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Strain tensor selection and the elastic theory of incompatible thin sheets
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The existing theory of incompatible elastic sheets uses the deviation of the surface metric from a reference metric
to define the strain tensor [Efrati et al., J. Mech. Phys. Solids 57, 762 (2009)]. For a class of simple axisymmetric
problems we examine an alternative formulation, defining the strain based on deviations of distances (rather
than distances squared) from their rest values. While the two formulations converge in the limit of small slopes
and in the limit of an incompressible sheet, for other cases they are found not to be equivalent. The alternative
formulation offers several features which are absent in the existing theory. (a) In the case of planar deformations
of flat incompatible sheets, it yields linear, exactly solvable, equations of equilibrium. (b) When reduced to
uniaxial (one-dimensional) deformations, it coincides with the theory of extensible elastica; in particular, for a
uniaxially bent sheet it yields an unstrained cylindrical configuration. (c) It gives a simple criterion determining
whether an isometric immersion of an incompatible sheet is at mechanical equilibrium with respect to normal
forces. For a reference metric of constant positive Gaussian curvature, a spherical cap is found to satisfy this
criterion except in an arbitrarily narrow boundary layer.
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I. INTRODUCTION

In the past two decades there has been a renewed interest in
the elasticity of thin solid sheets in view of the wealth of surface
patterns and three-dimensional (3D) shapes that they exhibit
under stress [1–9]. In addition, experiments and models have
been devised for incompatible sheets, which contain internal
residual stresses even in the absence of external forces [10–29].
The study of such sheets has been motivated by their relevance
to morphologies in nature [10,18,19,21,30] and frustrated
self-assembly [30,31]. Incompatible sheets form nontrivial
3D shapes spontaneously. They can also be “programmed”
to develop a desired 3D shape [16,23,32–35].

The necessary existence of sheets with unremovable inter-
nal stresses is rationalized as follows. When treating a thin
solid sheet as a mathematical surface, its relaxed state is
characterized by a 2D reference metric tensor, ḡαβ , associated
with the intrinsic properties of the relaxed configuration, and a
reference second fundamental form, b̄αβ , related to its extrinsic
properties (curvature) [12]. [We shall use Latin indices
(i,j, . . .) for 3D coordinates and Greek indices (α,β, . . .) for
2D ones.] However, not any ḡαβ and b̄αβ correspond to a
physical surface. For the surface to be embeddable in 3D
Euclidean space, these forms must satisfy a set of geometrical
constraints [36, p. 203]. Thus, in general, an actual sheet will
be incompatible—its actual metric and second fundamental
form, aαβ and bαβ , will not coincide with their reference
counterparts—leading to unavoidable intrinsic stresses.

A covariant theory for incompatible elastic bodies has
been presented by Efrati, Sharon, and Kupferman (referred
to hereafter as ESK) [12] and successfully applied to several
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experimental systems [30,31,37]. Their elastic energy for a 3D
body reads

E3D =
∫
V
Aijkl ε̃ij ε̃kl

√
|ḡ|dV,

ε̃ij = 1

2
(gij − ḡij ), (1)

where the integration is over the unstrained volume, V , gij and
ḡij are the metric and reference metric, ḡ is the determinant of
the reference metric, andAijkl is the elastic tensor. To explicitly
distinguish the strain used by ESK we mark it with a tilde. ESK
also presented a dimensional reduction of this energy to two
dimensions for incompatible thin elastic sheets, resulting in a
sum of stretching and bending contributions,

ESK: E2D = Es + Eb = t

2

∫
A

Aαβγ δε̃αβ ε̃γ δ

√
|ḡ|dA

+ t3

24

∫
A

Aαβγ δbαβbγ δ

√
|ḡ|dA,

ε̃αβ = 1

2
(aαβ − ḡαβ), (2)

where t is the sheet thickness, the integral is over the unstrained
area, and ε̃αβ is the ESK two-dimensional strain tensor.

Arguably, the functional in Eq. (1) represents the simplest
covariant theory of incompatible elasticity. It makes a certain
choice of strain tensor, which is based on the relative deviations
of the distances squared from their rest values (the so-
called Green–St. Venant strain tensor [12,38,39]). In elasticity
theory the strain measure is regarded as a parametrization
freedom—so long as the stress tensor (and resulting energy
functional) is appropriately defined, different definitions of
the strain tensor will lead to the same equilibrium deformation
of the elastic body [39, Sec. 2.5]. Indeed, other choices
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of strain have been made in compatible elasticity, such as
the Biot strain tensor [40], which expresses the springlike
deviations of distances within the body. Generally, one can
write a dimensionless deviation of a certain variable � from
its reference �0 as � = 1

m�m
0

(�m − �m
0 ), where m is an arbitrary

number [38, p. 6]. In the limit of small deviations, � � 1, one
always gets � � (� − �0)/�0 for any m. Thus, it seems that
within linear elasticity of infinitesimal strains the choice of m

is immaterial.
Dimensional reduction of 3D linear elasticity to 2D thin

sheets introduces nonquadratic terms in the reduced energy
functional. As we shall see below, a different selection of the
strain tensor for the 3D body—the incompatible analog of
Biot’s strain—leads to nonquadratic terms in two dimensions
which differ from those obtained from Eq. (2). Thus, the
resulting theory is not equivalent to the ESK one. This holds
even in the case of a compatible sheet with a flat reference
metric [41,42]. The differences between the two formulations
are quantitatively small but have a qualitative effect on the
structure of the theory and the simplicity of its application. We
note that the present work is not the first to indicate the effect
of strain-tensor selection. Similar observations were made in
the context of compatible beam theory [43].

We begin in Sec. II by presenting the alternative formulation
based on Biot’s selection of 3D strain. We perform a reduction
to two dimensions, which is limited to axisymmetric surface
deformations along the principal axes of stress. In Sec. III we
apply the formulation to the simple example of a compatible
sheet that is uniaxially bent by boundary moments. We show
that it coincides in this case with the extensible elastica,
yielding a bent, unstrained, cylindrical shape, whereas the
choice made in Eq. (2) gives a cylinder with nonzero in-plane
strain. Section IV presents further applications to several
examples of incompatible flat disks. We derive linear equations
of equilibrium, and obtain their analytical solutions, for
problems which are described by nonlinear equations in the
ESK theory. Section V presents a self-consistency criterion,
based on the alternative formulation, for the stability of
axisymmetric isometric immersions of such disks with respect
to internal bending moments. We apply the criterion to the
case of a reference metric with constant positive Gaussian
curvature, whose isometric immersion is a spherical cap. In
Sec. VI we conclude and discuss future extensions of this
work.

II. ALTERNATIVE TWO-DIMENSIONAL FORMULATION
FOR SIMPLE DEFORMATIONS

We impose three requirements on the alternative formula-
tion for 2D incompatible sheets: (a) It should be invariant under
rigid transformations (rotations and translations). (b) In the
limit of incompressible compatible sheets it should converge
to the known Willmore functional [12]. (c) In the small-slope
approximation it should converge to the Föppl–von Kàrmàn
(FvK) theory [44].

The formulation presented here holds for a small subset
of problems which we can treat exactly. We consider a
disklike thin sheet of radius R, and parametrize it by the
polar coordinates (r,θ ). The relaxed length, squared, of a
line element on the sheet is given by the following reference

metric,

ḡαβ =
(

1 0
0 
2(r)

)
, ds2 = dr2 + 
2(r)dθ2, (3)

where dr is the relaxed arclength element along the radial
direction and 2π
(r) is the relaxed perimeter of a circle
of radius r around the disk center. Once 
(r) �= r the flat
configuration contains internal strains. While such a sheet
may have a complicated equilibrium deformation, we restrict
ourselves to surfaces of revolution. The 3D position of a
displaced point on the surface is given by

f(r,θ ) = [r + ur (r)]r̂ + ζ (r)ẑ, (4)

where ur is the radial displacement, ζ is the height function, r̂ is
a unit vector tangent to the sheet in the radial direction, and ẑ is
a unit vector in the perpendicular direction to the flat disk. Note
that, for an incompatible sheet, the case of ur (r) = ζ (r) = 0
does not correspond to a stress-free configuration.

The 2D energy functional of this system can be derived
out of a 3D formulation using the Kirchhoff-Love hypoth-
esis [12,23,41,45–47]. For this purpose we identify the 2D
sheet defined above with the midsurface of a 3D slab. Under
the Kirchhoff-Love set of assumptions the configuration of the
3D body is given by

f(r,θ,x3) = f(r,θ ) + x3n̂(r,θ ), (5)

where x3 ∈ [−t/2,t/2] is a coordinate in the direction n̂
normal to the midsurface,

n̂ = ∂r f × ∂θ f
|∂r f × ∂θ f| = (1 + ∂rur )ẑ − ∂rζ r̂√

(1 + ∂rur )2 + (∂rζ )2
. (6)

On a surface of constant x3, the length squared of an
infinitesimal line element is found, after some algebra, to be

df2 = [
arr − 2x3brr + x2

3crr

]
dr2

+ [
aθθ − 2x3bθθ + x2

3cθθ

]
dθ2, (7)

where aαβ = ∂αf · ∂βf, bαβ = −∂αf · ∂β n̂, and cαβ = ∂αn̂ ·
∂β n̂, are the first, second, and third fundamental forms.

On the other hand, following Biot’s approach [40, p. 17],
a pure deformation of that surface is represented by the
symmetric transformation matrix,(

dr ′

dθ ′

)
=

(
1 + ε

rr ε
rθ

ε
rθ 1 + ε

θθ

)(
dr


dθ

)
, (8)

where ε
αβ is the in-plane strain tensor of the constant-x3

surface. Note that this definition of the strain corresponds to
changes in length (not length squared). Thus,

df2 = dr ′2 + (
dθ ′)2

= [(1 + ε
rr )2 + (ε

rθ )2]dr2 + [(1 + ε
θθ )2 + (ε

rθ )2]

× (
dθ )2 + 2ε
rθ (2 + ε

rr + ε
θθ )
dθdr. (9)

Comparing Eqs. (7) and (9), we identify

ε
rr =

√
(1 + εrr )2 − 2x3brr + x2

3crr − 1, (10a)

ε
θθ =

√
(1 + εθθ )2 − 2x3bθθ/
2 + x2

3cθθ/
2 − 1, (10b)

ε
rθ = 0, (10c)

053003-2



STRAIN TENSOR SELECTION AND THE ELASTIC . . . PHYSICAL REVIEW E 95, 053003 (2017)

FIG. 1. (a) Deformation of an infinitesimal element in the radial direction [side view (r̂,ẑ) plane]. The relaxed length of the element is dr

(solid line), and the deformed length is |∂r f|dr . The radial strain component is εrr = |∂r f|dr−dr

dr
, as given by Eq. (11a). The angle φr satisfies

sin φr = ∂r f · ẑ/|∂r f|. Substituting f(r,θ ) from Eq. (4) in the latter relation and using Eq. (13b) gives φθθ = sin φr/
. In addition, by direct
differentiation it can be verified that φrr = ∂rφ

r as given by Eq. (13a). (b) Deformation of an infinitesimal sheet element in the azimuthal
direction [top view (r̂,θ̂ ) plane]. The relaxed length in this direction is 
dθ (solid line) and the deformed length is |∂θ f|dθ (dashed line). Thus,
the azimuthal strain is εθθ = |∂θ f|dθ−
dθ


dθ
, as given by Eq. (11b). (c) Deformation of an infinitesimal line element in the radial direction at height

x3 below the midsurface. By geometry, the shown angle dϑ = (1 + εrr )dr/R = (1 + ε
rr )dr/(R − x3). Using 1/R = (1 + εrr )−1dφr/dr and

solving for ε
rr gives Eq. (12a).

where

εrr = √
arr − 1 =

√
(1 + ∂rur )2 + (∂rζ )2 − 1, (11a)

εθθ = √
aθθ/
 − 1 = r



− 1 + ur



. (11b)

We have reached a definition of the midsurface in-plane
strains in terms of the actual and reference metrics, based on
the springlike deformed length rather than length squared.

The geometrical interpretation of these strains is illus-
trated in Fig. 1. The fact that the strains describe deformed
lengths [46, p. 41] leads at this stage to two simplifications.
First, the fundamental forms satisfy the simple relations, crr =
b2

rr/(1 + εrr )2 and 
2cθθ = b2
θθ /(1 + εθθ )2. Second, once

these expressions are substituted in Eqs. (10), we can rewrite
the strains at constant x3 as

ε
rr = εrr − x3φrr , (12a)

ε
θθ = εθθ − x3φθθ . (12b)

[See Fig. 1(c) for the geometrical meaning of these strains.]
Here we have defined the out-of-plane strains,

φrr = √
crr = (1 + ∂rur )∂rrζ − ∂rrur∂rζ

(1 + ∂rur )2 + (∂rζ )2
, (13a)

φθθ = √
cθθ/
 = 1




∂rζ√
(1 + ∂rur )2 + (∂rζ )2

. (13b)

Defining further φr and φθ as the tangent angles in the
radial and azimuthal directions of the surface of revolution,
we find φrr = ∂rφ

r and φθθ = (1/
)∂θφ
θ [see Fig. 1(a) and

the explanation in its caption]. This clarifies the geometrical
meaning of the “bending strains,” φrr and φθθ .

In the framework of linear elasticity the energy functional
of the 3D slab is given by [44]

E3D = E

2(1 − ν2)

∫ t/2

−t/2

∫ R

0

∫ 2π

0
[(ε

rr )2 + (ε
θθ )2 + 2νε

rrε

θθ ]

×
dθdrdx3, (14)

where E is Young’s modulus and ν the Poisson ratio.
Substituting Eq. (12) in Eq. (14) and integrating over x3 gives

E2D = Y

2

∫ R

0

∫ 2π

0

[
ε2
rr + ε2

θθ + 2νεrrεθθ

]

dθdr

+ B

2

∫ R

0

∫ 2π

0

[
φ2

rr + φ2
θθ + 2νφrrφθθ

]

dθdr, (15)

where Y = Et/(1 − ν2) is the stretching modulus and B =
Et3/12(1 − ν2) is the bending modulus. The first integral in
Eq. (15) is the stretching energy,

Es = 1

2

∫ R

0

∫ 2π

0
[σrrεrr + σθθ εθθ ]
dθdr, (16)

where the stress components σαβ = δE/δεαβ are given by

σrr = Y (εrr + νεθθ ), (17a)

σθθ = Y (εθθ + νεrr ). (17b)

Similarly, the second integral in Eq. (15) gives the bending
energy,

Eb = 1

2

∫ R

0

∫ 2π

0
[Mrrφrr + Mθθφθθ ]
dθdr, (18)

where the bending moments, Mαβ = δE/δφαβ , in the radial
and azimuthal directions are given by

Mrr = B(φrr + νφθθ ), (19a)

Mθθ = B(φθθ + νφrr ). (19b)

Looking back at the dimensional reduction performed, we
see why a generalization from axisymmetric deformations to
general ones, although possible, is going to be much more
cumbersome.

Let us now verify that the three requirements that we have
imposed on the energy functional are fulfilled by Eq. (15). The
first requirement, of invariance under rigid transformations,
is satisfied, since the strains have been derived from a pure
deformation matrix, Eq. (8), as discussed in the first chapter
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of Ref. [40]. Equivalently, Eqs. (16) and (18) can be rewritten
in terms of the tensor invariants,

Es = Y

2

∫ R

0

∫ 2π

0
[tr(ε)2 − 2(1 − ν) det (ε)]

√
|ḡ|dθdr,

Eb = B

2

∫ R

0

∫ 2π

0
[tr(ḡ−1c) + 2ν

√
det (ḡ−1c)]

√
|ḡ|dθdr,

which is manifestly invariant to rigid transformations. To
verify the second requirement, we take the incompressible
limit, aαβ → ḡαβ , and obtain Es = 0, φ2

rr → κ2
rr , and φ2

θθ →
κ2

θθ , where κrr and κθθ are the two principal curvatures on the
surface in the radial and azimuthal directions. Substituting the
latter relations in the second integral of Eq. (15), we obtain

Incompressible sheet:

Eb = B

2

∫ R

0

∫ 2π

0
[(κrr + κθθ )2 − 2(1 − ν)κrrκθθ ]
drdθ,

(20)

which coincides with the known Willmore functional [12].
Last, we verify the third requirement, that for compatible
sheets in the small-slope approximation our model converges
to the FvK theory [44]. Setting 
 = r and expanding the
in-plane strain, Eqs. (11), to linear order in ur and quadratic
order in ζ , we have εrr � ∂rur + 1

2 (∂rζ )2 and εθθ = ur/r . The
latter strains along with Eq. (16) yield the stretching energy in
the FvK approximation [48]. Similarly, the “bending strains,”
Eqs. (13), are approximated by φrr � ∂rrζ and φθθ � ∂rζ/r .
Substituting these in Eq. (18), we obtain the FvK bending
energy,

Small slope:

Eb � B

2

∫ R

0

∫ 2π

0

[(∇2
r ζ

)2−2(1−ν)[ζ,ζ ]
]
rdrdθ, (21)

where ∇2
r ζ ≡ 1

r
∂r (r∂rζ ) and [ζ,ζ ] ≡ 1

r
∂rζ ∂rrζ are the small-

slope approximations of the mean and Gaussian curvatures.

III. UNIAXIAL DEFORMATION BY BENDING

We would like to demonstrate the difference between the
ESK model and the one presented in the preceding section,
using the simplest example possible. Consider the uniaxial de-
formation of a compatible sheet by bending moments applied
at its edges. Alternatively, we can replace the moments by
purely geometrical boundary conditions on the configuration
at the edges, as given below. Since no in-plane axial forces
are applied, a particularly simple possibility is a purely bent
cylindrical deformation of the sheet’s midplane—an isometry
which contains no stretching energy (Fig. 2). Indeed, this
is the deformation obtained in this case from the theory
of extensible elastica [49–57], as we recall below. (By the
term extensible elastica we refer throughout this work to the
model for extensible elastic rods having a linear stress-strain
relation, as studied in Refs. [49–57]; we note that other variants
exist [53].)

To apply the formulation to this simple problem we
should reduce the 2D energy, Eq. (15), to one dimension.
Consider a radial cut of a θ -independent deformation as a

FIG. 2. A flat thin sheet is deformed into a cylinder of constant
radius without stretching of its midplane. This deformation is obtained
for the extensible elastica by applying bending moments, M0, on the
sheet edges or by imposing dφ/ds at the boundaries.

planar compatible filament [
(r) = 1]. Identify r → s, where
s ∈ [0,L] is the undeformed arclength along the filament, and
φr (r) → φ(s), the angle between the tangent to the filament
and the flat reference plane. We then have φ2

rr → φ2
ss =

(dφ/ds)2, εrr → εss , and φθθ = εθθ = 0. Substitution of these
relations in Eq. (15) gives

E1D = Es + Eb =
∫ L

0

[
Y

2
ε2
ss + B

2

(
dφ

ds

)2
]
ds. (22)

This functional coincides with the energy of an extensible
elastic filament in a planar deformation as given by the theory
of extensible elastica [54–57].

Alternatively, we could reduce the sheet into a filament
through an azimuthal cut along a narrow annulus of large
radius ρ, in which case dθ → ds, φ2

θθ → φss = [dφ/(
ds)]2,
and φrr = εrr = 0. We then obtain

E1D = Es + Eb =
∫ L′

0

[
Y

2
ε2
ss + B

2

(
dφ


ds

)2
]

ds. (23)

The parameter s now runs between 0 and L′, such that
L = ∫ L′

0 
ds is the total relaxed length. In addition, εss now
measures the in-plane strain with respect to the prescribed
metric. The energy of Eq. (23) is the extension of the extensible
elastica theory to the case of a nontrivial reference metric.

Returning to the ordinary elastica, we note that Eq. (22)
can be derived from a discrete model of springs and joints [56]
while enforcing from the outset the decoupling between the
stretching and bending contributions [47, p. 77]. In Eq. (22) this
decoupling is manifest in the independence of Es on φ, δEs

δφ
=

0, while Eb is independent of εss ,
δEb

δεss
= 0. In the absence

of boundary axial forces, the equations of equilibrium are
obtained from minimization of Eq. (22). Defining the in-plane
stress (acting to only locally stretch the filament) and bending
moment (acting only to change its local angle) as

σss ≡ δE1D

δεss

= Yεss, (24a)

Mss ≡ δE1D

δ
(

dφ

ds

) = B
dφ

ds
, (24b)

those equations of equilibrium are

σss = 0, (25a)

dMss

ds
= 0. (25b)
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When a constant moment M0 is applied at the boundaries
(Fig. 2), Eqs. (24a)–(25b) yield εss = 0 and φ(s) = φ(0) +
(M0/B)s. This solution corresponds to a circular arc of
radius B/M0 and total length L. Alternatively, if we impose
(dφ/ds)|s=0 = c, we get φ(s) = φ(0) + cs, corresponding to
a circular arc of radius 1/c. The energy of this configuration
is E1D = (B/2)c2L.

The strain-free cylindrical shape is preserved also in the
more complicated case of a nonuniform reference metric,
Eq. (23). Variation of this energy with respect to εss and φ

gives, as before, Eqs. (25), where the in-plane stress is given
again by Eq. (24a). The bending moment is modified to

Mss = δE1D

δ
(

1



dφ

ds

) = B




dφ

ds
, (26)

which replaces Eq. (24b). The in-plane strain (with respect
to the reference metric) vanishes. When we apply a moment
M0 at the boundaries, or impose (dφ/(
ds))|s=0 = c, we find
again a strain-free cylindrical shape with radius B/M0, or 1/c.

We now show that the ESK functional gives a different
result. We specialize Eq. (2) to the case of a compatible sheet
under uniaxial deformation. Since the deformation has zero
Gaussian curvature, we set ḡss = 1 and, from Eq. (2), obtain
ass = 1 + 2ε̃ss . In addition, we have

√|ḡ|dA → ds, tAssss →
Y , and t3

12Assss → B. Substituting these relations in Eq. (2)
gives

ESK: E1D =
∫ L

0

(
Y

2
ε̃2
ss + B

2
b2

ss

)
ds. (27)

The relations between the variables appearing in the ESK
equation (27) and the ones in Eq. (22) are ε̃ss = εss(1 + εss/2),
and bss = ∂s(

√
ass t̂) · n̂ = (1 + 2ε̃ss)1/2 dφ

ds
.

Naively, if we set the variations of the energy (27) with
respect to ε̃ss and bss to zero, we will get the same result as
above, i.e., a strain-free circular configuration with ε̃ss = 0,
bss = (dφ/ds)s=0 = c, and energy E1D = (B/2)c2L. Thus,
the coupling between ε̃ss and dφ/ds appearing in bss =
(1 + 2ε̃ss)1/2 dφ

ds
would not have an effect on the configuration.

However, the correct minimization is with respect to the
filament’s trajectory f(s). As shown in Appendix A, this is
equivalent to the minimization with respect to εss and φ. In
terms of these variables, Eq. (27) becomes

ESK: E1D =
∫ L

0

[
Y

2
[εss(1 + εss/2)]2

+ B

2
[1 + 2εss(1 + εss/2)]

(
dφ

ds

)2]
ds. (28)

The bending contribution to this energy depends on εss ,
which results in a strained configuration under the boundary
conditions given above. Specifically, minimization of the
energy in Eq. (28) with respect to εss and φ, under the
boundary condition (dφ/ds)s=0 = c, yields a circular arc,
φ(s) = φ(0) + cs, which nonetheless contains nonzero strain,
εss =

√
1 − 2Bc2/Y − 1. The energy of this configuration is

E1D = (B/2)c2L[1 − (B/Y )c2], slightly deviating from the
energy of the extensible elastica obtained above.

Two comments should be added concerning the difference
between the two models. (a) As demonstrated by the case of a

geometrical boundary condition on dφ/ds, the difference does
not arise from different definitions of the boundary bending
moment. (This remains correct if we impose the condition on
the apparent curvature, [dφ/d(1 + εss)s]s=0.) (b) In Ref. [12]
a term proportional to ε̃ss(dφ/ds)2 was neglected in the final
step. Clearly, its inclusion merely changes the numerical
coefficient in the second term of Eq. (28).

In summary, unlike the formulation of Sec. II, the ESK
model does not strictly reduce to the extensible elastica. Under
uniaxial bending at the boundaries it produces a small in-plane
strain, while our formulation and the extensible elastica predict
a strain-free cylindrical shape. The discrepancy is small and
vanishes in the incompressible limit of B/Y → 0. Moreover,
the correction terms are of order (B/Y )c2 ∼ (tc)2, which must
always be small in any elasticity theory of sheets of finite
thickness. Nevertheless, the effect of the coupling between
stress and bending moments goes beyond this simple 1D
example and profoundly affects the structure of the theory,
as will be shown in the following sections.

IV. EXACT SOLUTIONS FOR PLANAR DEFORMATIONS
OF INCOMPATIBLE SHEETS

We now demonstrate the advantage of the alternative
formulation in simple examples of flat configurations. In the
flat state the bending energy is zero and the equation of
equilibrium is obtained by minimizing the stretching energy
alone. To do so we first set ζ = 0 in Eqs. (11),

εrr = ∂rur , (29a)

εθθ = r



− 1 + ur



, (29b)

and then substitute Eqs. (29) in (16), obtaining

Es = 1

2

∫ R

0

∫ 2π

0

[
σrr∂rur + σθθ

(
r



− 1 + ur




)]

dθdr.

(30)
Minimization of Es with respect to ur gives the equation of
equilibrium,

∂r (
σrr ) − σθθ = 0, (31)

which expresses balance of forces in the radial direction (see
Fig. 3). Such equations, given in terms of the stresses, are
identical in the two models. The difference enters when one
specifies the constitutive law, i.e., the strains associated with
these stresses. (See also the Supplemental Material [58].)
Substituting the in-plane strains, Eqs. (29), in the stress
components, Eqs. (17), and then in (31), we obtain the equation
of equilibrium in terms of ur alone,


∂r (
∂rur ) − ur = r − 
 − ν
(1 − ∂r
). (32)

This second-order equation for ur is supplemented by two
boundary conditions: vanishing stress at the free edge,
σrr |r=R = 0 and vanishing displacement at the origin. The
resulting conditions are

[
∂rur + νur + ν(r − 
)]r=R = 0, (33a)

ur |r=0 = 0. (33b)
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FIG. 3. Radial force balance on an infinitesimal element of a flat
sheet [59, p. 65]. At the point P we have contributions from the
two radial stresses, (σrr )1
dθ and −(σrr )3
dθ , and from the two
azimuthal stresses −(σθθ )2dr sin(dθ/2) and −(σθθ )4dr sin(dθ/2).
Balancing these terms gives Eq. (31).

Importantly, unlike earlier analysis of the same prob-
lem [13], Eqs. (32) and (33) are linear and therefore solvable.
To demonstrate this key advantage we now derive exact
solutions of Eq. (32) for three types of reference metrics: flat,
elliptic, and hyperbolic (see Fig. 4).

In the following subsections we compare the results
obtained from analytical solutions of our model for the
different reference metrics with those obtained from the ESK
nonlinear equations. To assure a meaningful comparison we
examine the following: (a) the radial displacement ur , which
is an unambiguous experimental observable; (b) the stress
components obtained by variation of the energy with respect
to the strain ε (not the metric-based one, ε̃) for both models. In
the Supplemental Material [58] we elaborate on the relations
between these stress tensors in the two theories.

A. Flat metric

A flat reference metric is given by


(r) = αr, (34)

where α < 1. Substituting Eq. (34) in Eqs. (32) and (33a)

gives

α2r∂r (r∂rur ) − ur = (1 − α)(1 − να)r, (35a)

[αr∂rur + νur + ν(1 − α)r]r=R = 0. (35b)

Equation (35a) replaces the nonlinear Eq. (10) of Ref. [13]
which could be solved only numerically. The solution to
Eq. (35a) is given by

ur (r) = A0r
1/α + B0r

−1/α − 1 − αν

1 + α
r, (36)

where A0 and B0 are constants to be determined by boundary
conditions. The vanishing displacement at the disk center,
Eq. (33b), is satisfied for B0 = 0. The value of A0 is determined
by the second boundary condition (35b). This gives

ur (r) = −1 − αν

1 + α

[
1 − (1 − ν)α

1 − αν

(
r

R

)1/α−1]
r. (37)

Substituting Eq. (37) in Eqs. (29) and then in Eqs. (17), we
obtain the radial and azimuthal stress components,

σrr (r) = − Et

1 + α

[
1 −

(
r

R

)1/α−1]
, (38a)

σθθ (r) = − Et

1 + α

[
α −

(
r

R

)1/α−1]
. (38b)

Note that the stress components do not depend on ν.
Note also that the azimuthal stress becomes positive at rcr =
αα/(1−α)R, whereas the radial one is always negative. The
problem can be solved for other boundary conditions, e.g., for
an annulus with inner radius Ri and outer radius Ro, and with
free boundary conditions at its two rims. The solution reads

ur = α(1 − ν)

1 + α

[
1 − ρ1/α+1

1 − ρ2/α

(
r

Ro

)1/α−1

− 1 + ν

1 − ν

1 − ρ1/α−1

1 − ρ2/α

(
Ri

r

)1/α+1

− 1 − να

α(1 − ν)

]
r,

(39a)

FIG. 4. Layouts of the three considered reference metrics. (a) Flat metric, Eq. (34). When the two radii (dash-dotted red lines) are held
together, the rest length of concentric circles on the closed disk becomes 2παr < 2πr . (b) Elliptic metric, Eq. (40). Gluing together the two
curved dash-dotted red lines creates a frustrated disk, where concentric circles have rest length of 2π
(r) < 2πr . (c) Hyperbolic metric,
Eq. (47). In this panel dashing represents unseen lines; concentric circles have rest length 2π
(r) > 2πr , causing pieces of the disk to be
placed in the relaxed configuration one over the other (marked in blue). Attaching together the lower (hidden) red-dashed line with the upper
solid red line results in a disk with a hyperbolic metric.
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FIG. 5. Comparison between the exact solution for the radial
displacement [Eq. (39a); black, solid line] and the numerical solution
of Eq. (10) in Ref. [13] (dashed, blue line) for a flat reference metric.
We consider an annulus with inner and outer radii Ri = 0.1 and
Ro = 1.1. In accordance with the example in Ref. [13], we use ν = 0.

σrr = − Et

1 + α

[
1 − 1 − ρ1/α+1

1 − ρ2/α

(
r

Ro

)1/α−1

− 1 − ρ1/α−1

1 − ρ2/α

(
Ri

r

)1/α+1
]
, (39b)

σθθ = − Et

1 + α

[
α − 1 − ρ1/α+1

1 − ρ2/α

(
r

Ro

)1/α−1

+ 1 − ρ1/α−1

1 − ρ2/α

(
Ri

r

)1/α+1
]
, (39c)

where ρ ≡ Ri/Ro. In Fig. 5 we compare the exact analytical
solution for the radial displacement, Eq. (39a), with the
numerical solution of the formalism given in Ref. [13].
The two theories converge to the same solution as α → 1.
However, away from this nearly Euclidean regime there
are significant differences in the resultant displacements.
Since the displacement is an unambiguous observable, these
differences underline the fact that the two formulations are
not equivalent. Figure 6 presents a similar comparison of the
plane stresses obtained from the two theories.

B. Elliptic metric

An elliptic reference metric is given by


(r) = 1√
K

sin(
√

Kr), (40)

where K is a constant positive reference Gaussian curvature.
Substituting Eq. (40) in Eqs. (32) and (33a) gives

sin(r)∂r [sin(r)∂rur ] − ur

= r − sin(r) − ν sin(r)[1 − cos(r)], (41a)

{sin(r)∂rur + νur + ν[r − sin(r)]}r=R = 0, (41b)

where we have rescaled the lengths r and ur by K−1/2. The
following expression is verified to be the general solution by
direct substitution in Eq. (41a):

ur (r) = A0 tan(r/2) + B0 cot(r/2) − r

− 2(1 + ν) cot(r/2) ln[cos(r/2)]. (42)

We set B0 = 0 to satisfy the vanishing displacement at the
disk center, Eq. (33b), and determine A0 by the boundary
condition (41b), obtaining

ur (r) = −r − 2(1 − ν) ln[cos(R/2)] cot2(R/2)

×
(

1 + 1 + ν

1 − ν

cot2(r/2)

cot2(R/2)

ln[cos(r/2)]

ln[cos(R/2)]

)
tan(r/2).

(43)

Note that the solution diverges for r = rn = nπ where n is a
positive integer. At such points the reference metric, Eq. (40),
vanishes, i.e., these divergencies correspond to unphysical
cases where the rest length shrinks to zero. Substituting
Eq. (43) in Eqs. (17), we obtain the distributed stress on
the disk,

σrr (r) = −Et

(
1 − cot2(r/2)

cot2(R/2)

ln[cos(r/2)]

ln[cos(R/2)]

)

× ln[cos(R/2)] cot2(R/2)

cos2(r/2)
, (44a)

σθθ (r) = −Et

(
1 + ln[cos(r/2)]

sin2(r/2)
+ cot2(R/2)

× ln[cos(R/2)]

cos2(r/2)

)
. (44b)

FIG. 6. Comparison between the exact plane-stress solutions [Eqs. (39), black solid line] and the numerical solution of Eq. (10) in Ref. [13]
(dashed blue line) for a flat reference metric. Parameters are as in Fig. 5.
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Once again, the solution is independent of the Poisson ratio.
In order to compare our exact solution to the numerical one obtained in Ref. [13], we also derive the displacement and the

planar stress in an annulus with free boundary conditions. In this case the constants A0 and B0 in Eq. (42) are

A0 = 4(1 − ν)

cos(Ri) − cos(Ro)
cos2(Ri/2) cos2(Ro/2){ln[cos(Ri/2)] − ln[cos(Ro/2)]}, (45a)

B0 = 1 + ν

cos(Ri) − cos(Ro)
{[1 + cos(Ri)][1 − cos(Ro)] ln[cos(Ri/2)] − [1 − cos(Ri)][1 + cos(Ro)] ln[cos(Ro/2)]}, (45b)

and the stress components become

σrr = −2Et

[
1 +

(
1 − cos(Ri) − cos(Ro)

cos(r) − cos(Ro)

cos2(r/2)

cos2(Ri/2)

ln[cos(r/2)]

ln[cos(Ri/2)]

)
1 + cos(Ri)

1 + cos(Ro)

cos(r) − cos(Ro)

cos(Ri) − cos(r)

ln[cos(Ri/2)]

ln[cos(Ro/2)]

]

× 1 + cos(Ro)

sin2(r)

cos(Ri) − cos(r)

cos(Ri) − cos(Ro)
ln[cos(Ro/2)], (46a)

σθθ = −Et

[
1 + ln[cos(r/2)]

sin2(r/2)
+ 4

(
1 − cos2(Ri/2)

cos2(Ro/2)

1 − cos(Ro) cos(r)

1 − cos(Ri) cos(r)

ln[cos(Ri/2)]

ln[cos(Ro/2)]

)

× cos2(Ro/2)

sin2(r)

1 − cos(Ri) cos(r)

cos(Ri) − cos(Ro)
ln[cos(Ro/2)]

]
. (46b)

In Fig. 7 we compare the radial displacement obtained from this exact solution, Eqs. (42) and (45), to the numerical solution
of Eq. (10) in Ref. [13]. In addition, Fig. 8 compares the radial and azimuthal stress components of the two models. The two
solutions converge for a narrow annulus and differ significantly as the annulus becomes wider. (Note that increasing Ro is
equivalent to increasing K .)

C. Hyperbolic metric

A hyperbolic reference metric is given by


(r) = 1√
K

sinh(
√

Kr). (47)

The equation of equilibrium and the boundary condition are obtained by substituting Eq. (47) in Eqs. (32) and (33a),

sinh(r)∂r [sinh(r)∂rur ] − ur = r − sinh(r) + ν sinh(r)[1 − cosh(r)], (48a)

{sinh(r)∂rur + νur + ν[r − sinh(r)]}r=R = 0, (48b)

where again we have rescaled r and ur by K−1/2. Since Eq. (48a) is obtained from (41a) by a Wick transformation,

r → ir, ur → iur , (49)

we immediately obtain from Eqs. (43) and (44) the solution

ur (r) = −r + 2(1 − ν) coth2(R/2) ln[cosh(R/2)]

(
1 + 1 + ν

1 − ν

coth2(r/2)

coth2(R/2)

ln[cosh(r/2)]

ln[cosh(R/2)]

)
tanh(r/2), (50a)

σrr (r) = Et

(
1 − coth2(r/2)

coth2(R/2)

ln[cosh(r/2)]

ln[cosh(R/2)]

)
ln[cosh(R/2)] coth2(R/2)

cosh2(r/2)
, (50b)

σθθ (r) = −Et

(
1 − ln[cosh(r/2)]

sinh2(r/2)
− cosh2(R/2)

ln[cosh(R/2)]

cosh2(r/2)

)
. (50c)

It is readily verified that this solution satisfies the boundary
condition (48b).

Similarly, the radial displacement and the stress distribution
in an annulus with hyperbolic reference metric is obtained from
Eqs. (46) via a Wick transformation, Eq. (49). In Figs. 9 and 10
we compare these solutions to the one obtained in Ref. [13].

Exact solution for the radial displacement [Eqs. (42)
and (45); black solid lines], plotted alongside the numerical
solution of Eq. (10) in Ref. [13] (dashed blue lines) for an
elliptic reference metric. Displacement and radial position
are both normalized by the reference Gaussian curvature.
Results are presented for an annulus of normalized inner radius
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FIG. 7. Exact solution for the radial displacement [Eqs. (42)
and (45); black solid lines], plotted alongside the numerical solution
of Eq. (10) in Ref. [13] (dashed blue lines) for an elliptic reference
metric. Displacement and radial position are both normalized by the
reference Gaussian curvature. Results are presented for an annulus
of normalized inner radius

√
KRi = 0.1, ν = 0, and two different

values of
√

KRo as indicated.

√
KRi = 0.1, ν = 0, and two different values of

√
KRo as

indicated.

V. STABILITY CRITERION FOR
ISOMETRIC IMMERSIONS

An isometric immersion refers to a strain-free configura-
tion, εαβ ≡ 0, leading to Es = 0. It is obviously the minimizer
of the elastic energy for B = 0. In this section we do not
directly seek the minimizer of the total energy, Eq. (15),
but check whether the isometric immersion happens to be
a minimizer also for B > 0. Since this configuration already
minimizes Es , we need to check only whether it also minimizes
Eb. Note, however, that there are two different routes for such
minimization: (a) set εαβ = 0 in Eb and then minimize with
respect to curvature alone; (b) minimize Eb with respect to
both strain and curvature and only then set the strain to zero,
which is the appropriate route. It is straightforward to show
that in our model the two routes are equivalent. This is because
the strain appears only quadratically in the energy [see, for
example, Eq. (22)] and, therefore, setting the strain to zero,
either before or after minimization, eliminates the same terms.
However, in the ESK model the additional coupling term in the

bending energy is linear in the strain [compare, for example, to
Eq. (27)], leading to different results of the two routes. Hence,
we conclude that the two theories should give the same results
in case (a) but may differ in the appropriate minimization,
case (b).

For a given reference metric of the form of Eq. (3),
i.e., for a given 
(r), the requirement of vanishing strain
uniquely determines the configuration of the sheet up to rigid
transformations. Indeed, setting Eqs. (11) to zero, we obtain

ur (r) = 
 − r, (51a)

∂rζ =
√

1 − (∂r
)2. (51b)

We can now check whether this configuration satisfies local
mechanical equilibrium of bending moments.

We substitute in Eq. (18) φrr = ∂rφ
r and φθθ = sin φr/


[see Fig. 1(a)],

Eb = 1

2

∫ R

0

∫ 2π

0
[Mrr∂rφ

r + Mθθ sin φr/
]
dθdr, (52)

and minimize with respect to φr ,

∂r (
Mrr ) − cos φrMθθ = 0, (53a)

Mrr |r=R = 0. (53b)

[As has been done for the uniaxial bending case
(Appendix A), one can show here as well that this min-
imization is equivalent to the appropriate one with respect
to the spatial configuration; see Supplemental Material [58].]
Equation (53a) expresses balance of moments on an infinitesi-
mal sheet element in the radial direction [47,60]. The boundary
condition, Eq. (53b), imposes the vanishing of radial bending
moment at the free edge.

Our aim now is to check whether the displacements given
by Eqs. (51) also satisfy Eqs. (53). To this end we first express
φrr and φθθ in terms of 
(r) using Eqs. (13) and (51),

φrr = −∂rr
/
√

1 − (∂r
)2, (54a)

φθθ =
√

1 − (∂r
)2/
. (54b)

In addition, we have [see the relation between φθθ and the
angle φr in Fig. 1(a) and its caption]

cos φr = ∂r
. (55)

FIG. 8. Comparison between the exact plane-stress solutions, Eqs. (46) (black solid lines), and numerical results based on Ref. [13] (dashed
blue lines) for an elliptic reference metric. Parameters are as in Fig. 7.
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FIG. 9. Exact solution for the radial displacement (black solid
lines), plotted alongside the numerical solution of Eq. (10) in Ref. [13]
(dashed blue lines) for a hyperbolic reference metric. Displacement
and radial position are both normalized by the reference Gaussian
curvature. Results are presented for an annulus of normalized inner
radius

√
KRi = 0.1, ν = 0, and two different values of

√
KRo as

indicated.

Substituting Eqs. (54) in Eqs. (19), and the result, along with
Eq. (55), in Eqs. (53), we obtain an equation and a boundary
condition for 
(r) alone,

∂r (
∂rr
/
√

1 − (∂r
)2) + ∂r

√

1 − (∂r
)2/
 = 0, (56a)

[∂rr
/
√

1 − (∂r
)2 − ν
√

1 − (∂r
)2/
]r=R = 0. (56b)

Equations (56) are a self-consistency condition for the
reference metric, which must be satisfied for the isometric
immersion to be an equilibrium configuration of the total
energy. (It should be stressed that, if a certain isometric
immersion does not satisfy this condition, it can still become
the equilibrium configuration asymptotically, in the limit of
vanishing B/Y [61].)

The displacements, Eqs. (51), and the bulk equilibrium
equation, Eq. (56a), do not depend on ν. Hence, any solution
but the trivial flat configuration, 
(r) = r , will violate, in
general, the boundary condition (56b), which does depend
on ν explicitly. In Ref. [13] it was shown that such boundary
conditions may be taken care of by boundary layers. Thus,

up to a small correction at the boundary (which vanishes in
the limit of zero thickness), an isometry that satisfies the bulk
condition, Eq. (56a), may be in mechanical equilibrium even
if the boundary condition (56b) is not satisfied.

Let us now check the stability condition, Eq. (56a), for the
examples of flat and elliptic reference metrics. In the case of
a hyperbolic one, Eq. (47), the isometric immersion is not a
surface of revolution [32], and therefore lies outside the scope
of this work. [Substituting Eq. (47) in the height function,
Eq. (51b), produces an imaginary result.]

Considering a flat reference metric, 
(r) = αr , we imme-
diately find that the self-consistency condition, Eq. (56a), is
violated, and conclude that any isometric immersion of this
metric will be unstable for B > 0. The isometric immersion
of the flat metric is a cone with an opening angle ϑ =
2 tan−1 (α/

√
1 − α2),

f(r,θ ) = r[αr̂ +
√

1 − α2ẑ]. (57)

Note again that this does not preclude the possibility that
the actual minimizer approaches a cone asymptotically for
a vanishingly small B/Y [61].

In the example of an elliptic reference metric we substitute
Eq. (40) in (56a) and find that the self-consistency condition
is satisfied in the bulk. The isometric immersion of an elliptic
reference metric is a spherical cap of radius 1/

√
K ,

f(r,θ ) = 1√
K

[sin(
√

Kr)r̂ + cos(
√

Kr)ẑ]. (58)

When we substitute this configuration in the formalism of
Ref. [12] [the first of Eqs. (3.10) in Ref. [12]], we find that it
does not satisfy balance of normal forces (see Supplemental
Material [58]). This procedure corresponds to route (b)
described above, i.e., substitution of the isometric immersion
in the full equations of equilibrium rather than eliminating
the strain from the beginning. Thus, as anticipated above, the
two theories disagree. A spherical cap satisfies our stability
condition but is found to be unstable for B > 0 by the ESK
theory. (Recall that the two theories do coincide if one wrongly
follows the other route in the ESK model.) The spherical
cap configuration of a sheet with elliptic reference metric
was found to be stable in experiments [32]. We note that
the criterion at the boundary, Eq. (56b), is not satisfied by
the elliptic 
(r). This can be mended by a thin boundary
layer of width ∝ t1/2 [13]. In Appendix B we give an

FIG. 10. Exact radial and azimuthal plane-stress solutions for a flat annulus with a hyperbolic reference metric (solid black lines) are
compared with the numerical solution of Eq. (10) in Ref. [13] (dashed blue lines). Parameters are as in Fig. 9.
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alternative, more complete derivation of this result within the
FvK approximation.

In Appendix C we add a similar stability criterion for two
examples of surfaces of revolution whose reference metric is
slightly more general than the ones assumed so far.

VI. DISCUSSION

We have presented an alternative formulation for the
elasticity of incompatible thin sheets, which is restricted to
axisymmetric deformations. This formulation and the existing
ESK theory [13] are not equivalent. The lack of equivalence has
been demonstrated in three systems—the existence or absence
of in-plane strain in a uniaxially bent sheet (Sec. III); the strains
forming in flat incompatible sheets (Sec. IV, see Figs. 5 and 7);
and the stability of the spherical-cap isometry for a sheet with
an elliptic reference metric (Sec. V).

The key ingredient that sets the two models apart is a
coupling between stretching and bending, which appears in
the ESK model upon dimensional reduction, and is removed
in the present formulation by using distance deviations, rather
than metric deviations, to define strain. [Recall, for example,
Eq. (22) vs Eq. (27).] Let us pinpoint the stage at which
this difference emerges. If the derivation of Eqs. (5)–(12) is
repeated for the Green–St. Venant strain, Eq. (1), then Eqs. (12)
are replaced by ε̃

rr = ε̃rr − 2x3brr + x2
3crr , and ε̃

θθ = ε̃θθ −
2x3bθθ/
2 + x2

3cθθ/
2. The different dependence on the x3

coordinate perpendicular to the midsurface inevitably leads to
additional terms upon integration of the energy over x3.

Quantitatively, the differences caused by the coupling term
are small and indeed may lie outside the strict limits of the
infinitesimal-strain theory. They seem negligible experimen-
tally. The removal of this term, however, leads to a much
simpler analysis, as demonstrated by the exact solutions in
Sec. IV. (A similar observation was made in the context of
beam theory [43].) Since, at least for the problems considered
in this paper, the differences can be neglected, there is freedom,
and clear benefit, in choosing a more tractable formulation
when it is available.

The two models become equivalent in the incompressible
limit, B/Y = 0. The problems treated in Secs. III and V reveal
an essential difference in the way the two models depart
from this limit. Both problems—the uniaxially bent sheet and
the sheet with elliptic reference metric—possess a strain-free
configuration (isometric immersion) as the energy minimizer
for B/Y = 0. According to the ESK model this configuration
ceases to be the minimizer for an arbitrarily small but finite
B/Y ; according to the model presented here it remains the
energy minimizer to leading order in B/Y . In other words,
as B/Y tends to zero, the equilibrium configuration reaches
the isometry with nonzero slope in the former, and with zero
slope in the latter. In a sheet made of a 3D material both
Y and B emanate from the same elastic modulus. Then, it
may well be that a stretching-bending coupling exists even in
the absence of Gaussian curvature, leading with decreasing
thickness to the “nonzero slope” behavior. In a genuinely
2D sheet, such as a monomolecular layer or a 2D polymer
network, Y and B can be independent (e.g., arising from the
rigidities of bonds and bond angles, respectively). In such
cases, for example, it may well be that stretching and bending

should be decoupled, leading to the “zero slope” case—i.e., an
isometry (no stretched bonds) remaining the energy minimizer
for B/Y > 0 (finite joint rigidity). These delicate issues might
be checked in discrete simulations. While being conceptually
interesting, they may have (at least according to the problems
considered here) little practical significance.

The exact solutions presented in Sec. IV for the strains
and stresses in flat incompatible sheets can be used as the base
solutions for a perturbative (near-threshold) treatment of buck-
ling instabilities in these systems, which can then be studied
experimentally. Our formulation can be applied to additional
examples beyond those addressed in Secs. IV and V, where the
reference metric is axisymmetric. An interesting problem, for
instance, might be the case of a highly localized (δ function)

(r). In addition, the theory might be useful for analyzing
stress fields around two-dimensional defects [37,62].

The most important extension of this work, however, would
be to obtain a similarly tractable formulation for sheets of any
two-dimensional deformation. The discussion above suggests
two possible routes. One is to generalize the formulation
presented in Sec. II beyond axisymmetric deformations. The
other is to modify the ESK energy functional such that the two
choices of strain measures lead to equivalent theories.
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APPENDIX A: CONSISTENT ENERGY MINIMIZATION
FOR A UNIAXIALLY DEFORMED SHEET

In this Appendix we show that minimization of E1D with
respect to εss and φ yields equations of equilibrium which are
identical to the ones obtained by the appropriate minimization
with respect to the spatial configuration f(s).

We first define the perturbed configuration f̃(s) by

f̃(s) = f(s) + δf(s) = f(s) + ψt (s)t̂ + ψn(s)n̂, (A1)

where {t̂(s),n̂(s)} are the unit vectors tangent and normal
to the sheet along the deformation axis, and ψt and ψn are
arbitrary perturbation functions. Equivalently (up to a shift of
the origin), we can represent the configuration by df/ds, i.e.,
d f̃/ds = df/ds + dδf/ds. Then, the variation of the energy is
written as

δE1D =
∫

(Et t̂ + Enn̂) · dδf
ds

ds, (A2)

where Et and En are some functions of εss and φ yet to be
determined. We wish to relate the variation dδf/ds with the
variations δεss and δφ.

The vectors {t̂(s),n̂(s)} satisfy the Frenet-Serret formulas
[36],

d t̂
ds

= (1 + εss)κn̂ = dφ

ds
n̂, (A3a)

dn̂
ds

= −(1 + εss)κ t̂ = −dφ

ds
t̂, (A3b)
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FIG. 11. (a) Schematic force balance on a finite sheet segment. A bending moment Mo, applied at the boundary, is balanced by the
reaction forces σss and σsn and the reaction bending moment Mss . Under these conditions σss = σsn = 0 and Mss = Mo, consistent with
Eqs. (A10). (b) Schematic force balance on an infinitesimal sheet segment of length dŝ. Balance of forces in the tangential direction t̂(ŝ) is
given by −σss(ŝ) + σss(ŝ + dŝ)t̂(ŝ + dŝ) · t̂(ŝ) + σsn(ŝ + dŝ)n̂(ŝ + dŝ) · t̂(ŝ) = 0. Expanding this equation to leading order in the differential
dŝ [using Eqs. (A3)] we obtain dσss/dŝ − κσsn = 0. Similarly, force balance in the normal direction and balance of bending moments gives
dσsn/dŝ + κσss = 0 and dMss/dŝ + σns = 0, consistent with Eqs. (A12).

where κ = dφ/dŝ is the curvature and ŝ is the arclength of
the deformed configuration, dŝ/ds = 1 + εss . With the help
of Eqs. (A3), differentiating δf of Eq. (A1) with respect to s

gives

dδf
ds

=
(

dψt

ds
− dφ

ds
ψn

)
t̂ +

(
dψn

ds
+ dφ

ds
ψt

)
n̂. (A4)

Next, we examine the in-plane variation δεss to leading order
in the perturbation functions,

δεss =
∣∣∣∣∣ d f̃
ds

∣∣∣∣∣ −
∣∣∣∣ df
ds

∣∣∣∣ � dψt

ds
− dφ

ds
ψn, (A5)

To do the same for the δφ we start by writing cos φ =
t̂ · x̂, where x̂ is a constant unit vector along the horizontal
direction. Upon variation we have − sin φδφ = δt̂ · x̂. In turn,
the variation of the tangent vector is given by

δt̂ = d f̃/ds

|d f̃/ds| − df/ds

|df/ds| � 1

1 + εss

(
dψn

ds
+ dφ

ds
ψt

)
n̂,

(A6)
and, since n̂ · x̂ = − sin φ, we get

(1 + εss)δφ = dψn

ds
+ dφ

ds
ψt . (A7)

Collecting the results for δεss and δφ [Eqs. (A5) and (A7)] and
substituting in Eq. (A4), we obtain the desired relation,

dδf
ds

= δεss t̂ + (1 + εss)δφn̂. (A8)

This proves that the variation with respect to the spatial
configuration is equivalent to the variation with respect to δεss

and δφ.
We can proceed to rewrite the variation of the energy,

Eq. (A2), as

δE1D =
∫

[Et δεss + (1 + εss)Enδφ]ds. (A9)

The straightforward way to get the equations of equilibrium
is to set this functional to zero for arbitrary δεss and δφ, i.e.,
Et = 0 and En = 0. This is what has been done in Sec. III,

where

Et = Yεss = σss = 0, (A10a)

En = − B

1 + εss

d2φ

ds2
= −dMss

dŝ
= 0. (A10b)

[See Eqs. (24) and (25).]
Alternatively, we can rewrite the energy variation, Eq. (A2),

in terms of δf rather than dδf/ds, using integration by parts.
This yields the equations of equilibrium in the different form,

dEt

ds
− dφ

ds
En = 0, (A11a)

dEn

ds
+ dφ

ds
Et = 0. (A11b)

Subtituting Eqs. (A10), this gives

dσss

dŝ
− κσsn = 0, (A12a)

dσsn

dŝ
+ κσss = 0, (A12b)

where σsn = −dMss/dŝ is the normal force at a cross
section [45, p. 387].

The difference between the two equivalent sets of equi-
librium equations is explained in Fig. 11. While Eqs. (A10)
represent balance of forces and moments across a finite
segment of the sheet, Eqs. (A12) represent the balance for
an infinitesimal segment.

APPENDIX B: BOUNDARY LAYER IN A SHEET
WITH ELLIPTIC REFERENCE METRIC

In this appendix we show that the energy of the isometric
spherical cap, Eq. (58), is reduced when a boundary layer
is formed (i) near the outer radius of a complete disk,
and (ii) near the outer and inner radii of an annulus. The
existence of these boundary layers and the scaling of their
width with the thickness t were found in Ref. [13]. Here we
derive these results based on a variational ansatz within the
FvK approximation, thus obtaining full expressions including
prefactors.
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Considering the elliptic reference metric, Eq. (40), and employing the small-slope approximation, we obtain for the in-plane
strains, Eqs. (11),

εrr � ∂rur + 1

2
(∂rζ )2, (B1a)

εθθ � Kr2

6
+ ur

r
. (B1b)

For the isometric immersion these strains vanish, yielding the height function ζiso � √
Kr2/2. The total energy of the spherical

cap is obtained by substituting this function in Eq. (21), giving

Eiso = π (1 + ν)(KR2)B. (B2)

Let us try to reduce the total energy below Eiso through the following variational ansatz:

ζ (r) = ζiso + ζbl =
√

Kr2

2
− (1 + ν)

α(α + ν − 1)

√
KR2

( r

R

)α

,

(B3)

where α serves as a variational parameter. The coefficient of the second term in Eq. (B3) has been chosen so as to satisfy the
boundary condition of zero radial bending moment at the outer radius, Mrr |r=R � B[∂rrζ + ν

r
∂rζ ]

r=R
= 0. When α  1 the

additional term is negligible everywhere except close to the edge, as expected from a boundary layer. As shown below, the
minimizing configuration has α ∼ t−1/2.

Since our ansatz, Eq. (B3), is not an isometry, it contains in-plane stress. To calculate this stress we first minimize the stretching
energy, Eq. (16), with respect to ur . In the FvK approximation the resulting equation reads

∂r (rσrr ) − σθθ = 0. (B4)

Substituting, Eq. (B3) in the strains, Eqs. (B1), and then in the stress-strain relations, Eqs. (17), we obtain from Eq. (B4)

r∂r (r∂rur ) − ur = −4

3
Kr3 + (1 + ν)

α − ν + 1

α + ν − 1
KR3

(
r

R

)α+1

+ 1

2
(1 + ν)2 ν − 2α + 1

(α + ν − 1)2
KR3

(
r

R

)2α−1

. (B5)

Two boundary conditions are necessary: one is a vanishing stress at the free edge, σrr |r=R = 0, and the other is a vanishing
displacement at the origin, ur |r=0 = 0. The solution of Eq. (B5) subject to these conditions is

ur (r) = A0r − K

6
r3 + (1 + ν)(α − ν + 1)

α(α + 2)(α + ν − 1)
KR3

(
r

R

)α+1

+ 1

8

(1 + ν)2(ν − 2α + 1)

α(α − 1)(α + ν − 1)2
KR3

(
r

R

)2α−1

, (B6)

where A0 is determined by the first boundary condition.
Substituting ur and ζ from Eqs. (B3) and (B6) in Eqs. (16) and (21) and expanding to leading order in 1/α gives

E � π

2
YR2(KR2)2(1 − ν)(1 + ν)3α−5 + π (1 + ν)(KR2)B − 3π

2
(1 + ν)2(KR2)Bα−1, (B7)

where the first term comes from stretching and the last two are bending contributions. Minimization of Eq. (B7) with respect to
α yields

α = (5/3)1/4(1 − ν2)1/4(KR2)1/4(YR2/B)1/4 = (20)1/4(1 − ν2)1/4(KR2)1/4(t/R)−1/2. (B8)

Substituting this result in Eq. (B7) we finally obtain

E � Eiso − 6π

5

(
3

5

)1/4 (1 + ν)2

(1 − ν2)1/4
(KR2)3/4

(
B

YR2

)1/4

B, (B9)

where Eiso is given by Eq. (B2). Thus, the energy of the isometric immersion is reduced by the introduction of a boundary layer.

The reduction scales as t7/2 whereas Eiso ∼ t3. In the limit of small thickness we can write ζbl(r) � − (1+ν)
√

KR2

α2 e−(R−r)/w with
the width of the boundary layer being

w = R/α = (20)−1/4(1 − ν2)−1/4(KR2)−1/4(t/R)1/2R. (B10)

This derivation can straightforwardly be extended to the more general case of an annulus with inner radius Ri and outer radius
Ro. In this case the energy of the isometric immersion ζiso is given by

Eiso = π (1 + ν)K
(
R2

o − R2
i

)
B. (B11)
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This energy can be reduced below Eiso if two boundary layers are formed near the outer and inner radii, as indicated by the
following ansatz:

ζ (r) = ζiso + ζbl =
√

Kr2

2
+ Ao

(
r

Ro

)α

+ Bo

(
Ri

r

)α

. (B12)

As in the case of a disk, Ao and Bo are chosen such that the radial bending moment is zero at the two boundaries, Mrr |r=Ri,Ro
= 0.

This gives

Ao = −
√

KR2
o

1 + ν

α(α + ν − 1)

1 − ρα+2

1 − ρ2α
, (B13a)

Bo = −
√

KR2
i

1 + ν

α(α − ν + 1)

1 − ρα−2

1 − ρ2α
, (B13b)

where ρ ≡ Ri/Ro.
Following the same route as in Eqs. (B4)–(B6), we find after expansion in powers of α−1 and assuming ρα → 0 that the total

energy of the annulus is given by

E � π

2
YR2

o

(
KR2

o

)2
(1 + ρ6)(1 − ν)(1 + ν)3α−5 + π (1 + ν)K

(
R2

o − R2
i

)
B − 3π

2
(1 + ν)2

(
KR2

o

)
(1 + ρ2)Bα−1. (B14)

Minimization of this energy with respect to α gives

α = (5/3)1/4(1 − ν2)1/4

(
1 + ρ6

1 + ρ2

)1/4(
KR2

o

)1/4
(

YR2
o

B

)1/4

= (20)1/4(1 − ν2)1/4

(
1 + ρ6

1 + ρ2

)1/4(
KR2

o

)1/4
(

t

Ro

)−1/2

. (B15)

Note that in the limit of ρ → 0 this result coincides with Eq. (B8). Substituting Eq. (B15) back in the energy, Eq. (B14),
we obtain

E � Eiso − 6π

5

(
3

5

)1/4 (1 + ν)2

(1 − ν2)1/4

(
KR2

o

)3/4

(
1 + ρ2

)5/4(
1 + ρ6

)1/4

(
B

YR2
o

)1/4

B, (B16)

where Eiso is given by Eq. (B11). Thus, the introduction of two boundary layers, at the inner and outer radii of the annulus,
reduces the energy of an isometric immersion.

APPENDIX C: STABILITY CRITERION FOR ISOMETRIC IMMERSIONS WITH NEGATIVE GAUSSIAN CURVATURE

In this appendix we extend the theory presented in Sec. II to surfaces of revolution [see Eq. (4)], whose reference metric is
given by

ḡαβ =
(

ḡ2
r 0

0 ḡ2
θ

)
, ds2 = ḡ2

r (r)dr2 + ḡ2
θ (r)dθ2. (C1)

Our aim is to derive a self-consistent stability criterion, similar to Eqs. (56), for isometric immersions with constant negative
Gaussian curvature [63].

Following Sec. II it is straightforward to show that the energy functional, Eq. (15), is modified into

E = Y

2

∫ R

0

∫ 2π

0

[
ε2
rr + ε2

θθ + 2νεrrεθθ

]
ḡr ḡθ dθdr + B

2

∫ R

0

∫ 2π

0

[
φ2

rr + φ2
θθ + 2νφrrφθθ

]
ḡr ḡθ dθdr, (C2)

where the in-plane strains are given by

εrr = √
arr/ḡr − 1 =

√
(1 + ∂rur )2 + (∂rζ )2/ḡr − 1, (C3a)

εθθ = √
aθθ/ḡθ − 1 = (r + ur )/ḡθ − 1, (C3b)

and the “bending strains” are given by

φrr = √
crr/ḡr = 1

ḡr

(1 + ∂rur )∂rrζ − ∂rrur∂rζ

(1 + ∂rur )2 + (∂rζ )2
= ∂rφ

r/ḡr , (C4a)

φθθ = √
cθθ/ḡθ = 1

ḡθ

∂rζ√
(1 + ∂rur )2 + (∂rζ )2

= sin φr/ḡθ . (C4b)
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Setting Eqs. (C3) to zero, we obtain the displacement corresponding to the isometric immersion of Eq. (C1),

ur = ḡθ − r, (C5a)

∂rζ =
√

ḡ2
r − (∂r ḡθ )2. (C5b)

Following the analysis in Sec. V, we minimize the bending energy,

Eb = 1

2

∫ R

0

∫ 2π

0

[
Mrr∂rφ

r/ḡr + Mθθ sin φr/ḡθ

]
ḡr ḡθ dθdr,

with respect to φr to obtain the balance of bending moments. This gives

∂r (ḡθMrr ) − ḡr cos φrMθθ = 0, (C6)

where Mαβ are given by Eqs. (19) and φαβ are given by Eqs. (C4).
Substituting the displacements of Eqs. (C5) in the bending strains, Eqs. (C4), we obtain

φrr = (
∂r ḡθ ∂r

√
ḡ2

r − (∂r ḡθ )2 − ∂rr ḡθ

√
ḡ2

r − (∂r ḡθ )2
)
/ḡ3

r , (C7a)

φθθ =
√

ḡ2
r − (∂r ḡθ )2/(ḡr ḡθ ). (C7b)

In addition, using Eq. (C4b), we have that

cos φr = ∂r ḡθ /ḡr . (C8)

Substituting Eqs. (C7) in (19) and then, along with Eq. (C8), in (C6) we finally obtain the self-consistency condition,

∂r

[
ḡθ

(
∂r ḡθ ∂r

√
ḡ2

r − (∂r ḡθ )2 − ∂rr ḡθ

√
ḡ2

r − (∂r ḡθ )2
)/

ḡ3
r

] − ∂r ḡθ

√
ḡ2

r − (∂r ḡθ )2/(ḡr ḡθ ) = 0. (C9)

It is now straightforward to verify that a pseudosphere, ḡr = tanh r and ḡθ = 1/ cosh r , and hyperboloid of revolution,
ḡr = b sn(r,b) and ḡθ = dn(r,b) (sn and dn denoting the Jacobi elliptic functions [64]), both do not satisfy Eq. (C9). Thus, both
are mechanically unstable. As in the case of the cone, we note that these conclusions do not rule out the possibility that the
objects approach these shapes in the limit t → 0.
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