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Model-free thermodynamics of fluid vesicles
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Motivated by a long-standing debate concerning the nature and interrelations of surface-tension variables
in fluid membranes, we reformulate the thermodynamics of a membrane vesicle as a generic two-dimensional
finite system enclosing a three-dimensional volume. The formulation is shown to require two tension variables,
conjugate to the intensive constraints of area per molecule and volume-to-area ratio. We obtain the relation
between these two variables in various scenarios, as well as their correspondence to other definitions of tension
variables for membranes. Several controversies related to membrane tension are thereby resolved on a model-free
thermodynamic level. The thermodynamic formulation may be useful also for treating large-scale properties of
vesicles that are insensitive to the membrane’s detailed statistical mechanics and interactions.
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I. INTRODUCTION

Membrane vesicles are flexible fluid envelopes, made
of a bilayer of amphiphilic molecules in aqueous solution
[1,2]. Since Helfrich’s work almost three decades ago [3],
these prevalent structures have been one of the most exten-
sively studied systems in soft-matter physics, exhibiting rich
statistical-mechanical [4] and dynamic [5] behaviors. It may
seem odd, therefore, to go back now and reformulate their
equilibrium thermodynamics. Nevertheless, this is the goal of
the current work. The reason is a long and ongoing debate
concerning various definitions of the surface tension(s) of
fluid membranes, their physical meanings, and interrelations
[6–20]. Such issues as the exact number of independent
tension variables and their possible vanishing [6,8,12,19], or
even sign reversal [16–18], have remained controversial. The
debate has been conducted at the statistical-mechanical level,
emphasizing the role of thermal fluctuations and employing
various analytical and simulation techniques. While certain
issues are inherently statistical mechanical, it seems plausible
that at least some of the other fundamental issues mentioned
above should be settled at the lower, more general level of
thermodynamics (i.e., without specifying a Hamiltonian).

Two key properties of fluid membranes make their thermo-
dynamic characterization special and confusing. The first is
that, while being extensive in two dimensions, the membrane is
embedded in three dimensions. Consequently, it was suggested
early on that the thermodynamics of open membranes required
two spatial constraints rather than one [6] (the membrane area
A and its projection onto a reference planar frame Ap) entailing
two conjugate variables [8]. The variable conjugate to A, �,
is a surface pressure, analogous to ordinary thermodynamic
pressure. The one related to Ap, the frame tension τ , is the
force per unit length exerted at the edges of the frame, in the
plane of reference, to maintain a given Ap.

The second property of bilayer membranes which sets them
apart from ordinary fluids is the fact that they have a preferred
area per molecule [12,21]. This boils down to the hydrophobic
effect, which opposes the exposure of the inner core of the
bilayer to the outer solvent [21]. As a result, the membrane
possesses in-plane elasticity; unlike an ordinary fluid it can
sustain not only a global compressive stress but also a global
dilative one.

The discussion of membrane thermodynamics is further
obscured when the in-plane elasticity is suppressed by taking
the limit of membrane incompressibility. This commonly
used assumption simplifies calculations and allows one to
theoretically fix the total area of the membrane. Yet, at the
same time, it makes essentially independent thermodynamic
variables dependent: the area A and number of membrane
molecules N become linearly related, and so do the conjugate
surface pressure and chemical potential [8,12].

To these complications, which are special to fluid mem-
branes, one should add the common pitfalls in thermodynamic
analyses: the necessity to precisely define which variables
are kept fixed when another variable is varied, and the fact
that two variables, which turn out to be equal under certain
considerations, are not necessarily identical.

To circumvent some of the foregoing complications we
consider a closed envelope, a vesicle, rather than an open
membrane. We expect (and will demonstrate below) that,
once the thermodynamic behavior of a vesicle is clarified,
the consequences for an open membrane should be readily
inferred. In the case of a closed vesicle the three-dimensional
constraint is an ordinary volume constraint on the enclosed
system, rather than a projected-area constraint on the surface.
Thus, we explicitly consider the contents of the envelope as
a thermodynamic system, for which the properties of the
membrane become surface effects. As a result, the starting
point of the formulation resembles that of other studies of
finite-size systems such as droplets or domains. It contains only
well known, unambiguous thermodynamic variables, such as
volume and surface area. The special properties of the mem-
brane subsequently emerge without further assumptions or an
externally imposed reference frame. In addition, membrane
incompressibility is nowhere assumed.

The current work should be distinguished from other
thermodynamic formulations for membranes, which were
presented in the past [22,23]. The aim of those theories was to
use a local thermodynamic description, based on Gibbs’ theory
of interfaces [22] or molecular considerations [23], to construct
a coarse-grained, local free energy of a nonfluctuating meso-
scopic element of the membrane. Subsequently, the resulting
free energy per unit area could be used, like the Helfrich
Hamiltonian [3], as a starting point for statistical-mechanical
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or other calculations on a larger scale. By contrast, we directly
address the global, large-scale thermodynamics of a membrane
vesicle.

In Sec. II we formulate the thermodynamics of the vesicle
and present the resulting tension variables. In Sec. III we
examine the consequences of the formulation in various
experimental and theoretical scenarios, and the resulting
relations between the two tension variables themselves, and
between them and other previously defined variables. While
the formulation is for a closed vesicle, we examine the
analogous results for open membranes as well. Section IV
summarizes the findings, relates them with earlier results, and
discusses their implications.

II. THERMODYNAMIC FORMULATION

Consider a three-dimensional system of volume V , contain-
ing Q particles [24], and being in thermal contact with a bath
of temperature T . In the thermodynamic limit the Helmholtz
free energy of the system F3(T ,V,Q) is extensive in Q while
keeping the volume per particle fixed

F3(T ,V,Q) = Qf3(T ,v), v ≡ V/Q. (1)

If we double the number of particles, and at the same time also
double the volume, the free energy F3 will double. Conjugate
to T is the entropy per particle, s3 ≡ −(∂f3/∂T )v . Conjugate
to v is the internal pressure

pin ≡ −
(

∂f3

∂v

)
T

. (2)

The volume is enclosed by a two-dimensional envelope
of surface area A and N particles [25]. As in studies of
other finite-size systems (e.g., droplets, bubbles, domains),
we restrict the analysis to the leading correction introduced by
the surface to the thermodynamic limit F = F3 of Eq. (1). This
leading correction arises from contributions to the free energy
which are extensive in the surface size N . Since the envelope is
closed in three dimensions, its Helmholtz free energy generally
depends on both A and V , F2 = F2(T ,A,V,N ). For example,
the envelope’s entropy (which is extensive in N and should
be included, therefore, in F2) will decrease if V is increased
while keeping A fixed. The dependence of F2 on A and V

implies that the thermodynamic description of the envelope
requires two intensive variables apart from temperature. We
choose these variables to be the area per particle a ≡ A/N

and the dimensionless volume-to-area ratio α ≡ 6
√

πV/A3/2

(defined such that it has the maximum value of unity for a
perfectly spherical envelope). For F2 to be extensive in N , one
should fix both a and α,

F2(T ,A,V,N ) = Nf2(T ,a,α),
(3)

a ≡ A/N, α ≡ 6
√

πV/A3/2.

This is a key point which is worth dwelling upon. Imagine,
for example, that we double both the number of particles
making the envelope and its area, but do not change the
enclosed volume. The surface free energy arising from in-plane
short-range interactions and in-plane entropy will double. Yet,
evidently, the resulting object is not merely a rescaled version
of the original one. It is less spherical and bound to have

more out-of-plane fluctuation entropy per molecule, leading
to more than double the surface free energy. If we double
N and A, and at the same time also increase V by a factor
of 23/2, the envelope will be properly rescaled. The in-plane
as well as the out-of-plane contributions per molecule will
remain unchanged, and the surface free energy F2 will double.
We stress that Eq. (3) contains only contributions which are
extensive in the envelope’s size.

The appearance of the thermodynamic variable α reflects
a three-dimensional constraint imposed on the envelope.
Here the constraint is simply that the envelope be closed and
contain a volume V . One may impose other three-dimensional
constraints, such as a given projected area Ap onto a reference
surface. Such a thermodynamic constraint is not independent
of the volume constraint; it may replace it but not be added
to it. For example, if the area A of the envelope and the
volume V that it encloses are known, then, evidently, the
area of the sphere of volume V (taken as a reference surface)
Ap = (4π )1/3(3V )2/3, and its deviation from A, are known as
well. It is clear, however, that the foregoing considerations of A

and V are more transparent and independent of any reference
frame.

The flexibility of the thermodynamic formulation allows
for adding other constraints. For example, one may sug-
gest that F2 should depend on additional characteristics of
membrane shape apart from A and V , such as the (average)
curvature. Yet, one should examine whether such additional
constraints are beneficial or experimentally relevant. It is
hard to conceive a practical scenario where the shape of
a membrane is controlled to such an extent. We prefer,
therefore, to remain with the standard constraints of volume
and area as considered for any finite-size system. In statistical-
mechanical terms the membrane will sample all those ad-
ditional shape characteristics which are consistent with the
global constraints of A and V (with appropriate Boltzmann
weights).

Returning to Eq. (3), we write the entropy per particle of
the envelope as s2 ≡ −(∂f2/∂T )a,α . The dependence of f2 on
two intensive variables other than temperature a and α implies
that there are necessarily two independent conjugate variables

�(T ,a,α) ≡ −
(

∂f2

∂a

)
T ,α

, (4)

γ (T ,a,α) ≡ 3α

2a

(
∂f2

∂α

)
T ,a

. (5)

The prefactor in the definition of γ has been introduced to make
the following presentation clearer. Both variables have surface-
tension dimensions. The first, �, is the surface pressure (the
two-dimensional analogue of pin) describing the response of
the envelope’s molecules to in-plane strain (i.e., changes in
the area per molecule without a change in the volume-to-area
ratio). At the optimum area per molecule � vanishes. The
second variable γ , referred to hereafter as the Laplace tension,
is related to the response of the envelope to out-of-plane strain
(i.e., changes in the enclosed volume without a change in the
area per molecule).
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We can further define three surface moduli

Kaa =
(

∂2f2

∂a2

)
T ,α

= −
(

∂�

∂a

)
T ,α

,

Kαα =
(

∂2f2

∂α2

)
T ,a

= 2a

3α

[(
∂γ

∂α

)
T ,a

− γ

α

]
, (6)

Kaα = ∂2f2

∂α∂a
= −

(
∂�

∂α

)
T ,a

= 2a

3α

[(
∂γ

∂a

)
T ,α

+ γ

a

]
,

of which only the first is usually considered (aKaa is the
membrane’s compression modulus). The last equality in
Eq. (6) is a Maxwell relation between the two variables
� and γ . In addition, the convexity of f2 demands that
KaaKαα > K2

aα .
Now consider the combined system, with total Helmholtz

free energy F (T ,V,Q,A,N ). The fundamental differential
relation for F is

dF = −SdT − pdV + μ3dQ − σdA + μ2dN, (7)

where S is the total entropy, p the total pressure exerted by the
environment, σ the total surface pressure in the envelope, and
μ3 and μ2 the chemical potentials, respectively, of the particles
enclosed inside the vesicle and those making the envelope. In
what follows we assume for simplicity that the particles in
the volume interact with those in the envelope via hard-core
repulsion only (i.e., they are merely enclosed by the envelope).
In this case the total Helmholtz free energy is simply given by
the sum of the volume and surface contributions

F = F3 + F2 = Qf3(T ,v) + Nf2(T ,a,α). (8)

Note, however, that there is an implicit coupling between the
two terms via their mutual dependence on the volume. Taking
the differential of Eq. (8) and equating it with Eq. (7), we
identify

S = Qs3 + Ns2, (9)

p = pin − 2

α

(
Na

4π

)−1/2

γ, (10)

μ3 = f3 + pinv, (11)

σ = � + γ, (12)

μ2 = f2 + �a. (13)

Thus, the total surface pressure σ , the variable conjugate to
A in the total free energy, is manifestly broken into two distinct
contributions, � and γ [Eq. (12)]. We underline the different
roles played by each of these two tension-like variables,
defined in Eqs. (4) and (5). The similarity between � and
ordinary thermodynamic pressure is reflected in its relation to
the chemical potential of the envelope’s molecules, Eq. (13), in
which γ is absent. The Gibbs free energy of the envelope alone,
whose sole extensive variable is N , is G2 = μ2N = F2 + �A

(not F2 + σA). By contrast, the mechanical nature of γ is
reflected in its contribution to the pressure that the vesicle
exerts on the external environment, Eq. (10), in which �

does not appear. We may define for the vesicle an effective
thermodynamic radius of curvature, as

Rc ≡ α

(
Na

4π

)1/2

= 3V

A
, (14)

which for a perfectly spherical envelope coincides with
the sphere’s radius. With this definition Eq. (10) becomes
Laplace’s law, pin − p = 2γ /Rc.

III. EXPERIMENTAL AND THEORETICAL SCENARIOS

As in any thermodynamic analysis, we can apply the
formulation given above to various scenarios, in which certain
variables are controlled while others are free to relax. These
scenarios correspond to different statistical ensembles. In the
following sections we describe several scenarios of particular
relevance to experimental conditions or to the debate over
membrane tension.

A. Volume or pressure constraint

Let us begin with a scenario in which we prescribe the
volume enclosed by the envelope, as well as the temperature
and the number of particles in the volume and in the
envelope [i.e., we fix (T ,V,Q,N )]. In practice, the volume may
be considered fixed if we assume the inner solvent to be
incompressible and neglect the permeation of solvent into
and out of the vesicle. (This is valid, for example, over
a sufficiently short time.) Previous studies considered an
additional constraint of either a fixed area A or a fixed total
surface pressure σ . We argue that this is unnecessary. Indeed, it
is impractical to dictate the area of the membrane. If we do not
impose an external surface pressure (σ = 0; the case of finite
σ is discussed in the next section), the area will relax under
the given constraints of (T ,V,Q,N ) [26]. The Helmholtz free
energy is then minimized with respect to A, leading to

� + γ = 0. (15)

After the minimization, F remains dependent only on
(T ,V,Q,N ). The force balance expressed by Eq. (15) has
the following intuitive interpretation. The volume constraint
acts as if an external surface pressure were applied to
the envelope, �ex = −γ [27]. In response, the particles of
the envelope develop an internal surface pressure � = �ex.
The membrane’s response to out-of-plane strains must be
restoring, γ � 0. Hence, in the absence of an actual external
surface pressure, the in-plane balance is between two negative
pressures (i.e., the volume constraint acts to increase the area,
whereas the internal pressure acts to decrease it).

Note that Eq. (15) is not an identity but an equation of
state, relating the envelope’s intensive variables, T , a, and α;
� and γ are in general independent variables, which become
related in this scenario due to area relaxation. In addition,
using Eqs. (2), (4), (5), and (15), together with the known
dependence of α on V and A, one can calculate for a given
model the unknown variables, such as p, a, �, and γ , as
functions of the constraints (T ,V,Q,N ) [28].

Now consider a different case, where the pressure of the
external environment is controlled, while the volume can vary
[i.e., we fix (T ,p,Q,N )]. This scenario is quite similar to the
preceding one; we discuss it separately because it is the most
relevant for actual equilibrium vesicles, where the solvent has
sufficient time to permeate in and out of the vesicle. In this case
we should minimize the Gibbs free energy G ≡ F + pV with
respect to V and A, leading again to Eqs. (10) and (15). After
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the minimization G remains dependent only on (T ,p,Q,N ).
We note that, although we dictate p, we do not directly fix
pin because of the surface effect represented by the Laplace
tension γ in Eq. (10).

If there is neither a volume constraint nor a pressure one
(i.e., p = pin), we have a tensionless membrane �= γ = 0 [8].

B. Contact with a reservoir of amphiphilic molecules

Let us examine a scenario in which the set of constraints is
(T ,p,Q,μ2). We explicitly consider this case for two reasons.
First, it becomes the practically relevant scenario at sufficiently
long times, when the vesicle exchanges amphiphilic molecules
with the surrounding solution. Second, it highlights the
crucial role played by the three-dimensional embedding of
the membrane. The latter issue is recognized once we notice
that the set (T ,p,Q,μ2) does not include any constraint that
is extensive in membrane size. On the one hand, such a
thermodynamic formulation would normally be underdefined
and, hence, invalid. In the absence of any constraint on the
envelope’s size, the vesicle can grow indefinitely by drawing
more amphiphilic molecules from the reservoir. On the other
hand, it is clear that this scenario can be realized in experiments
and simulations. This apparent contradiction is resolved below.

The free energy to minimize in this case is G̃ ≡ F + pV −
μ2N . The minimization of G̃ with respect to V , A, and N

recovers Eqs. (10), (13), and (15), which we should be able to
solve for V , A, and N , given the constraints (T ,p,Q,μ2). Let
us explicitly rewrite the equations in terms of these unknowns

0 = f2

(
T ,

A

N
,

V

A3/2

)
+ A

N
�

(
T ,

A

N
,

V

A3/2

)
− μ2,

0 = �

(
T ,

A

N
,

V

A3/2

)
+ γ

(
T ,

A

N
,

V

A3/2

)
,

0 = pin

(
T ,

V

Q

)
− 2A

3V
γ

(
T ,

A

N
,

V

A3/2

)
− p.

The first two equations, describing in-plane equilibrium, are
invariant to the scaling (N → λN,A → λA,V → λ3/2V ) by
an arbitrary scale factor λ. It is the third equation (Laplace’s
law), accounting for the out-of-plane force balance, which
violates this scaling and prevents the set of equations from
being underdefined.

C. Surface pressure constraint

Just as it is impractical to impose a fixed area A on a
vesicle, it is unclear how one could, in practice, apply to
the vesicle a fixed in-plane force per unit length σ [29].
Nonetheless, in statistical-mechanical studies of membranes
such an external surface-pressure term σA is frequently added
to the Hamiltonian as a means to control the mean area. In
the current discussion there is no need to introduce such a
term and, moreover, we shall see that it leads to unnecessary
complications; we consider it merely to relate the emergent
variables � and γ with the commonly used σ . Within our
thermodynamic formulation, such a modification adds a term
σA to the thermodynamic internal energy and free energy [30].
Consequently, the minimization of the free energy with respect
to A now yields Eq. (12), σ = � + γ , as the equation of state
instead of Eq. (15). One can again interpret this result as if

the particles of the envelope responded through an internal
surface pressure � to an external surface pressure, which
consists of σ and the pressure −γ due to the volume constraint,
� = �ex = σ − γ . Thus, just as prescribing p in Sec. III A
did not fix pin because of the existence of γ , introducing the
external surface pressure σ does not directly fix the internal
one � for a similar reason.

D. Projected area and frame tension

For open membranes a constraint on the membrane’s
projected area Ap onto a certain reference plane, is widely
used. In the case of a vesicle the choice of the reference
surface itself is nontrivial and may depend on the specific
scenario [18]. We emphasize again that such a projection
constraint is unnecessary in the current analysis since, as noted
in Sec. II, constraints on Ap and V are mutually dependent. We
may introduce a projection constraint instead of the volume
constraint (on V or p) to clarify the relations between the
current formulation and previous ones. Possible choices of
a reference are the mean surface about which the vesicle
fluctuates [18,31], the spherical shell that has the same area
as the vesicle [10], or the spherical shell that holds the same
volume as the vesicle [10,18,32]. We choose the last option as
the reference surface, whose area is

Ap = α2/3A. (16)

We may also define the appropriate intensive variable ap ≡
Ap/N . Thus, fixing the projected area corresponds to fixing
neither a nor α separately, but rather the product α2/3a.

Related to the projected area is the frame tension τ . We
have not used the term “conjugate” intentionally because the
variable conjugate to Ap would be the partial derivative of the
membrane’s free energy with respect to Ap while keeping T ,
N , and A fixed,

τ1 ≡
(

∂F2

∂Ap

)
T ,A,N

=
(

∂f2

∂ap

)
T ,a

=
(

∂f2

∂α

)
T ,a

(
∂α

∂ap

)
a

= α−2/3γ. (17)

However, the frame tension as measured or controlled in
experiments and simulations is related to the reversible work
required to change Ap while keeping only T and N fixed [13],
as it is impractical to fix A. This corresponds to differentiating
f2 with respect to ap while keeping only T fixed; both a and α

are allowed to vary while satisfying Eq. (16) and the equation
of state a = a(T ,α). (We have been assuming here the absence
of an external surface pressure; if a nonzero σ is considered,
σ should be kept constant as well.) This procedure yields

τ ≡
(

∂f2

∂ap

)
T

=
(

∂f2

∂α

)
T

(
∂α

∂ap

)
T

=
[(

∂f2

∂α

)
T ,a

+
(

∂f2

∂a

)
T ,α

(
∂a

∂α

)
T

]

×
[

2

3
α−1/3a + α2/3

(
∂a

∂α

)
T

]−1

= α−2/3 γ − ε�

1 + ε
, ε ≡ 3α

2a

(
∂a

∂α

)
T

. (18)
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The general expression for τ , Eq. (18), contains a parameter
ε, which requires knowledge of the equation of state a(T ,α).
This parameter vanishes for an incompressible membrane
having fixed a. It also cancels out in Eq. (18) if we use the
equation of state (15) (i.e., if we consider σ = 0). In these two
cases, therefore, we get the simple relation

σ = 0 or incompressible membrane:

τ = τ1 = α−2/3γ = (A/Ap)γ � γ. (19)

Another simple limit is when the vesicle approaches a perfect
spherical shape (or the open membrane approaches a flat state),
where α → 1 and ε → ∞. Then we have τ = −� (i.e., the
frame tension provides the entire pressure required to balance
the internal surface pressure). In the absence of an external
surface pressure σ = 0, this gives the expected convergence
for α = 1 of the frame and normal-response (Laplace) tensions
τ = γ .

If a nonzero σ is considered, however, Eqs. (12) and (18)
yield a different relation between the frame tension and the
other tension variables

τ = α−2/3

(
γ − ε

1 + ε
σ

)
, (20)

which requires model-dependent knowledge of ε. The param-
eter ε can also be represented in terms of the surface moduli
defined in Eq. (6). Using the equation of state (15) or (12)
to write d(� + γ ) = 0 and extracting from it the derivative
(∂a/∂α)T , we obtain

ε = 3

2

(3/2)α2Kαα − aαKaα + aγ

a2Kaa − (3/2)aαKaα + aγ
. (21)

To assess the typical values of ε we make the following
estimates. We neglect the coupling modulus Kaα; for a vesicle
approaching a spherical shape Kαα ∼ kBT/(1 − α)2 [33],
where kBT is the thermal energy; γ a does not exceed a few
kBT before the membrane ruptures; Kaaa

2 is of order 102 kBT .
Thus, for vesicles which are not extremely swollen ε � 1, and
the difference between Eq. (19) for σ = 0 and Eq. (20) for
σ �= 0 is small. For strongly swollen vesicles (1 − α < 10−2),
however, ε becomes large. In this case we get τ → γ − σ .
Such a finite difference between the frame tension and the
Laplace tension as the envelope and its reference surface
coincide is hard to physically justify; it is clearly related to
the artificial inclusion of an external σ �= 0.

IV. DISCUSSION

The requirement that a membrane vesicle, as complicated
as its statistical mechanics may be, must comply with the
thermodynamics of finite-size systems has yielded a surprising
amount of information. This information is in line with certain
earlier findings and disagrees with others.

The thermodynamics of a fluid vesicle requires two distinct
tension variables, defined here as the surface pressure �

and the Laplace tension γ [Eqs. (4) and (5)]. We did not
assume their existence but obtained them as a result of the
standard geometrical constraints on the area and volume of
the vesicle. When the area per molecule is allowed to relax
(the relevant scenario in actual systems and molecular
dynamics simulations) the total surface stress is zero,

σ = � + γ = 0, and the two tension variables become related.
Unlike early suggestions [6], this does not imply that the
membrane is tensionless, but just reflects the balance between
the surface stress arising from a three-dimensional constraint
and an equal internal surface pressure. As already recognized
in Ref. [8], a state of vanishing tension, in the sense that the
membrane does not experience a normal restoring force due to
tension, is where γ = 0. Then, upon area relaxation, we also
have � = 0 (i.e., the area per molecule relaxes to its optimum
value). This is achieved in a vesicle, for instance, when its
volume is allowed to relax in conditions of zero pressure
difference pin = p [Eq. (10)]. A similar state is achieved in an
open membrane (unless a σ �= 0 is introduced, or a nonopti-
mum area per molecule is imposed), when its projected area is
allowed to relax under conditions of zero frame tension τ = 0
[Eq. (19)].

Another tension coefficient that is frequently used in
the literature is the fluctuation tension, or “q2-coefficient,”
r . It is extracted from the membrane’s normal fluctuation
spectrum 〈u(q)u(−q)〉 = kBT/[rq2 + O(q4)], where u(q) is
the Fourier-transformed normal displacement of the membrane
as a function of wave vector q. Evidently, this definition of
tension is purely statistical mechanical and cannot be directly
examined here. It is clear, nonetheless, that r is the tension
related to the membrane’s response to normal strain. We thus
suggest to identify it as r = γ . Indeed, micropipette-aspiration
experiments have shown that the measured r is consistent
with the imposed vesicle’s Laplace tension [34]. For open
membranes it was analytically argued [8,9,12,13,19,20] and
numerically demonstrated [13,20,35] that r = τ , the frame
tension, but other works disagree [14,16,36,37]. Our analysis
confirms the former results. We have found that, when there is
no external surface pressure, σ = 0, or when the membrane’s
compressibility can be neglected, the Laplace tension γ is pro-
portional to, but slightly smaller than, the frame tension τ ,
γ = α2/3τ = (Ap/A)τ . This is in line with the reports of r = τ

since the difference (τ − γ )u(q)u(−q) is only fourth order in
the normal displacement. It suffices to redefine the Fourier
transform using the membrane’s material coordinates rather
than its projected ones to get a slightly modified spectrum
with a q2 coefficient r ′ = (Ap/A)r = (Ap/A)τ = γ . A recent
numerical study suggests, in fact, that the fluctuation tension
is equal to (Ap/A)τ rather than τ [19]. As the vesicle becomes
spherical (or an open membrane gets planar) the frame tension
coincides with the Laplace tension, as expected.

The term σA, added to the energy in many theories
and simulations, is the origin of a lot of confusion. Ther-
modynamically, prescribing the variable σ corresponds to
applying an external surface pressure [30], similar to the
pV term introduced when a three-dimensional system is in
contact with a pressure bath. We are used to the fact that,
for three-dimensional systems, we must prescribe either the
volume or the external pressure; if we do not, there will
be nothing to counterbalance the system’s internal pressure.
One initially expects that for a membrane we would similarly
have to prescribe either A or σ . (The latter is more widely
used since studying fluctuations at fixed A is theoretically
difficult [10,32].) However, in an actual vesicle nothing fixes
the area, and there is no in-plane barrier that can apply a fixed
external surface pressure [29]. Unlike the three-dimensional
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case, such an external pressure is not necessary to balance the
internal pressure � of the two-dimensional fluid because the
volume constraint (i.e., the embedding of the membrane in
three dimensions), be it the actual volume, a pressure dif-
ference, a projected area, or a frame tension, provides such
a balancing pressure, equal to −γ . Even if we tune the
volume constraint down to zero (e.g., by imposing pin = p

or τ = 0), the membrane can support a state of zero internal
surface pressure by attaining its optimum area per molecule,
without the need for an external pressure. Thus, the area is
unconstrained, leading to � + γ = 0 [28]; equivalently, we
may say that the external surface pressure vanishes, σ = 0.
In this restricted sense, the thermodynamics of area changes
is similar to the thermodynamics of photons, whose number
is unconstrained or, equivalently, whose chemical potential
vanishes.

Hence, the ensembles of fixed (T ,V,Q,N ) or (T ,p,Q,N )
with σ = 0 (Sec. III A) are the ones that we wish to advocate as
the most physically relevant and the least confusing. The cor-
responding ensembles for open membranes are (T ,Ap,N ) or
(T ,τ,N ), again with σ = 0. (At sufficiently long times the con-
straint on N should be replaced by one on μ2; see Sec. III B.)
The distinction between ensembles is not merely technical or
semantic, mainly because after removing the constraint on A or
σ the ensembles mentioned above contain one less constraint
than the ones usually studied. In addition, even ensembles
having the same number of constraints may not be equivalent
for the finite systems under consideration, which contain both
volume and surface free-energy contributions [19,38].

If one insists on including a nonzero σ in the theory
or simulation, then area relaxation will lead to σ = � + γ ,
implying that σ �= γ = r in general. The inequalities σ �= r

and σ �= τ were observed in simulations [16,19,20]. We point
out that the numerically measured difference σ − γ = σ − r

provides an indirect measurement of the internal surface
pressure � in such nonzero-σ computations. The inclusion of
σ �= 0 entails two additional problems which, as we have been
trying to show, are superfluous. (a) Even when the membrane
is tensionless, γ = 0, there is a residual surface stress, � = σ ,
causing the area per molecule not to relax to its optimum value.
(b) The frame tension τ is not proportional to γ = r [Eq. (20)].
Although the deviation should be usually small, when the

vesicle is strongly swollen (or an open membrane is nearly
flat), we get τ → γ − σ , which is physically questionable for
an envelope arbitrarily close to its projection.

We end by commenting on the possible signs of the
various tension variables [16–18]. The Laplace tension, which
characterizes the membrane’s normal restoring force, must be
nonnegative for the membrane to be stable, γ � 0. This is
reflected also in our identification γ = r since a negative r

will cause unstable large-wavelength fluctuations. If we let
the area relax without an external surface pressure σ = 0
(the conditions which, as we have argued, are the valid
ones for actual vesicles) then the condition γ � 0 entails a
nonpositive (compressive) internal pressure Eq. (15) � � 0
and a nonnegative frame tension Eq. (19) τ � 0. However, if
a σ �= 0 is imposed, � can be also positive (dilative) Eq. (12)
and τ can be also negative Eq. (20).

The simple thermodynamic framework, laid out above, may
be practically useful in cases where the detailed statistical
mechanics and interactions of a membranal system are not
crucial. For example, a similar formulation has recently been
used to unravel a universality in the osmotic swelling of vesi-
cles, arising from the mere competition of volume and surface
effects [39]. There are issues which obviously cannot be dealt
with using thermodynamics alone. Important examples are the
fluctuation spectra, renormalization of membrane parameters
by fluctuations [6–9,40], and the equivalence (or lack of it)
of different statistical ensembles [19,38]. Nonetheless, within
its limitations, the remarkable strength of classical thermody-
namics lies in its simplicity, broad applicability, and rigor [41].
We hope that the formulation and conclusions presented here
will be useful as guidelines for future studies.
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