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We report the results of experimental studies of the short-time–long-wavelength behavior of collective particle
displacements in quasi-one-dimensional (q1D) and quasi-two-dimensional (q2D) colloid suspensions. Our results
are reported via the q → 0 behavior of the hydrodynamic function H (q) that relates the effective collective
diffusion coefficient De(q), with the static structure factor S(q) and the self-diffusion coefficient of isolated
particles D0: H (q) ≡ De (q) S (q)/D0. We find an apparent divergence of H (q) as q → 0 with the form H (q) ∝
q−γ (1.7 < γ < 1.9) for both q1D and q2D colloid suspensions. Given that S(q) does not diverge as q → 0
we infer that De(q) does. This behavior is qualitatively different from that of the three-dimensional H (q) and
De(q) as q → 0, and the divergence is of a different functional form from that predicted for the diffusion
coefficient in one-component one-dimensional and two-dimensional fluids not subject to boundary conditions
that define the dimensionality of the system. We provide support for the contention that the boundary conditions
that define a confined system play a very important role in determining the long-wavelength behavior of the
collective diffusion coefficient from two sources: (i) the results of simulations of H (q) and De(q) in quasi-1D
and quasi-2D systems and (ii) verification, using data from the work of Lin, Rice and Weitz [Phys. Rev. E 51, 423
(1995)], of the prediction by Bleibel et al., arXiv:1305.3715, that De(q) for a monolayer of colloid particles
constrained to lie in the interface between two fluids diverges as q−1 as q → 0.
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I. INTRODUCTION

It has been known for some time that the classical mass, mo-
mentum, and energy transport coefficients of two-dimensional
(2D) and one-dimensional (1D) fluids, when defined by the in-
tegrals over time of flux-flux autocorrelation functions, do not
exist [1–6]. For example, the velocity autocorrelation function
of a one-component 2D fluid with number density ρ ≡ N/A,
and the diffusion coefficient D(q) associated with a density
inhomogeneity with wave-vector magnitude q, are predicted
to have the long-time–long-wavelength dependencies [7–9]

lim
t→∞,q→0

〈v(0) · v(t)〉 ∝ [t(ρ ln t)1/2]−1, (1.1)

lim
t→∞,q→0

D(q) ∝ [ρ−1 ln(qc/q)]1/2 (1.2)

with t measured relative to some fundamental relaxation time
such as the mean time between collisions, and qc a small
cutoff wave-vector magnitude. The time behavior displayed in
(1.1) is attributed to the creation, after multiple collisions, of
hydrodynamic vortices that interact with a moving particle in a
fashion that decreases the rate of decay of its velocity. In a 2D
fluid the hydrodynamic regime, with fully developed vortices,
is reached in about ten mean collision times [1].

Similarly, an analysis of the velocity autocorrelation func-
tion of a 1D fluid in the hydrodynamic regime reveals that its
asymptotic time dependence is proportional to t−1/2, hence its
time integral, which defines the diffusion coefficient, does not
converge to a finite value. A more comprehensive picture of

the evolution of the time dependence of particle correlations
in a 1D fluid emerges from an analysis of particle motion
with background noise [10]. In this analysis the diffusion
coefficient is defined by 〈(�x(t)2〉/2t , with 〈(�x(t)2〉 ≡ W (t)
the mean square particle displacement in time t . The predicted
asymptotic time dependence of W (t) is limt→∞ W (t) ∝ t1/2;
it arises from the fixed particle sequence that follows from
the restriction that particles cannot pass through each other.
Given that restriction, large particle displacement inevitably
requires cooperative particle motion. At short time W (t) ∝ t ,
and there is a crossover to W (t) ∝ t1/2 at the mean time
between collisions [11].

It is important to note that the 1D and 2D fluids discussed in
the last paragraph were unconfined, and not subject to bound-
ary conditions. The relevance of the predicted behavior of 1D
and 2D transport coefficients in one-component unconfined
fluids to the interpretation of transport coefficients of colloids
in confined fluid suspensions must be evaluated acknowl-
edging two features of those suspensions. First, boundary
conditions matter. Every attempted realization of a 1D or a 2D
system is really only quasi-one-dimensional (q1D) or quasi-
two-dimensional (q2D). Although the motions of the centers
of the colloid particles in a q1D suspension can deviate only
slightly from the axis of the confining channel, and in a q2D
suspension only slightly from a plane in the confining slit, in
both situations the motion of the solvent is three-dimensional
and subject to boundary conditions at the confining walls and
at the particle surfaces. With respect to those suspensions, it
is reasonable to expect that colloid motion that is restricted to
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a line or a plane, but with hydrodynamic interactions defined
by three-dimensional (3D) flow of a supporting fluid that is
subject to boundary conditions, will exhibit both qualitative
and quantitative differences from expected one-component
fluid 1D or 2D behavior. An example of the generation
by boundary conditions of a nontrivial difference between
diffusion in a q2D confined colloid suspension and in a 3D
colloid suspension is provided by the work of Saffman and
Delbruck [12,13]. They showed that the diffusion coefficient
of a particle in a thin membrane with viscosity μm that
is embedded in a liquid with viscosity μl depends on the
logarithm of the ratio μm/μl and on the membrane thickness,
which dependencies are qualitatively different from the 3D
Stokes-Einstein form for the diffusion coefficient. Second, as
already noted, the hydrodynamic regime in a one-component
system develops on a time scale of the order of ten mean
collision times. Hence the initial motion of a particle is
dominated by inertia, with initial mean square displacement
proportional to t2, evolving to W (t) ∝ t during the time
required to establish hydrodynamic behavior. In contrast,
in a confined colloid suspension hydrodynamic interactions
between colloid particles that are generated by flow of the
supporting liquid are fully established on a time scale much
shorter than the mean time between colloid-colloid collisions,
with the consequence that the hydrodynamically coupled
motion of an overdamped isolated colloid particle develops
on a time scale much shorter than the mean time between
colloid-colloid collisions and W (t) ∝ t . In the systems we have
studied the hydrodynamic interactions are established in the
order of 10−8 s, whereas the mean time between colloid-colloid
collisions is of the order of seconds.

In this paper we report the results of experimental studies
of the short-time–long-wavelength (λ) behavior of collective
particle displacements in q1D and q2D colloid suspensions.
The short-time regime is defined by W (t) ∝ t , with fully
developed colloid-colloid hydrodynamic interactions carried
by the suspending liquid. The long-wavelength regime is
defined by the condition qσ � 1, with σ the colloid particle
diameter and q = 2π/λ the magnitude of the wave vector of
the density perturbation with wavelength λ. The motivation
for our studies came from the discovery of evidence for
cooperative motion in both q1D and q2D colloid suspensions at
a time much shorter than the time between particle encounters.
Video microscope recordings of q1D colloid suspensions show
the formation and breakup of clusters in which colloid particles
move synchronously for as long as a few seconds, and the
analysis of the particle trajectories yields complementary
evidence for cooperative particle motion at small t [14].
Similarly, the observed particle trajectories in a q2D colloid
suspension provide evidence for cooperative particle motion
long before the asymptotic temporal behavior of the mean
square particle displacement is achieved.

The results of our experimental studies are reported
via the behavior of the function H (q) that relates the
effective collective diffusion coefficient De(q), describing
the response to a density perturbation with wave-vector
magnitude q, with the static structure factor S(q) and the
isolated particle self-diffusion coefficient D0 via the definition
H (q) ≡ De (q) S (q)/D0 [15]. This function accounts for the
hydrodynamic interactions between colloid particles. In a 3D

colloid suspension it is found that H (q) � 1 in the limit q → 0
[15]. For both q1D and q2D colloid suspensions we find
an apparent divergence of H (q) with the form H (q) ∝ q−γ

(1.7 < γ < 1.9) in the limit q → 0. Given that S(q) does
not diverge as q → 0 we infer that De(q) does. This q → 0
behavior is qualitatively different from the q → 0 behavior
of H (q) and De(q) in a 3D unconfined suspension, and
the divergence is of a different functional form from that
predicted for the diffusion coefficient in one-component 1D
and 2D fluids not subject to boundary conditions that define
the dimensionality of the system.

At this time we have neither a microscopic particle motion
based nor a hydrodynamic based quantitative interpretation of
our experimental results, but we do provide evidence for the
contention that the boundary conditions that define a confined
system play a very important role in determining the long-
wavelength behavior of the collective diffusion coefficient.
This evidence is derived from two sources: (i) the results
of simulations of H (q) and De(q) in q1D and q2D systems
with various boundary conditions and (ii) verification—using
data from the work of Lin, Rice, and Weitz [16]—of the
prediction by Bleibel et al. [17] that De(q) for a monolayer
of colloid particles constrained to lie in the interface between
two fluids, but allowing for 3D flow of the confining fluids,
diverges as q−1 as q → 0. We hope that the presentation
of our experimental results will stimulate development of
a satisfactory interpretation of the physical basis of our
observations.

II. EXPERIMENTAL DETAILS

We report below the results of experimental studies of the
effective collective diffusion coefficient De(q) as a function
of the wavelength of density fluctuations (2π/q) in q1D
and q2D confined suspensions of colloids with diameter
σ and, respectively, q1D packing fraction η ≡ Nσ/L and
q2D packing fraction φ ≡ Nπσ 2/4A. Using digital video
microscopy to sample these suspensions, N is the number of
particles in the field of view, while L is the length of the q1D
sample and A the area of the q2D sample in the field of view.
Our studies focus attention on the short-time–long-wavelength
behavior defined by the conditions 〈�x2〉 ∝ t and qσ � 1.

Detailed descriptions of the preparation and characteristics
of the q2D and q1D systems we have studied have been
published elsewhere [18]. The measurements were carried out
about ten years ago, so we describe the key attributes of the
preparation of the systems and the equipment used.

Our experimental q2D system is a suspension of sil-
ica spheres in water confined in a very thin glass cell.
The nearly monodisperse silica spheres have diameter
σ = 1.58 ± 0.04 μm. The surface of each silica sphere is
covered with a 12-carbon surfactant to prevent aggregation.
To prevent sticking of the silica spheres to the glass cell walls,
all of the cell surfaces were coated with a chlorine terminated
polydimethylsiloxane telomer.

The sample cell was constructed by sealing a microscope
cover slip (60 × 22 × 0.15 mm) on the top of a microscope
slide (75 × 25 × 1 mm). The interior of the thin cell is accessed
through two holes drilled through the bottom slide. The silica
sphere suspension was loaded into the cell via one of two

022303-2



DIVERGENCE OF THE LONG-WAVELENGTH COLLECTIVE . . . PHYSICAL REVIEW E 89, 022303 (2014)

glass tubes connected to the two holes. A hand vacuum pump,
connected to the other piece of tubing, was used to adjust the
cell thickness to about 1.8–2.5 μm by reducing the hydrostatic
pressure in the cell. As expected, we found that the spheres
were immobilized when the cell wall separation was close to
the sphere diameter (1.58 μm). When the cell wall separation
was larger than 2.5 μm out-of-plane motion of the spheres was
easily visible.

Our experimental procedure is based on the use of digital
video microscopy (DVM). The DVM measurements were
made with an Olympus BH2 metallurgical microscope with a
2.5× video eyepiece and a 100×, N.A. = 1.25, oil immersion
objective. A single-axis motion controller was connected
directly to the microscope fine focus knob. This controller
permits us to regulate the position of focus to within ±0.15 μm.
The depth of focus of the objective used is about 0.3 μm,
which is about one-fifth of the sphere diameter. Accordingly,
we could verify when all of the colloid particle centers were in
a plane to about a tenth of a particle diameter, and also easily
detect out-of-plane motion with magnitude larger than that.
The image of the suspension was captured by a Hitachi charge
coupled device (CCD) video camera, which was mounted to
the camera eyepiece. The analog CCD outputs were sent to
the video port of a Sanyo GVR-S955 VCR for recording on
S-VHS videocassette tape, and then the image signals were
passed to a Power Macintosh G4 computer. We used SCION

IMAGE 1.62c software and a CG-7 frame grabber card (Scion
Corporation) to capture and digitize the sequence of images.

Our q1D experimental system consists of a water suspen-
sion of the same silica colloidal spheres, confined in straight
or circular q1D channels printed on a polydimethysiloxane
substrate. The straight channel is 3 ± 0.3 μm wide, 3 ± 0.3 μm
deep, and 2 mm long; the circular channel is 3 ± 0.3 μm wide,
3 ± 0.3 μm deep, has a diameter of 70 μm, and hence a
length (circumference) of 220 μm. A 100 μm thick drop of
suspension is enclosed between the polymer mold and a cover
slip, so that the top of the channel is open to a layer of fluid.
Our DVM measurements show that the colloid particles in
the q1D system are tightly confined to the centerline of the
channel and float slightly above the bottom of the channel.
The experimentally determined dynamic structure factors for
the straight and circular channels are the same within our
experimental precision.

III. ANALYSIS OF DATA

To analyze the q2D and q1D collective dynamic behavior
we make use of the properties of the dynamic structure factor
F (q,t) that characterizes time-dependent density fluctuations

F (q,t) ≡ 1

N
〈ρq(0)ρ−q(t)〉

= 1

N

∑
i,j

〈exp{iq · [ri(0) − rj (t)]}〉, (3.1)

where q is the wave vector and ρq is the Fourier component
of the number density ρ (r,t) in real space, with ρ (r,t) ≡∑N

i=1 δ [r − ri (t)]. We note that F (q,0) ≡ S(q). The use of
Eq. (3.1) for the analysis of colloid dynamics in q1D and q2D
suspensions is valid provided we determine the hydrodynamic

interactions subject to the constraints imposed by the boundary
conditions, as has been experimentally verified by Santana-
Solano et al. [19] for the domain qσ > 2 of a q2D colloid
suspension.

We are interested in the behavior of the confined colloid
suspension for time small compared with the time ta required
for a particle to diffuse a distance equal to a particle radius a.
On this time scale the colloid particles move very little and the
diffusion dynamics is dependent on the particle distribution but
decoupled from the relaxation of the particle distribution. Let
f (q,t) ≡ F (q,t)/S(q) be the normalized dynamic structure
factor. Solution of the many-particle Smoluchowski equation
descriptive of the diffusive dynamics of the colloid assembly
in the low Reynolds number regime yields, for time small
compared with the time required for a particle to diffuse a
distance equal to a colloid diameter,

lim
t�ta

f (q,t) = exp[−q2Dc(q)t] ≡ exp

[
−D0H (q)

S(q)
q2t

]
.

(3.2)

In (3.2), Dc(q) is the q-dependent collective dif-
fusion coefficient obtained from the linear decay
∂ [ln f (q,t)]/∂t = −q2Dc(q). The solution of the Smolu-
chowski equation descriptive of the overdamped diffusive
dynamics of the colloid assembly relates H (q) to the
configuration-dependent diffusion tensor D[rN(t)] in real
space by

H (q) = 1

ND0q2

N∑
i=1

N∑
j=1

〈q · D[rN (t)] · q exp[iq · (ri − rj )]〉

= 1

ND0

N∑
i=1

N∑
j=1

〈Dij [rN (t)] exp[iq · (ri − rj )]〉, (3.3)

with elements

Dij [rN(t)] = Dij [r1(t),r2(t),...,rN (t)] = 1

2t
〈�ri(t)�rj (t)〉.

(3.4)

The average in Eq. (3.3) is over the N -particle configura-
tions {rN (t)}, whereas that in Eq. (3.4) is over the thermal noise
induced motion of pairs of particles. On the time scale of our
measurements the thermal noise induced motion of a particle is
in the overdamped regime and the density of colloid particles is
high enough that hydrodynamic interactions between particles
are manifest. We note that Eq. (3.2) can be taken as a definition
of H (q) that includes hydrodynamic interactions to all orders.
Our reduction of the experimental data, described in the next
section, relies on Eq. (3.2), and hence includes any many body
hydrodynamic interactions that contribute to the collective
diffusion.

Equations (3.1)–(3.4) describe the dynamics of the particle
number density fluctuating with characteristic time (qDc)−1.
The collective diffusion coefficient is the q-space counterpart
of the diffusion coefficient measured on the length scale
λ ≡ 2π/q. In the small q limit, which is the regime λ 	 σ ,
the collective diffusion coefficient is the same as that measured
by the flow that responds to a macroscopic concentration
gradient. In this q regime, S (q ≈ 0)−1 is determined by

022303-3



LIN, CUI, XU, ZANGI, DIAMANT, AND RICE PHYSICAL REVIEW E 89, 022303 (2014)

0.20

0.30

0.40

0.50

0.60

0.70
0.80
0.90
1.00

4 8 12 16 20

η=0.17
η=0.39
η=0.61
η=0.76

f(
q,

t)

t (s)

0.80

0.90

1.00

0.04 0.08 0.12 0.16 0.2

f(
q,

t)

t (s)

FIG. 1. (Color online) f (q,t) ≡ F (q,t)/S(q) for several q1D
suspensions with qσ = 0.09.

the macroscopic compressibility, and Dc is determined by
the competition between the responses of the particles to
hydrodynamic coupling and density fluctuations. In the large
q limit, which is the regime λ � σ , we have S (q) ∼= 1,
so that D0H (q)/S (q) = D0H (q) = Ds , the tracer diffusion
coefficient at the packing fraction of the suspension. A
hydrodynamic analysis for three-dimensional systems shows
that H (q) is finite for 0 � qσ � 1, and that H (q) < 1 when the
hydrodynamic interaction is appreciable, since this interaction
typically hinders the motion of a colloid particle [15]. When
the hydrodynamic interaction between particles is negligible
H (q) = 1.

IV. EXPERIMENTAL RESULTS

Figures 1 and 2 display the experimentally determined
dynamic structure functions at small t and large t for q1D and
q2D systems, respectively. The q1D data are for qσ = 0.09,
and the q2D data are for qσ = 0.16. Data are shown for
various packing fractions. For both systems the small time
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FIG. 2. (Color online) f (q,t) ≡ F (q,t)/S(q) for several q2D
suspensions with qσ = 0.16.

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0
Hexpt.(q)
Sexpt.(q)

0 5 10 15 20 25 30

η=0.76

η=0.61

η=0.39

η=0.17H
(q

)&
S(

q)

qσ

FIG. 3. (Color online) H (q) and S(q) for several q1D suspen-
sions. Data for the several suspensions are shifted vertically for clarity.

dependence of f (q,t) is well described for all q by a single
exponential decay, but when t is large the time dependence of
f (q,t) deviates from a single exponential decay, indicative of
the onset of complex relaxation dynamics.

Figures 3 and 4 display the q dependence of H (q) for
the q1D and q2D systems, respectively, determined experi-
mentally from the slope of f (q,t) at small time. In both q1D
and q2D systems H (q) is strongly dependent on the packing
fraction when qσ > 2, and its oscillations mimic those of S(q).
Our data also show that in both q1D and q2D systems H (q)
increases dramatically as qσ decreases when 1 > qσ > 0.09,
apparently diverging as q−γ with1.7 < γ < 1.9, with a weak
dependence on η or φ in the q1D and q2D systems, respectively
(see Figs. 5 and 6). In this q regime S(0) is a constant (see
Figs. 3 and 4). With respect to the q1D suspensions studied,
we find no differences between f (q,t) and S(q) determined
from linear channel data and from circular channel data.

V. THEORETICAL STUDIES

To complement our experimental studies we have carried
out three theoretical studies of H (q): (i) A hydrodynamic anal-
ysis of a q1D suspension of hard spheres in a capillary using
the method of reflections. The hard spheres are constrained
to move on the axis of the capillary. (ii) Brownian dynamics
simulations of nearly hard spheres in a capillary. The term
nearly hard sphere refers to the inclusion in our calculations
of a weak colloid-colloid attraction discovered in previous
studies of our experimental system. (iii) Molecular dynamics
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FIG. 4. (Color online) H (q) and S(q) for several q2D suspen-
sions. Data for the several suspensions are shifted vertically for clarity.

022303-4



DIVERGENCE OF THE LONG-WAVELENGTH COLLECTIVE . . . PHYSICAL REVIEW E 89, 022303 (2014)

10-1

100

101

102

10-1 100

η=0.17

η=0.39

η=0.61

η=0.76

H
(q

)

qσ

q -2

FIG. 5. (Color online) H (q) in the small q regime for several q1D
suspensions.

simulations of a one-component q2D assembly of nearly hard
spheres.

With respect to the calculation of H (q) in a q1D colloid
suspension, Eq. (3.3) becomes

H theor(q) = DS

D0
+ N

LD0

∫ ∞

−∞
g2(|x|)D12(|x|) cos(qx)dx.

(5.1)

In Eq. (5.1), g2 (|x|) is the pair correlation function
of a 1D fluid and D12(|x|) is the average over particle
configurations conditioned to the presence of two particles
a distance x from each other. Because the hard sphere motion
was constrained to lie on the axis of the q1D capillary we
used the pair correlation function of the 1D hard rod fluid
in our calculations. We evaluated D12(|x|) by the method
of reflections, using the zero slip boundary condition [20].
The method of reflections accounts for the influence on
particle motion of the hydrodynamic interaction between
particles and between the supporting liquid and the walls by
superposition of the reflected flows generated by contact of the
supporting liquid with successive surfaces. We have included
in our calculations interactions between nearest neighbor and
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FIG. 6. (Color online) H (q) in the small q regime for several q2D
suspensions.
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FIG. 7. (Color online) Comparison of the experimentally deter-
mined hydrodynamic function H exp (q) with that predicted by the
method of reflections H theor (q), for several q1D suspensions. Data
for the several suspensions are shifted vertically for clarity.

next-nearest neighbor pairs of particles, which approximation
has previously been shown to account for values of D12(|x|)
as a function of η that are in very good agreement with
experimental data [19,21]. In carrying out the calculations
we used the superposition representation g3 (x1,x2,x3,η) =
g2 (x1,x2,η) g2 (x2,x3,η) g2 (x1,x3,η), which is exact in one
dimension. The resultant H theor (q) is displayed in Fig. 7.
We find that H theor(q) → constant as q → 0 (Fig. 8). On the
other hand, when qσ > 2,H theor (q) has a strong dependence
on the packing fraction, and its oscillations shadow those of
S(q). Note that except at its first peak H theor (q) � 1, and
when qσ > 20, or λ/σ < 0.3, H theor (q) ≈ DS/D0 decreases
as η increases. We also note that the peaks of H theor (q) are
shifted to slightly larger qσ than those of H expt (q), which
we attribute to the use of a hard rod g2 (x) in the calculations
in place of the experimentally determined g2 (x). The results
of the calculations fail to reproduce the behavior of the
experimentally determined q1D H (q) as q → 0.
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FIG. 8. (Color online) Comparison of the experimentally deter-
mined hydrodynamic function H expt (q), with that predicted by the
method of reflections H theor (q), in the small q regime, for several
q1D suspensions.
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Our use of Brownian dynamics simulations to calculate
H (q) in a q1D suspension is intended to elucidate the con-
tribution to H (q) of multiple collisions between overdamped
particles in that confined suspension. The simulation restricts
the particle motion to a line and ignores interaction of a particle
with the walls that confine the q1D suspension. We used the
standard Brownian dynamics algorithm that neglects the hy-
drodynamic interaction between colloid particles but includes
the effect of the solvent in terms of the one-particle friction
coefficient and a white noise spectrum. The algorithm uses the
step propagator xn+1 = xn − DSt (∂U/∂x)n + (2DSt)1/2gn,
where gn is a Gaussian random number with zero mean
and variance unity and U = 12(σ/x)20 − 4.3(σ/x)10, which
potential closely resembles the experimentally determined
effective pair potential for our q1D system. The length of
the simulation channel was 100σ , with periodic boundary
conditions. The time step was chosen to be 0.001 s, and the
simulation was carried out for 5 × 106 time steps. H (q) was
calculated from the Brownian simulation data using Eqs. (3.3)
and (3.4); the results are displayed in Fig. 9. Clearly, these
simulations do not generate the observed apparent divergence
of H (q) as q → 0. Rather, we find that H simu (q) → 1 as
q → 0 (Fig. 10).

We consider now molecular dynamics (MD) simulations of
a q2D one-component system with inclusion of interactions
with the boundaries that define the q2D geometry. In this
system, by analogy with the behavior of disks constrained
to move in two dimensions [1,4], we expect fully developed
collective hydrodynamic behavior after about 10 collisions
per particle, with incipient hydrodynamic behavior visible
after somewhat fewer collisions per particle. The connection
between the MD simulation, without suspending fluid, and the
q2D colloid suspensions we have studied in our experiments
must reside in the development of collective behavior of the
colloid particle subsystem in the experimental suspension.
Because of the high speed of propagation of the colloid-colloid
hydrodynamic interaction in the experimental suspensions we
expect collective behavior of the colloid particles subsystem
to be observable on a time scale shorter than the mean time be-
tween colloid-colloid collisions. Indeed, we expect collective
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FIG. 10. (Color online) Comparison of the small q regime of the
experimentally determined hydrodynamic function with that obtained
from Brownian dynamics simulations for several q1D suspensions.

behavior of the colloid particles subsystem to be observable
on the smallest time scale accessed by our experiments. Given
establishment of the colloid particle collective behavior, the
qualitative aspects of that behavior in the simulated and
experimental systems should be the same.

The system we have studied has N identical near hard
spheres in a q2D rectangular simulation box in the xy plane,
with side lengths in the ratio x/y = 7/(8

√
3/2) and a height

(along the z axis) slightly greater than the sphere diameter.
Periodic boundary conditions were imposed in the x and y

directions, but not in the z direction. The particle-particle
pair potential was represented by a continuous steep repulsion
U (r/σ ) = Bε (r/σ − 0.5)−α with B = 2 × 10−19 and α = 64.
The particle motions were confined along the z axis by the
action of a one-body z-dependent external field with form
Uext(z/σ ) = Dε(z/σ )ζ , where z is the distance from the center
of the simulation cell to the center of mass of the particle, ζ =
24 and D = 2 × 1024. This potential confines the particles to a
slab with an effective height of h = 1.20σ . This simulation box
mimics the confinement conditions used in our experiments,
noting that the ±z boundary condition corresponds to slip, in
that it correctly accounts for rebounding in the ±z directions
but, because the bounding potential is uniform in the x and
y directions, the x and y components of the velocity are
preserved when a particle interacts with the ±z boundaries.

Our calculations were carried out, and the results are
reported below, in terms of the reduced variables r* = r/σ , z* =
z/σ , T* = kBT/σ , t* = t(kBT/mσ 2)1/2, m = 1, with m the mass
of the particle. We took the value of the pair particle potential at
r* = 1.000 to be 3.689ε. All simulations were carried out with
T* = 1.0000. H (q) was calculated from the simulation data
using Eqs. (3.3) and (3.4). Our interest is to calculate H (q) as
q → 0. However, since the simulation box is periodic in the
xy plane, we are restricted to qx = 2πn/Lx,qy = 2πn/Ly ,
where Lx and Ly are the box lengths in the x and y directions,
respectively, and n is an integer.

To investigate the effect of the system size on the calculated
value of H (q) we carried out simulations with three different
numbers of particles, N = 2016, 5600, and 22400, with fixed
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FIG. 11. (Color online) (a) A comparison of H (q) calculated
from the 22 400 particle simulations for time intervals associated
with 16–32 collisions per particle, and the experimentally determined
values of H (q). This figure also shows that the calculated large q

dependence of H (q) closely matches that experimentally determined.
(b) A comparison of H (q) calculated from the 22 400 and 2016
particle simulations for time intervals associated with less than eight
collisions per particle, and the experimentally determined values of
H (q). Note that for this small number of collisions, the range over
which H (q) ∝ (qσ )−γ ceases at about qσ = 0.1, and H (q) becomes
insensitive to qσ for qσ < 0.1.

two-dimensional packing fraction φ ≡ Nπσ 2/4A = 0.58. At
this packing fraction the q2D system is a dense liquid.

The MD simulations were carried out in the microcanonical
ensemble using the “velocity Verlet” algorithm. The distance
at which the potential was cut off was 1.5σ and the time
step used was δt* = 5 × 10−4. The associated root-mean-
square fluctuation in total energy did not exceed one part
in 105. The initial configuration for the simulations with
N = 2016 was taken from previous simulations that studied
dynamical heterogeneities of the same system [22]. For
the simulations with N = 5600 and 22 400 the starting
configuration was a perfect triangular lattice. The required
temperature was achieved in a pre-equilibration stage by
multiplying the velocities, every 2 × 104 MD steps, by an
appropriate constant. Then the system was further equilibrated

for 3 × 106 MD steps. The equilibration and the data collection
stages were carried out without velocity rescaling (thus, in the
microcanonical ensemble) to ensure uninterrupted dynamical
paths. Nevertheless, the difference between the value of the
average temperature and the prescribed temperature T* =
1.0000 was less than 5 × 10−4. The function H (q) was
calculated from Eq. (3.3), using Eq. (3.4), for different values
of the time interval t that ranged from 2 to 64 collision times.

We show in Fig. 11(a) the results of calculations of H (q)
from the 22 400 particle simulations for time intervals associ-
ated with 16–32 collisions per particle, and the experimentally
determined values of H (q) for the range 0.1 <H (q) < 20. Note
that there is a small difference between the packing fractions
of the simulation (0.58) and the experiment (0.68). For 8–16,
16–32, and 32–64 collisions per particle (only 16–32 collisions
per particle data shown) there is an apparent divergence of
H (q) of the form H (q) ∝ (qσ )−γ with γ ≈ 2 as qσ → 0,
down to the smallest value qσ = 0.03. The apparent divergence
of H (q) agrees with the experimental data in that range of
qσ . When the number of collisions per particle is smaller,
2–4 or 4–8, the range over which H (q) ∝ (qσ )−γ ceases at
about qσ = 0.1. When qσ < 0.1 we see that H (q) flattens
and becomes insensitive to qσ [Fig. 11(b)]. One interpretation
of these results is that full hydrodynamic behavior is not yet
achieved in the 4–8 collision time regime. A complementary
interpretation recognizes that, because the generation of the
vortex pattern created by the motion of a particle in the q2D
assembly requires a significant number of collisions, and it
covers a spatial domain that increases with the number of
collisions per particle, the smaller the value of qσ for which
H (q) is examined the larger the number of collisions per
particle that must be examined.

VI. DISCUSSION

The important result reported in this paper is the exper-
imental observation of the divergence of the hydrodynamic
function H (q) as q → 0 in q1D and q2D colloid suspensions.
The fact that we observe H (q) diverging as q−γ with γ

close to 2 means that the decay rate of large-wavelength
density fluctuations, D(q)q2, is almost a constant, or depends
only weakly on q. That is, these density fluctuations decay
much faster than diffusively. The origin of this accelerated
decay of large-wavelength density fluctuations is unclear.
The q1D and q2D divergences we find are qualitatively
different in functional form from those predicted for the
diffusion coefficient in one-component one-dimensional and
two-dimensional fluids not subject to boundary conditions that
define the dimensionality of the system, and from the behavior
of the three-dimensional H (q) and De(q) as q → 0.

We now call the reader’s attention to two predictions of the
q → 0 behavior of H (q) for colloid particle motion in 2D.
One of these predictions refers to the collective behavior of
colloid particles in a plane in the interior of a 3D suspension
[23,24]; the other refers to the collective behavior of colloid
particles confined in the interface between two liquids [24].
Our discussion of these predictions is intended to emphasize
that boundary conditions define the difference between the
q → 0 behaviors of H (q) in 1D, 2D and q1D, q2D colloid
suspensions.
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Stokesian dynamics simulation studies of collective behav-
ior of colloid particles in a plane in the interior of a three-
dimensional suspension have been reported for three model
colloid suspensions, by Nagele and co-workers [23,24]; the
colloid-colloid interactions studied were hard sphere, Yukawa
and magnetic dipole. These simulations reveal an apparent
divergence of H (q) as q → 0. It is important to emphasize
that restricting attention to colloid motion in a plane within a
3D suspension is not the same as restricting motion to be q2D
by imposition of boundary conditions. To analyze the source
of the behavior of the projected 2D H (q) as q → 0 Nagele and
co-workers neglected wall effects (so z → ±∞) and attributed
the divergence to the character of the hydrodynamic interaction
that results after removal of particle motion perpendicular to
the plane containing the particle centers. Specifically, they
integrated the point force approximation to the Oseen mobility
tensor in the xy plane, which generates a term with the form
(qσ )−1 in H (q). This small q form does not fit our data, and it
is not consistent with q2D geometry with rigid walls in that the
r dependence of the Oseen tensor for a confined q2D liquid
with rigid wall zero slip boundary conditions is r−2, not the
r−1 dependence of the 3D Oseen tensor. If that r−2 dependence
of the q2D Oseen tensor is used in Eq. (3.3), H (q) is predicted
to be independent of q in the limit q → 0.

Bleibel, Dominguez, Gunther, Harding, and Oettel [17]
have analyzed diffusion in a colloid monolayer confined in
the interface between two fluids, i.e., a 2D system bounded
by two infinite fluid half spaces. The motion of the colloid
particles is restricted to the interface, treated as a plane, but
the hydrodynamic interactions between particles are developed
by 3D motion of fluid in the interface and in the surrounding
fluids, thereby incorporating the appropriate boundary condi-
tions. Thus, the stationary flow in the interface is described
using the 3D Oseen tensor even though only its evaluation in
the plane of the interface is used. The flow in the interface
induces compression and dilation of the colloid particle fluid,
while the full 3D flow is incompressible. This analysis leads to
the prediction that De (q) ∝ q−1 as q → 0, hence by inference
H (q) ∝ q−1 as q → 0. Two decades ago, Lin, Rice, and Weitz
[16] reported experimental evidence for the divergence of
the collective diffusion coefficient in a system that resembles
the one modeled by Bleibel et al., namely, a monolayer of
self-assembled disks of a diblock copolymer supported in the
air-water interface. The distribution of disk sizes is narrow
enough that the 2D pair correlation function of the system
can be described as that of hard disks with uniform size.
At that time, although Lin, Rice, and Weitz recognized and
discussed the differences between the experimental system and
a one-component 2D hard disk system, lacking any alternative
theory they analyzed their data for the collective diffusion
coefficient using Eqs. (1.1) and (1.2). We have extracted from
their data for the monolayer with packing fraction 0.12 the
behavior of D0H (q) = De (q) S (q) as q → 0. At this small
packing fraction the diffraction pattern of the monolayer does
not exhibit a peak, so we take S(q) = constant. The results
obtained from this new analysis, using σ = q−1

m with qm the
position of the first peak of S(q) at high packing fraction, are
displayed in Fig. 12. The results clearly show that H (q) ∝ q−1

rather closely over the range 0.015 < qσ,0.50, as predicted by
Bleibel et al.
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FIG. 12. (Color online) A test of the proportionality of D0H (q)
to 1/q, predicted by Bleibel et al. [23], for a monolayer of copolymer
disks in the air-water interface. The experimental data were taken
from Ref. [24].

It is important to emphasize that both the Naegele et al.
and Bleibel et al. analyses of H (q) as q → 0 refer to 2D
situations with boundary conditions that are very different
from those in the q2D suspensions we have studied, and neither
predicts the form of H (q) as q → 0 that we observe. The
role of the boundary conditions is crucial to the predictions
made. In the simulations by Nagele et al., the system is a 2D
layer of particles embedded in an unconfined 3D suspension.
In the absence of confining walls the Dij (r) in Eq. (3.3)
have the asymptotic form r−1 and a 2D Fourier integration
leads to the form q−1, hence divergence of H (q) as q−1

as q → 0. The divergence in the Bleibel et al. analysis
arises from the same source, but in this case the boundary
conditions are appropriate to the system described, as shown
by the comparison with the experimental data of Lin, Rice,
and Weitz.

The divergence of H (q) observed in our q2D MD simula-
tions arises from the use of the slip boundary condition. An
apt analogy is to the flow of a soap film. For large separations
the flow is 2D-like with no wall friction. But in a 2D fluid
Dij (r) has the asymptotic form ln r , and after a 2D Fourier
integration of H (q) defined by Eq. (3.3), H (q) ∝ q−2 plus
logarithmic corrections, i.e., the same dependence as obtained
from the simulation data.

We now must face up to the dilemma that, as far as we are
aware, the full slip boundary condition used in our q2D MD
simulations, which does generate a divergence of H (q) as
q → 0, is not typically considered appropriate for the ex-
perimental situations we have studied. Moreover, application
of a full slip boundary condition to a q2D suspension is
not consistent with the effect of hydrodynamic coupling
on the behavior of the relative and center of mass pair
diffusion coefficients, which are accurately described when
the no-slip boundary condition is used [25]. Our theoretical
studies show that the conventional models of colloid dynamics,
which decompose the hydrodynamic interactions into pairwise
contributions, fail to explain our observations. Clearly, our
experimental results remain puzzling.
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Although we cannot yet definitively identify the physical
origin of the q1D and q2D divergences of H (q), suspicion
of that physical origin is narrowed down to some role
played by slip at the boundary for the following reasons.
For suspensions confined by rigid boundaries with a no-slip
boundary condition, it is clear from the outset that, so long as
the suspension is fluid, there should not be any long-range
anomalous effects on the particle motion, no matter how
many higher-body hydrodynamic interactions are active. This
conclusion follows from the observation that the rigid walls
cut off stress propagation at distances much larger than the
channel width, as is indeed confirmed by the q1D and q2D pair-
diffusivity measurements [25]. The hydrodynamic interaction
in a rigid channel is short ranged at all orders. Hence, it
is natural to suspect the boundary conditions. Introducing a
constant slip length will not change the situation—stresses will
propagate to larger but finite distances along the channel, only
to be cut off slightly further. An infinite slip length (full slip

boundary condition) leads to divergence of H (q) as q → 0, as
discussed in this paper, but is experimentally unreasonable and,
furthermore, contradicts the well-established pair-diffusivity
measurements. We are then led to the inference that some
subtlety associated with the conditions at the surface of the
confined fluid, which goes beyond simple slip, is responsible
for the anomaly we have observed. Such an effect might,
perhaps, be modeled as a distance-dependent slip length.
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