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Screening length for finite-size ions in concentrated electrolytes
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The classical Debye-Hückel (DH) theory clearly accounts for the origin of screening in electrolyte solutions
and works rather well for dilute electrolyte solutions. While the Debye screening length decreases with the ion
concentration and is independent of ion size, recent surface-force measurements imply that for concentrated
solutions, the screening length exhibits an opposite trend; it increases with ion concentration and depends on
the ionic size. The screening length is usually defined by the response of the electrolyte solution to a test charge
but can equivalently be derived from the charge-charge correlation function. By going beyond DH theory, we
predict the effects of ion size on the charge-charge correlation function. A simple modification of the Coulomb
interaction kernel to account for the excluded volume of neighboring ions yields a nonmonotonic dependence
of the screening length (correlation length) on the ionic concentration, as well as damped charge oscillations for
high concentrations.
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I. INTRODUCTION

Ionic solutions can be found in a wide range of biological
and electrochemical systems [1–6] and are studied for both
their fundamental properties and industrial applications. A
key feature of ionic solutions, captured within the seminal
work of Debye and Hückel (DH) [7,8], is the screening of
electrostatic interactions between charged objects immersed
in solution [1–8], characterized by the Debye screening
length, λD.

For a solution of monovalent cations and anions of bulk
concentration ns in a solvent of dielectric constant ε, the
Debye screening length is given by λD ≡ 1/κD = 1/

√
8π lBns,

where lB = e2/(4πεkBT ) is the Bjerrum length (SI units), e
is the elementary charge and kBT the thermal energy. The
Debye length describes not only the screened potential due
to external charges but also the spatial decay of charge-charge
correlations that arise from thermal fluctuations in the ionic
concentration. Therefore, λD can also be regarded as the DH
charge-charge correlation length.

The Debye length and the DH limiting theory are inde-
pendent of the ionic diameter. This is reasonable for dilute
solutions but not for more concentrated solutions with a
non-negligible volume fraction of ions. In addition, the DH
charge-correlation function for finite-sized ions violates the
Stillinger-Lovett second-moment condition [9–11], originat-
ing from the perfect long-range shielding of the electric field
within a conducting medium.

Several theories for finite-sized ions [12–27] that improve
on the DH one have been suggested. For example, Lee
and Fisher [23] introduced a generalized DH (GDH) model
based on a Debye charging process of charge oscillations.
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A common feature emerging from these theories is an os-
cillatory regime of the charge-charge correlation function at
moderately high ionic concentrations. Such oscillations were
predicted much earlier by Kirkwood [12], and the crossover
at the onset of oscillations is known as the Kirkwood line.
We note that charge oscillations emerge also from several
Ginzburg-Landau-type theories that are used, for example, to
describe the charge density of ionic liquids in the proximity of
charged surfaces [28–33].

What rekindled the interest in this problem are recent
surface-force apparatus (SFA) experiments on several con-
centrated electrolyte solutions and ionic liquids [34–36]. The
long-range forces in these experiments revealed an anoma-
lously large screening length at high ionic concentrations. The
measured forces follow a common scaling law [35,36] for all
the electrolytes and ionic liquids used in the experiments. The
force decays exponentially with a screening length 1/κ . For
low ionic concentrations, κDa � 1, where a is the ionic diam-
eter, it follows the DH result, κ = κD. However, in the limit of
κDa � 1, it scales differently as κa ∼ (κDa)−2. Hence, κ−1

increases linearly with the ionic concentration, κ−1 ∼ ns, as
opposed to κ−1

D ∼ n−1/2
s .

The above κ−1 ∼ ns scaling law, inferred from SFA ex-
periments at high ionic concentrations, was interpreted in
Ref. [36,37] in terms of solvent molecules that act as defects
in a salt crystal, as compared to dilute electrolytes. How-
ever, since this elegant picture is based on defects in the
crystalline state, which occurs for aqueous NaCl solutions
above 6 M [38], while the experiments show an increase
in the screening length even around 1 M, the understanding
of the fluid state is still incomplete. The scaling law has
motivated several other recent theoretical works [39–41] but
has not yet been fully understood. While these works rely
on different assumptions and yield slightly different results,
all of them introduce in a similar way some non-Coulomb

2470-0045/2019/100(4)/042615(8) 042615-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.100.042615&domain=pdf&date_stamp=2019-10-24
https://doi.org/10.1103/PhysRevE.100.042615


ADAR, SAFRAN, DIAMANT, AND ANDELMAN PHYSICAL REVIEW E 100, 042615 (2019)

short-range interactions between the ions (and, possibly, the
solvent). These interactions become significant at moderately
high concentrations, where the average separation between
ions is comparable with the ionic diameter.

In the present work we suggest an alternative approach.
The ionic finite size is taken into account by a straightfor-
ward modification of the Coulomb interaction. We introduce
two such possible modifications: either an interaction that is
restricted to separations larger than the ionic diameter or an
interaction between finite-sized ions with a charge distribu-
tion, referred to as the internal charge density [42,43]. A gen-
eral expression for the charge-charge correlation function is
derived analytically by considering Gaussian charge-density
fluctuations in bulk electrolytes.

The outline of our paper is as follows. In Sec. II, we present
our model and focus on the modification of the Coulomb
interaction for finite-size ions. A general result for the charge-
charge correlation function is derived in Sec. III, followed by
a description of the different regimes of the correlation length
in Sec. III A. The dilute and concentrated electrolyte limits
are discussed, respectively, in Secs. III B and III C. Finally,
we relate our findings to experiments and to previous theories
and provide some concluding remarks in Sec. IV.

II. MODEL

Consider a monovalent electrolyte of bulk concentration ns

at a constant temperature T . The solvent is modeled as a ho-
mogeneous medium with dielectric constant ε. For simplicity,
we assume that both ionic species have a diameter a and are
spherical symmetric. Consequently, the interaction between
two ions depends only on the ions’ separation and not on their
orientations.

We focus on properties of the bulk electrolyte, far from
any charged objects and surfaces. Furthermore, it is assumed
that the electrolyte is far from any liquid-liquid critical point,
where the solution phase-separates into two electrolytes of
different concentrations [22]. Here this assumption means that
fluctuations in the total ionic concentration can be neglected.
This is in accordance with the experimental setup described in
Ref. [35], where no inhomogeneity was observed.

The internal energy, U , has two contributions: a short-
range steric interaction, Usr, and a long-range electrostatic
one, Uel. For symmetric cations and anions, the steric term
depends only on the total ionic concentration, n = n+ + n−,
whose spatial average is 2ns. The electrostatic term, on the
other hand, originates from fluctuations in the number-density
difference, ρ = n+ − n−, whose spatial average is zero, due to
electroneutrality. These fluctuations contribute an electrostatic
energy,

Uel = kBT

2

∫
d3r d3r′ ρ(r)v(r − r′)ρ(r′), (1)

where v(r) is the dimensionless electrostatic interaction kernel
(units of kBT ). Due to the finite size of the ions, v is different
than the standard (dimensionless) Coulomb kernel, vC(r) =
lB/r, where lB is the Bjerrum length. This modification of the
Coulomb interaction lies at the heart of our work. Possible
forms of v are described in detail below.

The free energy, F = U − T S, consists of the above ener-
gies, as well as the ion mixing entropy, S. To quadratic order
in ρ, it is given by

F [n(r), ρ(r)] = F0[n(r)] + kBT

4ns

∫
d3r ρ2(r)

+kBT

2

∫
d3r d3r′ ρ(r)v(r − r′)ρ(r′). (2)

The first term on the right-hand side of Eq. (2) accounts for
the free energy of a solution of uncharged spheres, while the
second term corresponds to the entropic contribution of small
ρ fluctuations, and the third term is the electrostatic energy of
Eq. (1).

We note that such an expansion of the free energy is ade-
quate, especially for relatively weak electrostatic interactions,
as a result of a combination of monovalent ions, high tem-
peratures, and high dielectric constants. Such a combination
corresponds to Bjerrum lengths that are small and comparable
with the ionic diameters. This is indeed the case, for example,
for the aqueous NaCl solution used for the surface-force
experiments of Ref. [35]. For such a solution, the Bjerrum
length, lB � 0.7 nm, is approximately the same as the average
hydrated ionic diameter [44].

Modified electrostatic interaction

It is evident that the quadratic expansion of the free energy
in Eq. (2) does not couple the fluctuations of the local ionic
concentration, n(r), with the charge density, ρ(r), due to
the symmetry between cations and anions. As a result, the
short-range repulsion (that can result from either hard or soft
cores) does not enter directly any calculation of electrostatic
properties, such as the charge-charge correlation function (see
Sec. III). However, the contribution of electrostatics to the
free energy is clearly affected by the short-range repulsions.
Namely, they preclude microstates where the ion separations
are very small and for which the Coulombic interactions are
very strong.

The nonphysical contributions of such microstates to the
free energy become especially important for concentrated
electrolytes with typically small interion separations. In order
to prevent or at least to reduce these contributions and better
estimate the electrostatic part of the free energy, we consider
modified interactions that are weak for small interionic dis-
tances, r < a, and coincide with the Coulombic one for r > a.
We refer to the length scale a as the ionic diameter, which can
correspond to the bare diameter or hydrated size.

We consider two ways in which the ionic interaction can be
modified. First, it is possible to restrict the Coulomb interac-
tion to ionic separations of r > a with a cutoff at r = a, given
by vco(r) = �(r − a)lB/r (for example, see Ref. [41]), where
�(x) is the Heaviside function. It is useful to rewrite this
function in Fourier space. We denote the Fourier transform
of a function f (r) as f̃ (q) = ∫

d3r f (r) exp (−iq · r) and find
that

ṽco(q) = 4π lB
q2

cos(qa). (3)
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In Fourier space, the minimal distance cutoff in the kernel
reduces to a cosine term, while the Coulomb interaction is
restored in the a → 0 limit.

An alternative approach is to consider ions with an internal
charge density, ew(r). The resulting interaction kernel in
Fourier space is

ṽ(q) = 4π lB
q2

w̃2(qa). (4)

The internal charge density gives rise in Fourier space to
the form factor, w̃2. As the ions are monovalent, the charge
density satisfies w̃(0) = 1, and the Coulomb interaction is
restored in the limit a → 0.

We focus on the two simplest internal charge densities,
w(r), with spherical symmetry: a homogeneous spherical
shell, wsh, and a homogeneous sphere wsp, given by

wsh(r) = 1

πa2
δ
(

r − a

2

)
, wsp(r) = 6

πa3
�

(a

2
− r

)
,

(5)
where δ(x) is the Dirac δ function. The Fourier transform of
these charge densities is given in terms of spherical Bessel
functions, jn(x), according to

w̃sh(q) = j0
(qa

2

)
, w̃sp(q) = 6

qa
j1

(qa

2

)
. (6)

Reviewing Eqs. (3) and (4), we identify a general form of the
modified interaction,

ṽ(q) = 4π lB
q2

h̃(qa). (7)

We note that h̃ is an even function, because of the assumed
radial symmetry of the interaction, and it satisfies h̃(0) = 1,
reducing to the standard Coulomb interaction for pointlike
ions. In the three examples above, the different h̃ functions
in Fourier space are given by

h̃co(x) = cos(x), h̃sh(x) = j2
0

( x

2

)
, h̃sp(x) =

[
6

x
j1

( x

2

)]2

.

(8)

These three functions are plotted in Fig. 1.

III. CHARGE-DENSITY CORRELATION FUNCTION

The free energy of Eq. (2) can be written in Fourier space
in terms of the modified interaction of Eq. (7) and reads

F = F0(ns) + kBT

4ns

∫
d3q

(2π )3

q2 + κ2
Dh̃(qa)

q2
|̃ρ(q)|2, (9)

where 1/κD = 1/
√

8π lBns is the Debye length. The equipar-
tition over fluctuation modes yields the Fourier transform of
the charge-charge correlation function, G̃(q),

G̃(q) = 2nse
2 q2

q2 + κ2
Dh̃(qa)

. (10)

The correlation function of Eq. (10) is our main result. It
reduces to the DH result in the limit of vanishing ionic
diameter (̃h = 1). Furthermore, it coincides for any a > 0 with

π π π π

qa

h
(q

a
)

~

FIG. 1. The h̃ function as a function of qa for three modified
interactions considered in Sec. II according to Eq. (8): a minimal
distance cutoff (co, solid black line), an internal charge density of
a homogeneous spherical shell (sh, dot-dashed red line), and an
internal charge density of a homogeneous sphere (sp, dashed blue
line). All functions are even and satisfy h̃(0) = 1.

the DH result up to quadratic order in q with

G̃(qa � 1) ≈ 2nse2

κ2
D

q2. (11)

This q expansion to leading order satisfies two important
conditions. The vanishing zeroth order [G̃(0) = 0] expresses
electroneutrality, while the second-order coefficient satisfies
the Stillinger-Lovett second-moment condition [9–11]. We
emphasize that G is the two-point correlation function, which
originates only from Gaussian fluctuations of the charge den-
sity, ρ, similarly to the DH correlation function.

The real-space behavior of the correlation function is ob-
tained from the inverse Fourier transform of Eq. (10). Its
spatial dependence is given by exponential terms, determined
by the poles of G̃(q) [Eq. (10)] that solve the following
equation:

q2
0 + κ2

Dh̃(q0a) = 0. (12)

These poles are generally complex numbers, and at large
distances, the correlation function can be approximated by the
contribution of the pole whose imaginary part is closest to the
real axis from above. We denote this pole as q0 = ω + iκ with
κ > 0 and find that

G(r � a) ≈ A
e−κr

r
cos(ωr + φ), (13)

where A is the amplitude and φ the phase. Both A and φ can
be obtained analytically, but we rather focus on κ and ω, i.e.,
the value of the pole itself. An analysis of the pole captures
the qualitative behavior of the bulk electrolyte.

A. Correlation length

As is evident from Eq. (13), the real part of the pole,
Re(q0) = ω, defines a wave number of charge-density os-
cillations, while the imaginary part, Im(q0) = κ , defines the
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κDa

q 0
a

κ

ω

FIG. 2. Inverse decay length κ (blue) and oscillation wave num-
ber ω (red) for the cutoff modified interaction (̃h = h̃co). The left
dashed line marks the Kirkwood line, κ∗

D, beyond which damped
charge-density oscillations are formed. Beyond the right dashed line,
oscillations no longer decay, which signifies the formation of long-
range order according to this model.

charge-density inverse screening length. A purely imaginary
q0 = iκ describes a gaslike phase with a finite correlation
length, 1/κ . A general complex q0 corresponds to a liq-
uidlike disordered phase, with finite-ranged charge-density
oscillations. Finally, a purely real q0 = ω infers a long-range
order of alternating positive and negative charges having a
wavelength 2π/ω. Plots for q0 as a function of κD [Eq. (12)]
for the different modified Coulomb interactions are presented
in Figs. 2 and 3.

The inverse decay length and oscillation wave number that
correspond to the cutoff interaction, h̃co, are depicted in Fig. 2.
Inserting this interaction in Eq. (12) restores the exact same
criterion for the decay length found by Kirkwood [12,13]. For
very dilute solutions (κDa � 1), the DH result is restored with
q0 = iκD. For higher concentrations, the correlation is purely
decaying, and the inverse decay length, κ , increases with κD

and slightly differs from the DH result. This behavior persists
up to the Kirkwood line, κD = κ∗

D (left dashed line), where
the pole has a nonzero real part, ω > 0, and the finite-ranged
charge-density fluctuations become damped oscillatory.

Beyond the Kirkwood line, the wave number increases
as the inverse decay length decreases. For high κD values,
the inverse decay length vanishes for the cutoff modified
interaction (right dashed line), and the pole is purely real,
corresponding to a long-range order. This behavior, as is
plotted in Fig. 2, qualitatively restores also the results of Lee
and Fisher [23], obtained using the GDH theory. We note that
such a long-range order is different than a solid salt crystal
and is expected to be unstable at high concentrations. This un-
physical high-concentration limit is resolved by considering
different modified interactions.

The inverse decay length and oscillation wave number that
correspond to the modified interaction of an internal charge
density distributed on a spherical shell, h̃sh, is depicted in

κDa

q 0
a

ω

κ

FIG. 3. Inverse decay length κ (blue) and oscillation wave num-
ber ω (red) for an internal ionic charge density on a spherical shell
(̃h = h̃sh ). The dashed line marks the Kirkwood line, κ∗

D, beyond
which damped charge-density oscillations are formed. There is no
transition to pure oscillations (long-range order) in this case.

Fig. 3. Similarly to the cutoff interaction of Fig. 2, q0 is
purely imaginary for low ionic concentrations, and oscilla-
tions start to occur at the Kirkwood value, κD = κ∗

D (dashed
line), whose value is larger than in the cutoff case of Fig. 2.
However, unlike the case plotted in Fig. 2, here the disordered
phase persists for arbitrarily high ionic concentrations, and no
long-range order is formed. Rather, the inverse decay length
gradually decays with κD. Finally, for the modified interaction
due to a homogeneous spherical ionic charge density (̃hsp) of
each ion, the results are qualitatively similar to those plotted
in Fig. 3 and are not presented explicitly.

It is evident that charge-charge correlations in dilute elec-
trolytes exhibit the same dependence on κD, regardless of
the exact form of the modified interaction. This is sensible,
because the typical separation between ions in a dilute so-
lution exceeds the ionic diameter, making finite-size effects
less significant. This universal behavior in the dilute limit is
analyzed below in Sec. III B. In the opposite limit of con-
centrated electrolyte, Figs. 2 and 3 demonstrate qualitatively
different results for the two types of modified interactions.
This concentrated limit is further explored below in Sec. III C.

B. Dilute electrolyte limit

For low ionic concentrations, similarly to the DH result,
the inverse decay length is expected to be small. Therefore,
the poles of the correlation function in q space occur at small
values. They can be found from an expansion of h̃ in powers
of qa, h̃(x) ≈ 1 + Ax2 + Bx4, where A < 0 and B > 0. Such
second- and fourth-order terms are in accordance with the
modified interactions considered in this work.

Substituting the small qa expansion of h̃ in Eq. (10) yields
the following equation for the pole, q0:

(q0a)4 + (q0a)2

[
1

B(κDa)2
+ A

B

]
+ 1

B
= 0. (14)
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κDa

κ
D
/κ

~ (κDa)2

FIG. 4. The decay length normalized by the Debye length, κD/κ ,
as function of κDa (log-log scale) for two possible internal charge
densities: a homogeneously charged spherical shell (solid blue line)
or homogeneously charged sphere (dashed red line). For low con-
centrations, κ = κD, as determined by DH theory. In the concentrated
electrolyte limit, the inverse decay length scales according to κD/κ ∼
(κDa)2.

For very low ionic concentrations (κDa � 1), Eq. (14)
simplifies to q2

0κ
−2
D + 1 = 0, restoring the DH result q0 =

iκD. The Kirkwood value κ∗
D is found as the root of the

discriminant of Eq. (14), i.e.,

κ∗
Da = (

√
4B − A)−1/2. (15)

At the Kirkwood value, the inverse decay length obtains its
maximal value, B−1/4.

We note that a low q expansion of the correlation function
and its poles is rather general and can also be performed
within other frameworks. Interestingly, the inverse decay
length, obtained from the low-concentration q0 of Eq. (14),
agrees with experimental results taken from Ref. [35] for low
and moderate concentrations. This is explored further in the
Appendix.

C. Concentrated-electrolyte limit

At high ionic concentrations, κDa � 1, the oscillation
wave number, ω = Re(q0), saturates, while the inverse decay
length, κ = Im(q0), gradually decreases (Figs. 2 and 3). We
assume that κ decays algebraically with the ionic concentra-
tion, according to κa = b(κDa)−α , where b and α are positive
numbers. In order to determine the value of the decay expo-
nent, α, this expansion is substituted in the left-hand side of
Eq. (12), and the pole of the correlation function is found by
equating separately the real and imaginary parts of all orders
of κDa to zero.

The oscillation wave number is determined by solving for
the highest-order term in κD, κ2

Dh̃(ωa) = 0. The next-order
term vanishes for

κ2−α
D h̃′(ωa)b = 0. (16)

We distinguish between two possible solutions. For b = 0,
the inverse decay length is identically zero, as is the case
for the cutoff interaction with h̃co. Alternatively, ωa can be
a degenerate root of h̃, such that h̃′(ωa) = 0 and κ decays
gradually. This is the case for the internal charge densities,
where h̃ ∼ w̃2(qa). We focus on this latter case and find the
appropriate α from the next order term,

(ωa)2 − 1
2 h̃′′(ωa)b2(κDa)2−2α = 0, (17)

resulting in α = 1. This result can be written in the form
κD

κ

∣∣∣
κDa�1

∼ (κDa)2. (18)

The above relation is in accordance with our numerical
calculations of κ for h̃sh and h̃sp, as is demonstrated in
Fig. 4. The above scaling does not coincide with the master
curve produced in Ref. [35] from experimentally measured
decay lengths, where another scaling law is proposed:
κD/κ ∼ (κDa)3.

IV. DISCUSSION

We propose a simple theory to account for the finite ion
size and its effect on charge-charge correlations. Rather than
adding higher-order terms that couple the charge density to
the ionic concentration by short-range repulsions, some of the
short-range part of the Coulombic interaction is subtracted.
This modification of the two-body Coulomb interaction is
simply expressed in Fourier space by the function h̃(qa). Such
a general modification can be easily extended and can also be
interpreted in terms of nonlocal electrostatic effects [28,29].

It is important to note that the short-range modification of
the Coulombic kernel affects the charge-density correlation
only due to microstates where some ions are separated by
distances smaller than a. This is the reason that the modified
electrostatic energy due to an internal ionic charge density
[Eq. (4)] was used in previous works to describe soft penetra-
ble ions, such as polyelectrolytes [45–47]. It was shown that
the internal charge density can result in charge inversion and
overscreening [42], as well as a Kirkwood crossover [43].

In the case of simple ions, penetrability is possible if a is
interpreted, for example, as the hydrated ion diameter rather
than the bare hardcore that is impenetrable due to Pauli’s
exclusion principle. In addition, we find this description useful
for concentrated electrolytes, because the smearing of the
charge diminishes the nonphysical magnitude of the interac-
tions at small ionic separations, r < a. Such a procedure is
also used to bypass divergent self-energies in field-theoretical
descriptions [48]. Similarly, it was shown that the mean
spherical approximation (MSA) can be interpreted in terms
of the interaction between such spherical charged shells [49].

The modified interaction between ions with an internal
charge density has a notable physical feature. For high ionic
concentrations, rather than pure charge oscillations, it yields
damped oscillations (Fig. 3), which decay according to κa ∼
1/κDa. This scaling was also observed in MC simulations
for closely packed ionic liquids [40], by varying the temper-
ature for a fixed ionic concentration. However, the scaling
was observed only close to the Kirkwood line and was not
extended to much larger κD values. In this large-κD limit,
the charge-frustrated Ising model of Ref. [40] predicts pure
charge oscillations.
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Recent SFA experiments [35] suggest that the electrostatic
forces decay with an inverse decay length that decreases
more rapidly with the ionic concentration. The relation κa ∼
1/(κDa)2 was shown to be satisfied by several concentrated
electrolytes and ionic liquids [35], which fall on a master
curve when κa is plotted as a function of κDa for all the
chemical systems studied. This experimental scaling was also
inferred recently [50] from the surface excess of fluorescein
in thin films of concentrated ionic solutions. The excess was
determined from the detection of fluorescent emission, and it
was related to the electrostatic decay length.

One reason for the different scaling in our work and the
experimental results lies in the different meanings of κ and κD.
The inverse decay length, κ , in our work is derived from the
charge-density correlation length in the bulk electrolyte rather
than surface properties or intersurface forces. Although these
length scales are expected to coincide in the limit of large
surface separations, surface effects may prevent a clear iden-
tification of the measured screening length with the predicted
bulk correlation length for charge fluctuations. For example,
optical-tweezers experiments on charged colloids in nonpolar
solvents [51] suggest that surface charge-regulation may be
the origin of the nonmonotonic behavior of the electrostatic
decay length observed in that system. We note that future
scattering experiments may provide a more direct measure
of the bulk correlation length without complications due to
surface effects in SFA.

The inverse Debye length κD =
√

2e2ns/εkBT also de-
serves attention, due to its dependence on the dielectric con-
stant, ε. In our work, the dielectric constant is independent
of the ionic concentration, and the pure solvent value is used.
In Ref. [35], on the other hand, κD is given in terms of the
dielectric constant of the electrolyte solution, ε(ns). The static
dielectric constant of electrolytes decreases with concentra-
tion for simple salts in water [52–54], due to excluded solvent
volume and electrostatic correlations between the solvent and
solute [54]. For concentrated electrolytes, we have found that
κ ∼ 1/κD ∼ √

ε. The decrement of the dielectric constant,
ε(ns), thus suggests a further decrement of κ . However, this
effect is not strong enough in order to solely explain the
experimental scaling of κ ∼ 1/κ2

D.
Another plausible explanation for the difference between

our predictions and the measured scaling are electrostatic
correlations that lie outside the scope of our Gaussian frame-
work. Extreme correlations in the form of an ionic crystal
were considered in Refs. [36,37]. We believe that in the
fluid state (which is relevant for aqueous solutions of NaCl
<6 M [38], where anomalous screening is already observed),
a more physical picture involves ionic clusters (or blobs) of
partially correlated ions. Our framework can be used in the
future to describe the interaction between such clusters.

We note that our theory cannot be extended to arbitrar-
ily high ionic concentrations within the above concentrated
electrolyte limit. At sufficiently high concentrations, the elec-
trolyte approaches a critical point, where it phase separates
into two electrolytes of different concentrations [22]. Close
to this phase transition, large concentration (n) fluctuations
occur [22], and the present formulation for a homogeneous
electrolyte must be refined. This is evident, for example,
from the term ∼ρ2/ns in Eq. (2), which can be strongly

affected by fluctuations where the ion density is far from its
average (e.g., small local values of ns). However, we note that
such fluctuations were not observed in the above mentioned
experiments.

For high concentrations, ion pairing can also become
significant [55–58]. Ion pairing was even suggested as a
mechanism for the observed under-screening [58]. However,
for simple salts such as NaCl, pairing is not expected to be
substantial for concentration of a few molars, as is indicated,
for example, by dielectric data [54].

Finally, we mention possible future extensions of our
theory. One can consider other modified interactions and,
more specifically, other internal-charge form factors. For ex-
ample, rather than describing simple ions, the form factors
can correspond to correlated ion clusters, as was suggested
above. Another possibility is to model the solvent explicitly as
charge dipoles in order to account for the dielectric decrement
in the presence of ions. An explicit treatment of solvent is
also important for the structural force between surfaces at
small separations, originating from nonelectrostatic forces
of concentrated solvent [41]. The compact analytical form
of the correlation function [Eq. (10)] should be helpful for
developing such extensions in future studies.
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FIG. 5. Inverse decay length inferred from two surface-force
experiments [35]: (i) aqueous NaCl solution (red circles) and (ii) an
ionic liquid [C4C1Pyrr][NTf2] mixed with propylene carbonate (blue
squares). The black curves were fit to the data by solving Eq. (14)
and treating A and B as fit parameters. For higher concentrations, the
decay length of Eq. (14) vanishes and undamped charge oscillations
occur.
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APPENDIX: THE DILUTE-LIMIT EXPANSION AND ITS
COMPARISON TO EXPERIMENTAL DATA

The inverse decay length, obtained from the low-
concentration q0 of Eq. (14), agrees with the experimental
results of Ref. [35] for low and moderate concentrations.
Figure 5 presents data from two experiments in Ref. [35]
for the electrostatic decay length of an aqueous NaCl solu-
tion (red circles) and an ionic liquid in propylene carbonate
(blue squares). The black curves correspond to the solution
of Eq. (14), with the coefficients A and B treated as fit
parameters. For the NaCl solution, the fitted values are A =
−1.94, B = 0.50, while for the ionic liquid, they are A =
−1.34, B = 0.32.

Negative A values are expected from the Taylor expansion
of the h̃ functions of Eq. (8), reflecting how the Coulombic
interaction is diminished. Smaller A values correspond to

larger values of the Kirkwood line, κ∗
Da. The B values, on

the other hand, correspond to the peak of the inverse decay
length, which satisfies κa = B−1/4. In addition, a values were
inferred from x-ray-scattering experiments [59] for the ionic
liquid (a = 0.465 nm) and correspond to the average bare
ionic diameter of NaCl (a = 0.27 nm [44]). At high ionic
concentrations, the inverse decay length of Eq. (14) vanishes.

We note that a low-q expansion of a modified interaction
kernel can also be performed within other frameworks. For
example, within the Bazant-Storey-Kornyshev [28,29] model,
the nonlocal solution permittivity is expanded in powers of
the wave number, resulting in a modified interaction. The fit
to experimental data in Fig. 5, therefore, does not validate our
theory but rather demonstrates how a low-q modification of
the interaction kernel is in accordance with the experimental
data up to moderate ionic concentrations.
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