
PHYSICAL REVIEW E 88, 022405 (2013)

Anomalously fast kinetics of lipid monolayer buckling
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We reexamine previous observations of folding kinetics of compressed lipid monolayers in light of the accepted
mechanical buckling mechanism recently proposed by L. Pocivavsek et al. [Science 320, 912 (2008)]. Using
simple models, we set conservative limits on (a) the energy released in the mechanical buckling process and
(b) the kinetic energy entailed by the observed folding motion. These limits imply a kinetic energy at least 30
times greater than the energy supplied by the buckling instability. We discuss possible extensions of the accepted
picture that might resolve this discrepancy.
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I. INTRODUCTION

When a flat thin sheet of material is subjected to increasing
pressure, it eventually buckles, crumples, or cracks. By
buckling, the sheet releases stress over wavelengths much
larger than its thickness. In recent years there has been
increasing interest in phenomena, such as crumpling, where
the deformation goes from an initial uniform state to a localized
region occupying an arbitrarily small fraction of the sample
[1]. Monolayers of surface-active molecules (surfactants),
adsorbed on a liquid, are found in many systems containing
water-air or water-oil interfaces [2]. Such monolayers exhibit a
rich variety of collapsed structures under lateral compression,
most of which occur on an intermediate scale between the
macroscopic one and the molecular thickness of the layer.
Fluid monolayers collapse into disks, tubes, or pearls-on-string
structures, depending on spontaneous curvature and charge of
the lipid monolayer [3]. Like elastic sheets, many solid-like
monolayers crack [4,5] or buckle [6] under pressure, yet other
solid-like monolayers fail by abrupt buckling into straight,
micron-wide folds [7–15] (see Fig. 1 for an example). In
addition, liquid-like monolayers may form micron-scale vesic-
ular objects of various shapes [7,16,17] or giant convoluted
folds [9,10]. This type of folding is believed to be driven by
the interfacial energy gained from the contact across the two
sides of the fold [10]. Thus, the failure of surfactant monolayers
under lateral pressure displays distinctive mechanical behav-
iors, which crucially depend on the in-plane rigidity [7,18,19]
and viscoelasticity [10]. Lipid monolayers and bilayers are the
material of choice for spatial partitioning in living matter, such
as cells and compartments within them. These partitions are
often observed to fold and wrinkle under stress. In particular,
lipid monolayers that model the expanding and contracting
sacs in an animal’s lung exhibit the abrupt folding signature
described in Refs. [20–22].

These puzzling buckling events or “jerks” were the subject
of an extensive statistical study in 2006 [13]. DPPG:POPG
lipids were spread on the air-water interface of a Langmuir
trough and viewed in an optical microscope as the trough was
gradually compressed. The micron-sized folds (indicated by
the bright line in Fig. 1) cause the entire (15 cm) monolayer to
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translate. In most cases, the fold was outside the field of view,
but its formation could be inferred by the observed motion of
the sheet. The distinctive length and time scale of the jerks
have not been explained. Why do the jerks occur over a time
scale of about 0.1 s—far from any molecular or apparatus time
scales? Why does the motion stop suddenly, before the driving
stress is relaxed? Why do the jerks show a robust characteristic
displacement of a few microns?

An intriguing hypothesis to explain this micron-length scale
was recently proposed by Pocivavsek et al. [3,14]. These
authors recalled that any thin sheet under compression on
a liquid substrate buckles at a well-defined wavelength λ.
For lipid monolayers, the expected value of λ lies in the
micron range. Thus, it is of the same order as the characteristic
displacement of the jerk relaxations. These authors also noted
that the incipient wrinkles at wavelength λ are unstable against
folding, in which the excess wrinkled material from throughout
the sample is concentrated into a single loop or fold.

This paper aims to account for the dynamical features of
the jerk motion. In Sec. II we argue that the monolayer may
be viewed as a broad, thin slab that translates almost rigidly
during the jerk motion. In Sec. III we describe how such
a slab should respond to horizontal forcing, accounting for
progressive viscous entrainment of the fluid subphase. Using
this result, combined with experimental observations, we set a
lower bound on the kinetic energy of the jerks. We then survey
the possible forces that might give rise to this kinetic energy,
notably the energy released by folding in the mechanism of
Ref. [14]. Even upper limits of this folding energy are far less
than the observed kinetic energy. In Sec. IV we discuss effects
that might account for this kinetic energy.

II. SYSTEM

For definiteness we focus our study on the jerks analyzed
in Ref. [13] and reexamined in Ref. [14]. We begin by
reviewing the parameters of this system. The monolayer was
a 7:3 mixture of dipalmitoylphosphatidylcholine (DPPC) and
dioleoylphosphatidylglycerol (POPG) spread on pure water
at room temperature in a 15-cm-long Langmuir trough and
viewed in a microscope in a 100-μm-wide field of view at
conventional video frame rates. It is compressed at 0.1 mm/s
to a nominal pressure of about 70 mN/m before viewing. The
measured pressures are consistent with the slight overpressure
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FIG. 1. (Color online) Frame from fluorescence-microscope
video of a compressed mixture of DPPG and DOPG lipids, courtesy
of the authors of Ref. [13]. Dark domains are the condensed phase;
lighter channels are the liquid phase. Bright line is a fold created
earlier. Bar indicates 50 μm. Arrows indicate the displacement during
a jerk event.

needed for folding [14,23]. In these conditions this material
microphase-separates into a biphasic foam-like pattern of
compact patches separated by narrow strips of different
composition, visualized by a dilute fluorescent additive. The
patches are 15–25 μm in size. The monolayer behaves mechan-
ically as a solid, not a fluid; the jerks move in the direction
of the Langmuir barrier motion. Rheological measurements
in similar systems showed stress relaxation times of order
10–102 s [10,24]. The jerks vary statistically in their net
displacement � and their duration t . No statistical correlations
between jerks were observed. The displacements � vary from
a minimum of about 1.2 μm to several times larger, with an
average of 2 μm [13]. The durations t vary from a minimum
of about 0.09 s to a few times longer, where the average is
0.12 s. It has been suggested [13] that the larger jerks are
cascades of elementary jerks, with this average � and t . In the
estimates below, we use these average � and t values.

We may simplify our description of the monolayer using
three further features. First, the monolayer may be assumed to
translate rigidly outside the folding region over distances of
several cm. It thus entrains substrate fluid over these distances.
In principle, compressibility could invalidate this assumption.
Compressibility implies that an initial imbalance of membrane
stress produces a compressional wave whose speed is given
by c = √

Y/ρs , where Y is the two-dimensional uniaxial
compression modulus and ρs is the mass density per unit area.
If forces are applied on a timescale t , the resulting compression
or expansion is confined to distances L � ct . Conversely, the
compression is negligible and the body moves rigidly if its size
L is smaller than about ct . Thus, to show that our monolayer
translates rigidly, we must establish that c is sufficiently large.

For our case, the density ρs is the density of the material to
be accelerated in propagating the wave. Since the monolayer
entrains substrate fluid as it moves, the density must take
account of this subphase. We may find a lower limit on this c by
using a lower limit to the modulus Y and an upper limit for the
surface density ρs . Accordingly, we estimate Y by neglecting
any compressional effects of the subphase. Measurements of
the monolayer compression modulus range from 0.1 N/m to
several N/m [18,25,26]. We use the conservative estimate of
Y > 0.1 N/m below. As for the surface density ρs , we find an

upper limit by including all the water that might be entrained.
As discussed in Sec. III, an upper limit on the entrained density
ρs is given by ρs < 2ρ

√
νt , where ρ (103 kg/m3) is the density

of the water subphase, and ν (10−6 m2/s) is its kinematic
viscosity. Thus, in the jerk time of 0.12 s, a local compression
can propagate a distance ct > 0.05 m; i.e., even by our minimal
assumption, information from the folding region has reached
about half the sample (5 cm) within the jerk time. Thus, we
expect only minor effects from compressibility of the sheet.
In the calculations to follow, we will assume L = 5 cm is the
size of the moving sheet.

A second feature of the monolayer is that its compress-
ibility has negligible effect on the energetics of folding. As
explained below, the over-pressure p released in the wrinkle-
to-fold transition [14] in this system must be smaller than
6 × 10−5 mN/m. Given the large lower-bound modulus Y

above, the compressive displacement �com in a system of
length L is smaller than Lp/Y < 0.03 μm. It is, thus, much
smaller than the observed displacements �. Likewise, the
compressive energy released is a small fraction (p�com/p�)
of the folding energy.

A third feature of these monolayers is that the longitudinal
propagation of the fold tips is much faster than the transverse
folding and its accompanying jerk. Within the temporal
resolution of Ref. [13] (∼0.03 s) the fold traverses the field
of view (∼150 μm) instantaneously; this sets a lower bound
of ∼5 mm/s for its speed. In the system of Ref. [11], two
types of longitudinal folds were observed, the slower of which
propagated at ∼10 mm/s. Comparing these values with the
characteristic translation velocity, 10 μm/s [13], we see that
the requirement is safely fulfilled. These features allow us to
consider a simplified two-dimensional problem of a thin elastic
sheet moving over a semi-infinite viscous liquid (Fig. 2).

Current understanding [3,14] attributes the jerks to the
mechanical buckling or wrinkling instability of any elastic
sheet that is floating on a liquid and is under compression
[27]. Above a threshold pressure pc, the sheet distorts, at
a cost of bending energy. The wrinkles also produce a
net upward and downward displacement of the liquid, thus
increasing its gravitational energy. Taking account of these
costs, one finds a threshold pressure given by pc = 2

√
Bρg,

where B is the bending stiffness and g is the acceleration
of gravity. The predicted buckling wavelength λ is given
by λ = 2π [B/(ρg)]1/4. This buckling is unstable, leading
to a release of the overpressure pc over a displacement �f

comparable to λ. Though pc is too small to measure directly
in our system, it can be estimated either using typical values
of B or by inferring B from the observed jerk displacement.
Bending stiffness for lipid monolayers like our system are of
the order B � 10−19 J [28]. This B value implies an upper

FIG. 2. Schematic view of the system and its parametrization.
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bound for pc: pc < 6 × 10−5 mN/m. If instead we infer pc

from the observed jerk displacements via pc = ρgλ2/(2π2) =
ρg�f

2/(2π2), we obtain values of 2 × 10−6 mN/m, i.e.,
30 times smaller than our upper bound [29]. In what follows
we will use the more conservative “upper-bound” value of pc,
namely 6 × 10−5 mN/m. There are many forces in the system
that exceed this value—the total pressure from the trough,
drift flows, flows from faraway jerks, or residual flows from
previous jerks. However, these larger pressures lack the central
feature needed to explain jerks. The jerks clearly result from
an instability, in which a small displacement � leads to an
increasingly unbalanced pressure.

To summarize the above discussion, the sheet is assumed
to deform in the x-z plane while remaining uniform along
the y axis. It is laterally compressed by a two-dimensional,
uniform pressure p. (In the experimental system, p is given
by the actual pressure exerted at the boundaries minus the
surface tension of the liquid.) Prior to instability, the monolayer
remains flat (h = 0) and responds to compression by slightly
decreasing its actual length. When the pressure exceeds pc, the
monolayer wrinkles or folds out of the x-y plane (h �= 0). Since
the pressure pc produces negligible elastic compression, the
total length L is fixed, and the displacement � along the x axis
is fully accounted for by the wrinkles or folds. The underlying
liquid, having viscosity η and mass density ρ, occupies the
region z < h.

III. DYNAMICS

A. Constant pressure

As noted above, the motion of the sheet depends strongly on
the viscous entrainment of the fluid beneath it. In this section,
we determine the motion taking account of this entrainment.
We begin with a simplified situation. Suppose we control the
surface pressure and increase it above the instability pressure,
pc. We further suppose that as the sheet begins to fold, the
buckled region is decreasing the pressure by a constant amount
p. At this moment the forces on the sheet are unbalanced
and it begins to accelerate. In all but the small folding region
the sheet is horizontal and its motion is a pure horizontal
translation. The flat sheet adjacent to the fold will translate
laterally, thus creating a velocity profile v(z)x̂ in the underlying
liquid. On larger scales, this flow produces circulation of fluid
in the sample. We ignore such large scale gestures, since these
only increase the kinetic energy and the discrepancy we are
discussing. The resulting viscous drag decreases with time,
as the velocity profile penetrates deeper into the liquid and
its gradient becomes less sharp. We shall assume that the
sheet’s velocity is always equal to that of the water immediately
beneath it. That is, the fluid obeys a no-slip boundary condition.
We examine such assumptions in Sec. IV below. We may
neglect the mass of the sheet relative to the much greater mass
of the entrained fluid. Thus, the problem is simplified to that
of finding the velocity of a half-infinite fluid due to a rigid
surface moving with a constant lateral pressure.

The equation of motion for the fluid is

v̇ = ν∂zzv, (1)

where ν is the kinematic viscosity given by the ratio of
viscosity and density, ν = η/ρ, and a dot denotes derivative

with respect to time. The constant stress at z = 0 implies a
boundary condition of the form

∂zv|z=0 = − p

Lη
. (2)

Accompanying it are the condition of vanishing flow far away
from the interface,

v(z → −∞,t) = 0, (3)

and initial conditions of stationarity,

�(t = 0) = �̇(t = 0) = v(z,t = 0) = 0. (4)

Equations (1) and (2) may be simplified by defining the
Laplace transform ṽ(ω) by ṽ(ω) ≡ ∫ ∞

0 v(t)e−ωtdt :

ωṽ(z,ω) = ν∂zzṽ(z,ω), ∂zṽ|z=0 = − p

ηLω
. (5)

The solution in Laplace space is

ṽ(z,ω) = p
√

ν

ηLω3/2
exp(

√
ω/νz), (6)

and in the time domain,

v(z,t) = 2p(νt/(πL2η2))1/2[e−α2 + α(Erf(α) + 1)],
(7)

α ≡ z/(2
√

νt).

The displacement of the sheet is given by integrating the
velocity on the surface, � = ∫ t

0 v(z = 0,t ′)dt ′,

� = 4

3
√

π

p
√

ν

Lη
t3/2. (8)

Since the accelerated mass is constantly increasing in time, the
acceleration v̇ decreases with time as t−1/2. This leads to the
unusual “jerky” increase of the velocity v(t). We note that this
predicted motion arises from basic hydrodynamics; it does not
depend on the source of the pressure p. We note also that a
fixed fraction 	0.64 of the input power p�̇ goes into kinetic
energy; the remainder goes into viscous dissipation.

B. General pressure

Buckling relaxes stress at the tip of the fold; we would,
therefore, expect the driving pressure to depend on the
displacement. The equation for �(t) can readily be generalized
to include such a p(�). We discuss it here for completeness.

Lσ�̈ = p(�) − Lη∂zv|z=0, (9)

where the first term on the right is the driving stress, the last
term is the stress from the fluid, and σ is the two-dimensional
mass density of the sheet. For the fluid, Eq. (1) still applies,
and the two are supplemented by a no-slip boundary condition
at the interface,

v(z = 0,t) = �̇, (10)

a condition of vanishing flow far from the surface Eq. (3), and
initial conditions of stationarity Eq. (4).

We proceed by eliminating v to obtain an equation for
the sheet alone. The velocity Green function of the liquid
is given by the boundary condition v(z = 0,t) = δ(t) and
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Eqs. (3) and (4). Explicitly,

G(z,t,t ′) = 1

2
√

πν

z

(t − t ′)3/2
exp

(
− z2

4ν(t − t ′)

)
. (11)

The general solution with the no-slip boundary condition of
Eq. (10) is obtained simply by integration, v(z,t) = ∫ t

0 G(t −
t ′)�̇(t ′)dt ′ = ∫ t

0 G(t ′)�̇(t − t ′)dt ′. Inserting this expression
into Eq. (9) and integrating by parts produces an equation
for the sheet alone:

Lσ�̈ = p(�) − Lη√
πν

∫ t

0
dt ′

�̈(t − t ′)√
t ′

. (12)

As before, we may neglect the inertial term on the left-
hand side. For a constant pressure, Eq. (12) gives the same
displacement as Eq. (7).

C. Application to observed jerks

We may now compare the observed jerk motion with the
motion expected from the folding forces. It is straightforward
to solve Eq. (12) using the predicted (quadratic) p(�) [30]. The
resulting motion proves to be much slower than the observed
jerks. We may quantify this discrepancy in two ways. First,
we ask what constant pressure p would be required to give
the observed displacements � in the observed time t . Then we
determine the observed kinetic energy and compare it to the
energy available from folding.

To find the pressure required to produce the observed jerks,
we substitute � = 2 μm and t = 0.12 s into Eq. (12), to obtain
p = 3.2 × 10−3 mN/m. This is some 50 times larger than the
upper-bound folding pressure pc = 6 × 10−5 mN/m obtained
above.

The same discrepancy emerges if we compare the observed
kinetic energy Ek with the work Wp done by the pressure
difference p(�). Both are proportional to the width w of the
jerking region. The pressure p(�) is always smaller than pc

throughout the folding. Thus, Wp/w < pc� < 1.2 × 10−13

N. Other things being equal, the kinetic energy Ek for a given
average velocity �/t is larger if t is larger (since larger t

implies a greater entrained mass). Thus, we may obtain a
lower bound on the kinetic energy by limiting t to the observed
duration of 0.12 s. For the moment we simply use the constant-
pressure solution of Eq. (7) and use

Ek/w = L
1

2
ρ

∫
dzv(z)2 = 1.7L

√
νt

[
1

2
ρ

(
�

t

)2]
. (13)

We examine this estimate in Sec. IV. For L = 0.05 m, � =
2 μm, and t = 0.12 s, this gives Ek/w = 4 × 10−12 N—some
32 times our upper bound of the work Wp supplied by folding.
Thus, even when one ignores the work that must go into
viscous dissipation, the observed energy is far larger than
what the folding energy, Wp, can supply. (Taking account of
the dissipated energy, one recovers the factor-50 discrepancy
quoted above.)

IV. DISCUSSION

The arguments above indicate a worrisome discrepancy
between the observed jerking motion and the mechanics of
folding presumed to account for this motion. The discrepancy

is serious; it survives even when we use conservative bounds
in our estimates. In this section we survey possible ways to
account for the discrepancy. First, we review possible flaws in
our description of the kinetic energy and the folding forces.
Then we consider other forces that might account for the
jerking motions.

Our estimate of the kinetic energy was a simplified one,
but it gives a proper lower bound for a given displacement
� and time t . We will proceed by reinforcing several of the
assumptions. First, we assumed a constant pressure, though
the actual unbalanced pressure increases with time. However,
other choices would have led to a higher kinetic energy. We
consider the effect of replacing our constant-pressure estimate
by allowing the pressure to increase with time. In order to
achieve the required �(= ∫

dt�̇) in the given time t with
a time-increasing pressure, we will necessarily reduce �̇ at
early times and increase it at late times. However, any shift of
�̇ from earlier to later times has the effect of increasing the
kinetic energy. To see this, we consider a small decrease of �̇—
denoted δ�̇—at time t< over a brief interval �t . To maintain a
fixed total displacement �, we make an equal addition to �̇ at
a later time t>. Any shift of �̇ from earlier to later times can be
accomplished by repeating this process. This perturbation of
�̇ creates a corresponding perturbation of the fluid velocity at
the final time t : we denote it by δv(z,t). We may then express
the final kinetic energy Ek(t) in terms of this δv and the initial
profile v0(z,t) using the integral of Eq. (7).

Ek(t)/w = L
1

2
ρ

∫
dz[v0(z,t) + δv(z,t)]2

= E0k(t)/w + Lρ

∫
dzv0(z,t)δv(z,t) + O(δv2).

(14)

The second perturbing term is necessarily positive provided the
(positive) v0(z) profile is monotonic. To see this we express δv

in terms of the Green function G of Eq. (11):

δv(z,t) = δ�̇�t[−G(z,t − t<) + G(z,t − t>)]. (15)

We may express any monotonic v0 as a sum of positive step
functions, each extending from 0 to some Z. For a given step
function, the contribution to Ek is given by

∫ 0
−Z

δv. Thus, it
suffices to show that this integral is positive. In terms of the G

functions, this means
∫ 0
−Z

G(z,t − u) is an increasing function
of u. This may be verified explicitly using Eq. (11). Thus, a
small shift in the pressure profile from a constant one to an
increasing one with the same � and t only increases the energy
Ek . If further small shifts are added, the same reasoning implies
that the Ek again increases, provided the starting v0(z) remains
monotonic in z. We conclude that the constant-pressure Ek of
Eq. (13) under-estimates Ek .

A second assumption that affects our estimate of the kinetic
energy is the no-slip boundary condition between the sliding
monolayer and the fluid beneath. Having a slip would cause
less drag of the fluid and, thus, less kinetic energy. But in
our case of hydrophilic heads facing the water, there is no
justification for a significant slip.

A further effect that can potentially reduce the kinetic
energy is the possibility that the motion is restricted in area,
so that less fluid is entrained. As noted above, this restriction
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can occur if the surface layer is compressible. The expected
compressibility is such that there could be a noticeable effect
on the scale of the entire 15-cm sample. To account for this,
we assumed that the motion is restricted to a range of only
5 cm. On this scale we argued that any departure from rigid
sliding of the sheet would be negligible. One possibility we
did not consider is that the modulus of the sheet, Y , is smaller
than observed in experiments (that dealt with sheets without
any folds). The existence of folds would make the material
weaker, softer. If that is indeed the case, the part of the sheet
that moves rigidly due to jerking could be smaller. However,
in order to resolve the discrepancy, the rigid moving part must
be a few millimeters at most, which is not consistent with the
statistics of observed jerks [13].

Another potential way to resolve this discrepancy is that
we have under estimated the folding pressure p. As was
noted in Sec. III, the creation of a fold reduces the pressure.
Since folding must occur when the pressure exceeds pc =
2
√

Bρg, no greater excess pressure can be sustained. This
is true even if additional folds are present. Could it be that
pc > 6 × 10−5 mN/m? This would imply that we have greatly
underestimated the bending rigidity B. The local structure of
the monolayer might imply a bending rigidity greater than is
usually observed due to texture in the sheet [31], but how much
greater? Equating the folding and kinetic energies requires pc

of at least 2 × 10−6 N/m; i.e., B > 10−16 J—a suspiciously
larger value.

We do not see how to resolve the kinetic discrepancy dis-
cussed here without departing qualitatively from the wrinkle-
to-fold model of Ref. [14]. To resolve the discrepancy, either
the kinetic energy must be smaller than our conservative
bounds or the driving force must be stronger than our bounds.
The former possibility seems unlikely. Our estimates for the
kinetic energy are based on direct observations of the motion,
together with simple and unquestioned hydrodynamics. How-
ever, our account of the driving force depends explicitly on
the mechanical properties of a folding monolayer leading to the
pressure pc that we estimated. Perhaps this mechanical picture
is wrong. What other forces are strong enough to trigger the
observed motion? One possible force is the force of adhesion
between two folds that touch. These forces are comparable
to the surface tension of the fluid and are thus many times
larger in magnitude than the pressure pc. If adhesion forces
are responsible, then the observed jerks must take place only
after the folds have touched. This leaves unexplained how
the folds came to touch and what causes the jerking to stop. A
second way to have a larger force is to abandon our picture of a
simple molecular monolayer. The observed jerks occur when
many folds are already present. The out-of-plane structure
from these prior folds could well impart great rigidity to the

surface layer and increase its buckling pressure by a large
factor. If such structures were important, it would qualitatively
alter our picture of how the jerks occur. There would no longer
be a clear connection to the simple wrinkle-to-fold model that
gave a plausible account of the jerk displacements.

The force responsible for jerks in the monolayers of
Ref. [13] may well be important in a broader context. The
wrinkle-fold transition has been implicated in a broader
class of nanoscale systems: nanoparticle trilayers [32] and
single-component lipid monolayers [3]. The various energies
in these systems are different, and the motion is also somewhat
different from that of Ref. [13]. Nevertheless, the discrepancy
shown above may also apply to these other systems. It is also
possible that the force responsible for jerks affects structure
as well as dynamics. That is, the magnitude of a fold may
be governed by other characteristic lengths than the wrinkle
wavelength λ. Still, the incipient instability might be due to the
wrinkle-fold mechanism while the rapid subsequent motion is
controlled by adhesion or some other force.

This work highlights the distinctive dynamics of thin solid
sheets on fluids in general. Equation (12) applies whenever
such a sheet is accelerated by an unbalanced force, whether
folding occurs or not. The equations imply a distinctive form
of acceleration and a distinctive partitioning of the supplied
work into kinetic energy and dissipation.

V. CONCLUSION

The wrinkle-to-fold mechanism [14] for thin film buck-
ling has allowed a new avenue for understanding buckling
phenomena in a range of nanoscale systems. Its successes
in explaining structural aspects of folding have led us to
apply it to the well-studied dynamics of monolayer jerks.
For these dynamic phenomena, our study indicates that other
forces are at play. Supporting this conclusion are experiments
on lipid-coated micro-bubbles, where it is clear that gravity,
an important ingredient of the folding mechanism, plays no
role [12,15]. These other forces must be much stronger than
those previously considered. The necessity of such forces
underscores the remarkable nature of monolayer jerks. It also
raises the importance of understanding these jerks.
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H. Möhwald, Thin Solid Films 284–285, 361 (1996); J. B. Lee,
G. Kretzschmar, R. Miller, and H. Möhwald, Colloid Surf. A
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