ .

We have treated three sets of boundary conditions, re-
flecting different couplings between the constituents of the
structured material at its surface, and between them and the
forcing object. In BC1, Eq. (9a), the material’s elastic and
viscous components are strongly coupled at the surface, and
the force is exerted on both. This fits a material with large
surface tension (strong attraction between the constituents),
where a forced bead, for instance, is in physical contact with
the surface. In BC2, Eq. (9b), the two components are strongly
coupled as well, but the force is exerted on the elastic compo-
nent alone. This corresponds, e.g., to an experiment where the
forced particle is chemically attached to the polymer network.
The Winkler constants for these two cases, however, have
been found to be almost indistinguishable, regardless of the
values of h or ν0. The physical reason may lie in the little
freedom left for the material’s two components when they
are strongly coupled at the surface and are both stationary
at the opposite-side rigid boundary. Thus forcing either one
of them or both hardly matters. Indeed, using BC3, Eq. (9c),
where the two components are weakly coupled at the surface,
yields different results; see, e.g., Fig. 3. Still, for h � 10ξ and
ν0 � 0.4, the difference amounts to a few percent.

We have not considered explicitly the normal force aris-
ing from the substrate’s surface tension. The reason is that
it should have no effect on the Winkler constant, as it is
associated with deformation gradients beyond the purely local
Winkler response. Indeed, while a finite surface tension γ

introduces into the normal surface response a term ∼γ q2,
the Winkler constant is obtained from the limit qh → 0 (cf.
Fig. 2).

Focusing on the effect of the substrate’s viscoelasticity and
structure, we have not addressed the known divergence in the
incompressible limit (ν0 → 1/2), as mentioned in the Intro-
duction. A possible resolution of this problem may probably
be achieved by going to the next (quadratic) order in qh and
performing the appropriate asymptotic analysis. This should
extend the results of Ref. [13] to the case of a structured
substrate.
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Another interesting extension of the present theory would
be to derive the nonlinear correction to the Winkler model [10]
for a structured material. This will allow a study of richer
phenomena, such as elaborate pattern formation in thin sheets
supported on such substrates.
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