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The hydrodynamic theory of heterogeneous fluid membranes is extended to the case of a membrane adjacent
to a solid substrate. We derive the coupling diffusion coefficients of pairs of membrane inclusions in the limit
of large separation compared to the inclusion size. Two-dimensional compressive stresses in the membrane
make the coupling coefficients decay asymptotically as 1 /r2 with interparticle distance r. For the common
case, where the distance to the substrate is of submicrometer scale, we present expressions for the coupling
between distant disklike inclusions, which are valid for arbitrary inclusion size. We calculate the effect of
inclusions on the response of the membrane and the associated corrections to the coupling diffusion coeffi-
cients to leading order in the concentration of inclusions. While at short distances the response is modified as
if the membrane were a two-dimensional suspension, the large-distance response is not renormalized by the
inclusions.
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I. INTRODUCTION

Biological membranes are fluid bilayers made primarily
of lipid molecules �1�. From a hydrodynamic point of view
such a bilayer is a quasi-two-dimensional �quasi-2D� viscous
liquid, whose molecules are constrained to flow along the 2D
membrane surface while exchanging momentum not only
among themselves, but also with the surrounding three-
dimensional �3D� solvent. Biomembranes contain also a high
concentration of embedded inclusions—integral proteins and
possibly also nanometer-scale domains—which perform key
biological functions and are typically much larger than the
lipids �1�. Thus, from the same coarse-grained perspective, a
biomembrane can be viewed as a quasi-2D suspension �2�.
We have recently used this perspective to investigate the cor-
related motion of proteins in a membrane freely floating in
an unbounded liquid, and how the inclusions affect the re-
sponse of such a membrane to stresses �3�. In many practical
circumstances, however, the membrane is not free but at-
tached to a solid substrate, such as the elastic scaffold of the
cytoskeleton or an external surface to which a cell adheres.
Additionally, in various experiments membranes are more
easily studied when supported by a solid substrate. The aim
of the current work, therefore, is to explore how the results
of Ref. �3� are modified by the presence of such a nearby
immobile surface.

Two major approaches to the hydrodynamics of free
membranes have been presented. The first, by Saffman and
Delbrück �SD� �4�, models the membrane as a viscous liquid
slab of width w and viscosity �m /w, having no-slip contacts
at its bounding surfaces with two semi-infinite fluids of vis-
cosity �f. The second, by Levine et al. �5�, considers the
membrane as a vanishingly thin viscoelastic film embedded
in an infinite viscous fluid. The dynamics of membranes em-
bedded in a 3D fluid have been studied also using computer
simulations �6–8�. The common key feature of these theories
is the fact that the membrane does not conserve momentum

in two dimensions, while the total momentum is conserved
in three dimensions. Consequently, a length scale �−1

emerges, characterizing the crossover from a 2D-like mem-
brane response, where stresses dominantly propagate through
the membrane, to a 3D-like response, where the outer fluid
governs the dynamics. This length is determined by the ratio
between the 2D viscosity of the membrane and the 3D vis-
cosity of the surrounding fluid �4�. For lipid bilayers �−1 is
typically two to three orders of magnitude larger than the
membrane thickness w, i.e., of micrometer scale. The work
of Ref. �3� is an extension of the SD theory to cases with
more than one inclusion, where there are three lengths to
consider: the lateral size �radius� a of the inclusion, the SD
length �−1, and the distance r between the inclusions. The
analysis was restricted to the limit a�min��−1 ,r�, where
complications related to specific details of the inclusions �9�
are immaterial. We employ the same assumption in most of
the current work as well.

The introduction of an immobile surface breaks the trans-
lational symmetry in the directions parallel to the membrane
and, hence, qualitatively changes the hydrodynamics of the
system as its total momentum is no longer conserved �2�.
Models appropriate for such a scenario can be divided into
two groups. The first �10–14� adopts a phenomenological
approach, describing the membrane as a 2D Brinkman fluid
�15�, i.e., introducing a term in the 2D hydrodynamic equa-
tion for the membrane, which leaks momentum at a certain
fixed rate �2�m �with �m=�m /�m being the 2D kinematic
viscosity of the membrane and �m its 2D mass density�. This
sets a phenomenological screening length �−1, beyond which
momentum is lost to the substrate. In the second approach
�16–19� the additional length scale is explicitly determined
by the thickness h of a fluid layer separating the membrane
from the solid substrate. When fluid exists only between the
membrane and the substrate �as in the case of a supported
lipid monolayer� �16–18�, or when the membrane lies at the
midplane between two substrates �7,19�, the large-distance
effects converge to those of the phenomenological
Brinkman-like approach in the limit h��−1 �i.e., for h much
smaller than 1 �m�. The momentum screening length thus*hdiamant@tau.ac.il; http://www.tau.ac.il/~hdiamant
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obtained is the geometrical mean of the other two lengths,
�−1���−1h�1/2 �17�.

The current work extends the analysis of Refs. �16–18� to
the realistic scenario of a supported membrane with fluid on
both sides, containing more than one inclusion. In Sec. II we
define the model and present the results for the hydrodynam-
ics of a supported membrane, which will be useful for our
analysis. Because of the three length scales in the
model—�−1, h, and the interparticle distance r �assuming
that a is much smaller than all three�—there are several
asymptotic regimes to be considered, which are defined and
discussed in Sec. II. These results are used in Sec. III to
calculate the coupling diffusion coefficients of pairs of inclu-
sions, which should be directly measurable in particle-
tracking experiments. We proceed in Secs. IV and V to ex-
amine the effect of a finite concentration of inclusions on the
response of the supported membrane to stresses �i.e., the ef-
fective viscosity of the membrane� and the resulting correc-
tions to the coupling diffusion coefficients. In the practically
useful limit of h��−1 we have been able to derive the large-
separation coupling diffusion coefficients for inclusions of
arbitrary size; these results are presented in Sec. VI. The
conclusions are summarized in Sec. VII.

II. MODEL

Our model system is similar to that of Refs. �16–18� and
is schematically depicted in Fig. 1. A flat slab of viscous
liquid �width w and viscosity �m /w� lies on the xy plane a
distance h away from a flat rigid surface. The space between
the slab and the surface is filled with another fluid �viscosity
�f�. Unlike the system treated in Refs. �16–18� the space on
the other side of the slab is occupied by a semi-infinite fluid
of viscosity �f as well. All fluids are assumed incompress-
ible. The SD length is defined as

�−1 =
�m

2�f
. �1�

In the slab are rigid inclusions of radius a. Although they are
depicted as cylinders, their exact shape does not affect most
of our analysis; in points where it does, this will be explicitly
mentioned. We do not consider effects related to curvature
and thermal fluctuations of the membrane �6,20–22�.

Our goal is to characterize the response of the inclusion-
decorated membrane to stresses and relate it to the coupled
motions of two inclusions. A common way to characterize
the membrane response as a fluid medium is through the
velocity Green’s function G�r�. This tensor gives the flow
velocity v�r� of the membrane at the 2D position r due to a
point force F exerted on the membrane at the origin in the xy
plane, according to vi�r�=Gij�r�Fj �with i , j=x ,y and sum-
mation over the repeated index j�. When the separation be-
tween two inclusions is much larger than their sizes �r	a�,
the pair mobility and pair-diffusion coefficients associated
with their coupled motions can be directly obtained from the
velocity Green’s function, as explained in detail in Sec. III.

In unbounded 3D liquids G is the Oseen tensor �23�. We
need the analogue of the Oseen tensor for the model system
of Fig. 1. The velocity Green’s function for a similar model
of a supported monolayer, where the upper fluid is absent,
was derived in Ref. �16�. Its generalization to the case of two
different fluids and two confining surfaces has been per-
formed in Ref. �19�. We use this result while specializing to
two identical outer fluids, with the upper one being semi-

infinite. In Fourier space �G̃�q�=�d2re−iq·rG�r�� the Green’s
function is given by �19�

G̃ij�q� =
1

�fq�coth�qh� + 2q/� + 1�
�
ij −

qiqj

q2 � . �2�

In the limit of an infinitely distant surface Eq. �2� coin-
cides with the Green’s function for a free membrane �3–5�,

G̃ij →
h→�

G̃ij
f �q� =

1

�mq�q + ��
�
ij −

qiqj

q2 � . �3�

In the other limit of a vanishingly small h, it becomes

G̃ij →
h→0 1

�m�q2 + �q/2 + �2�
�
ij −

qiqj

q2 � , �4�

with �= �� / �2h��1/2. The function in Eq. �4� has two poles
at q�=��−1�	1−8 / ��h�� /4, which in the limit h→0

turn into q�= � i�. Hence, in this limit G̃ coincides with the
2D Brinkman-like Green’s function for an adsorbed mem-
brane �10–14�,

G̃ij →
h→0

G̃ij
a �q� =

1

�m�q2 + �2�
�
ij −

qiqj

q2 � . �5�

Thus, in the strongly adsorbed limit the presence of the upper
fluid merely adds a prefactor to the momentum screening
length compared to the monolayer case studied earlier �17�
��−1= �2�−1h�1/2 instead of ��−1h�1/2�.

The Green’s function of Eq. �2� serves as the starting
point for the entire analysis to follow. It is beneficial, there-
fore, to begin by exploring the different asymptotic regimes
that G�r� defines. Since it depends on three lengths—�−1, h,
and r—there are quite a few such regimes. Let us first re-
write it as a function of two length ratios,

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
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FIG. 1. �Color online� Schematic view of the model system and
its parametrization.
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Gij�r� =
1

�fh
gij��−1/h,r/h� ,

gij =
1

�2�2
 d2keik·�r/h� 1

k�coth k + �2�−1/h�k + 1�

��
ij −
kikj

k2 � , �6�

thus making the asymptotics more transparent.

A. Adsorbed regime: h™�−1

In this commonly encountered regime, where the distance
to the substrate is much smaller than the SD length, the in-
tegral in Eq. �6� is governed for all values of r by small k,
whereby coth k+ �2�−1 /h�k�1 /k+ �2�−1 /h�k. Due to the ar-
gument presented below Eq. �4�, the Green’s function coin-

cides with G̃a of Eq. �5�. Inverting it to real space, one gets

Gij
a �r� =

1

2�m
�1

2
�K0��r� + K2��r��
ij − K2��r�

rirj

r2 
−

1

2�m�2r2�
ij −
2rirj

r2 � , �7�

where Kn are modified Bessel functions of the second kind.
The first term in Eq. �7� is short ranged, decaying exponen-
tially with �r. It arises from shear stresses in the membrane,
which get screened for r��−1. The second term is long
ranged, decaying only as 1 /r2 and originating from compres-
sive stresses in the membrane. The effect of such stresses on
the steady flow is that of an effective 2D mass dipole �2�,
whose magnitude is proportional to ��m�2�−1�h /�f, inde-
pendent of membrane viscosity.

Thus, the adsorbed regime is subdivided into two regions
reflecting different physics. In the adsorbed near region,
r��−1= �2�−1h�1/2��−1, the response is governed by the
yet-unscreened 2D shear stresses in the membrane. Expand-
ing Eq. �7� in small �r, we have

Gij�r� � Gij
an�r� =

1

4�m
�− �ln��r/2� + � + 1/2�
ij +

rirj

r2 �
+ O���r�2/�m� , �8�

where � is Euler’s constant. This result coincides with the
Oseen tensor of a momentum-conserving 2D liquid, exhibit-
ing the well-known logarithmic behavior of this problem,
with a cutoff length of �−1. In the adsorbed far region,
r	�−1= �2�−1h�1/2	h, the response is due to long-ranged
compressive stresses, yielding

Gij�r� � Gij
af�r� = −

h

2�fr
2�
ij −

2rirj

r2 �
+ O���r�−1/2e−�r/�m� . �9�

Note that, since in the adsorbed regime h��−1��−1, the
adsorbed near region includes distances r both smaller and
larger than h, and the adsorbed far one includes distances
both smaller and larger than �−1.

B. Hovering regime: �−1™h

In this regime, where the thickness h of the fluid layer
between the membrane and the substrate is the larger length
scale, the asymptotes of Eq. �6� depend on the value of r /h.
For r�h the integral in Eq. �6� is governed by large k,
whereby coth k+ �2�−1 /h�k�1+ �2�−1 /h�k. The Green’s

function then coincides with that of a free membrane, G̃f of

Eq. �3�. This is the case studied in Ref. �3�. Inverting G̃f to
real space �3,5� yields

Gij
f �r� =

1

4�m
��H0��r� −

H1��r�
�r

−
1

2
�Y0��r� − Y2��r��

+
2

��r�2
ij − �H0��r� −
2H1��r�

�r
+ Y2��r�

+
4

��r�2 rirj

r2 � , �10�

where Yn are Bessel functions of the second kind, and Hn are
Struve functions.

The free behavior is subdivided into two regions having
different physics. For r��−1�h we have the free near re-
gion, where Eq. �10� becomes

Gij�r� � Gij
fn�r� =

1

4�m
�− �ln��r/2� + � + 1/2�
ij +

rirj

r2 �
+ O��r/�m� . �11�

As in the adsorbed near region �Eq. �8�� the response in the
free near region is governed by 2D shear stresses in the
membrane. The difference is in the cutoff length, which in
this case is �−1 rather than �−1. In the free far region, �−1

�r�h, Eq. �10� yields

Gij�r� � Gij
ff�r� =

1

4�f

rirj

r3 + O���r�−2/�m� . �12�

Both the 1 /r decay and the dependence on �f rather than �m
indicate that the response in this region is due to shear
stresses in the 3D fluid on the two sides of the membrane.

In the last asymptotic region, �−1�h�r, although h is the
larger characteristic length, the distance r is sufficiently large
to make the fact that the membrane is supported rather than
free come into play. In this supported region the integral in
Eq. �6� is governed by small k; yet, unlike the adsorbed
regime, coth k+ �2�−1 /h�k�1 /k+k /3, independent of �. The
resulting Green’s function is

G̃ij�q� � G̃ij
s �q� =

1

�fh�q2/3 + q/h + h−2�
�
ij −

qiqj

q2 � ,

�13�
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which has two poles, both depending on h alone—i.e., h is
the sole momentum screening length in this region. Inverting
Eq. �13� to real space and taking the limit r	h yields

Gij�r� � Gij
s �r� = −

h

2�fr
2�
ij −

2rirj

r2 � + O�h2/��fr
3�� .

�14�

Thus, despite differences in the details ��−1 vs h as the length
scale for momentum loss�, the asymptotic responses in the
adsorbed far and supported regions �Eqs. �9� and �14�, re-
spectively� turn out to be identical, both arising from 2D
compressive stresses due to an effective mass dipole of mag-
nitude �h /�f. Note, however, that the correction to the lead-
ing mass-dipole term in Eq. �9� is exponentially small,
whereas in the supported region the correction is algebraic.
This reflects the fact that in the adsorbed region the upper
fluid is insignificant, whereas in the supported region it does
play a role, albeit not a dominant one. The various spatial
regimes are summarized in Table I.

III. CORRELATED DIFFUSION

The Green’s function of Eq. �6� gives the membrane flow
velocity at position r in response to a unit force exerted on it
at the origin. In the limit r	a, addressed in this paper, the
same Green’s function also gives the coupling mobility ten-
sor, B12,ij�r�—i.e., the velocity of one particle due to a unit
force acting on another, where the positions of the two par-
ticles are separated by the vector r, v1,i=B12,ij�r�F2,j �with
summation over the repeated index j�. From the mobility
tensor the coupling diffusion tensor D12,ij�r� readily follows
via the Einstein relation, D12,ij =kBTB12,ij, with kBT being the
thermal energy. The x axis can be defined, without loss of
generality, along the line connecting the pair, r=rx̂. This
choice leads, by symmetry, to D12,xy =0. The coupled diffu-
sion of the two particles is then fully characterized by two
coefficients: a longitudinal coupling diffusion coefficient,
DL�r�=D12,xx�rx̂�, and a transverse one, DT�r�=D12,yy�rx̂�.
Thus, in summary, we have

DL�r 	 a� = kBTGxx�rx̂�, DT�r 	 a� = kBTGyy�rx̂� .

�15�

The first coefficient is associated with the coupled Brownian
motion of the pair along their connecting line, while the sec-
ond is associated with the coupled motion perpendicular to
that line,

��x1�x2� = 2DL�r�t, ��y1�y2� = 2DT�r�t , �16�

where �x� , �y� ��=1,2� are the displacements of particle
� during time t. We shall now give the expressions for these
coupling diffusion coefficients in the various asymptotic re-
gimes �cf. Table I�.

A. Adsorbed regime: h™�−1

In the adsorbed regime we get from Eqs. �7� and �15� the
following coupling diffusion coefficients:

h � �−1: DL�r� �
kBT

2�m
�−

K1��r�
�r

+
1

�2r2 ,

DT�r� �
kBT

2�m
�K0��r� +

K1��r�
�r

−
1

�2r2 . �17�

This regime is subdivided into near and far regions. In the
adsorbed near region Eqs. �8� and �15� yield

h � �−1: DL,T�r � �−1� �
kBT

4�m
�− ln��r/2� − � � 1/2� ,

�18�

whereas in the adsorbed far region we obtain from Eqs. �9�
and �15�

h � �−1: DL,T�r 	 �−1� � �
kBTh

2�fr
2 . �19�

In Eqs. �18� and �19� the upper �lower� sign corresponds to
the longitudinal �transverse� coefficient. Notice how at large
distances, r	�−1, the coupling diffusion coefficients both
decay as 1 /r2, suggesting the dominance of the aforemen-
tioned mass dipole. The momentum at such distances is lost
to the solid substrate, and the coupling is mediated by 2D
compressive stresses in the membrane. The dependencies of
the coupling diffusion coefficients on the separation between
the inclusions for the adsorbed regime are shown in Fig. 2
along with their various asymptotes.

TABLE I. Summary of asymptotic spatial regimes and their corresponding notation.

Regime Subregion Definition Spatial dependence Mechanism

Adsorbed h��−1

Near r��−1��2�−1h�1/2 ln��r� 2D shear

Far r	�−1 r−2 2D compression

Hovering �−1�h

Free near r��−1 ln��r� 2D shear

Free far �−1�r�h r−1 3D shear

Supported r	h r−2 2D compression
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B. Hovering regime: �−1™h

The hovering regime is divided into the free �r�h� and
supported �r	h� behaviors. In the free limit we get from
Eqs. �10� and �15�

�−1 � h: DL�r � h� �
kBT

4�m�r
�H1��r� − Y1��r� −

2

�r
� ,

DT�r � h� �
kBT

4�m
�H0��r� −

H1��r�
�r

−
1

2
�Y0��r� − Y2��r��

+
2

�2r2� . �20�

This behavior is further subdivided into near and far regions.
In the free near region Eqs. �11� and �15� yield the coupling
diffusion coefficients as

�−1 � h: DL,T�r � �−1� �
kBT

4�m
�− ln��r/2� − � � 1/2� ,

�21�

where, again, the upper �lower� sign corresponds to the lon-
gitudinal �transverse� coefficient. Note the similarity between
this result and the one in the adsorbed near region �Eq. �18��.
In both cases the coupling is governed by the behavior of the
membrane as a 2D fluid, with the only difference being the
cutoff of the logarithmic term. In the free far region Eqs. �12�
and �15� lead to

�−1 � h: DL��−1 � r � h� �
kBT

2�m�r
=

kBT

4�fr
,

DT��−1 � r � h� �
kBT

2�m�2r2 =
kBT�m

8�f
2r2 . �22�

The coupling in this region is mediated by the outer 3D fluid,
as reflected by the dependence of DL on �f and its spatial

decay as 1 /r. The transverse coefficient decays faster �as
1 /r2� since it arises from an effective force dipole propor-
tional to �−1��m /�f �3�. This also leads to an unusual in-
creasing dependence of DT on membrane viscosity. All of
the equations in the free limit, Eqs. �20�–�22�, coincide with
those for a free membrane as derived in Ref. �3�.

In the last region, the supported region, Eqs. �14� and �15�
give the coupling diffusion coefficients

�−1 � h: DL,T�r 	 h� � �
kBTh

2�fr
2 , �23�

which are identical to those in the adsorbed far region �Eq.
�19��, as they arise in both cases from the same physical
mechanism �2D compressive stresses in the membrane�. The
dependencies of the coupling diffusion coefficients on the
separation between the inclusions for the hovering regime,
along with the various asymptotic regions, are shown in
Fig. 3.

IV. EFFECTIVE RESPONSE

The presence of inclusions in the membrane influences its
response to stresses. In regular suspensions the response far
from the point of perturbation is similar to that of the
particle-free liquid but with a different prefactor, depending
on the volume fraction of particles, �. The modified prefac-
tor defines a modified effective viscosity, �→�eff���. For a
3D suspension of hard spheres the effective viscosity, to
leading order in �, was calculated by Einstein �24� as �eff

=��1+ �5 /2���. The analogous calculation for a 2D suspen-
sion of hard disks yields �eff=��1+2�� �25�. As we have
seen in Sec. II, the inclusion-free supported membrane may
exhibit a 2D-like response, a 3D-like one, or neither of the
two. Hence, one expects a more complex modification of the
response due to the presence of inclusions, depending on the
various lengths in the problem. For sufficiently small dis-
tances momentum is conserved within the membrane, and
we expect the response to be 2D-like. For sufficiently large
distances transverse momentum is lost to the substrate, and
the membrane is expected to behave neither as a 3D suspen-
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FIG. 2. �a� Longitudinal and �b� transverse coupling diffusion coefficients as functions of interparticle distance for the adsorbed regime
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solid curve� is shown together with those in the two asymptotic regions: adsorbed near region �DL,T� ln r, dashed curve�; adsorbed far
region �DL,T� �1 /r2, dotted curve�.
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sion nor as a 2D one. Heuristically, and also based on the
results for a free membrane �3�, we anticipate that the effec-
tive response of the supported membrane, having an area
fraction � of disklike inclusions, G→Geff, will be obtained
by the following transformation of the parameters:

�m → �m
eff��� � �m�1 + 2�� ,

� → �eff��� = 2�f/�m
eff � ��1 − 2�� ,

� → �eff��� = ��eff/�2h��1/2 � ��1 − �� . �24�

We now proceed to proving that this is indeed the case.
Let us begin with an inclusion-free membrane and apply

an in-plane localized force density F
�r� at the origin. The
resulting flow velocity field of the membrane is given by
vi

�0��r�=Gij�r�Fj, where G�r� is the Green’s function dis-
cussed in Sec. II �Eq. �6��. Next, let us consider the change in
velocity at position r, 
v�r ,r��, due to a single disklike in-
clusion located at r�. No force or torque is acting on the
inclusion and, hence, its leading correction to the flow veloc-
ity is through the force dipole �stresslet� S that it introduces,

vi=Skj�r���kGij�r−r��. There is a local relation between
S�r�� and the inclusion-free velocity field at r�, given by

Sij = 2�ma2�1 + 1
8a2�2��� jvi

�0� + �iv j
�0�� . �25�

This membrane analogue of Faxén’s second relation �23�
was derived in Ref. �3� for a free membrane under the as-
sumption �a�1. It remains valid in the current case of a
supported membrane, provided that a�min��−1 ,�−1�.

In the next stage we consider randomly distributed inclu-
sions, occupying an area fraction � of the membrane. We
restrict the calculation to the leading �linear� order in �,
where static correlations as well as hydrodynamic interac-
tions between inclusions can be neglected. The average cor-
rection to the flow velocity is given then by integration over

all possible positions r� of inclusions, multiplied by the uni-
form probability density of finding an inclusion centered at
that position, � / �a2�,

�
vi�r�� =
�

a2
 d2r�Skj�r���kGij�r − r�� . �26�

The convolution in Eq. �26� is conveniently handled in Fou-
rier space,

�
ṽi�q�� =
�

a2 S̃kj�q�ıqkG̃ij�q�

= − 2�
2q/�

coth�qh� + 2q/� + 1
G̃ij�q�Fj , �27�

where in the last equation we have used Eqs. �2� and �25�
while neglecting the term of order �qa�2 in Eq. �25�. Writing

ṽi= ṽi
�0�+ �
ṽi�= G̃ij

effFj, we identify the effective Green’s
function as

G̃eff = �1 − 2�
2q/�

coth�qh� + 2q/� + 1
G̃ . �28�

It is readily verified that the same result is obtained from Eq.
�2� through the transformation defined in Eq. �24� and expan-
sion to linear order in �.

The q dependence of the renormalization factor in Eq.
�28� reflects the aforementioned complex response of the
inclusion-decorated membrane. In the q→� limit the pref-
actor becomes 1−2�, as in a 2D suspension �25�. In the
opposite limit of q→0 the prefactor tends to unity—i.e., the
inclusions have no effect on the large-distance velocity re-
sponse of the membrane. To analyze the effective response in
more detail, away from these two limits, one may invert Eq.
�28� back to real space in the desired limit. Alternatively, one
can substitute the transformation defined in Eq. �24� in the
various limiting expressions, already derived for G�r� in Sec.
II �Eqs. �7�–�14��, and expand those expressions to linear
order in �. Either of these two procedures yields the effec-
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FIG. 3. �a� Longitudinal and �b� transverse coupling diffusion coefficients as functions of interparticle distance for the hovering regime
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tive response of the membrane in the various regimes listed
in Table I. We now examine the resulting expressions for the
different regimes.

In the adsorbed regime, h��−1, the substrate affects the
response of the membrane. The correction to the Green’s
function of Eq. �7� due to the presence of inclusions is given
in this regime by

h � �−1: Geff � Ga + 
Ga,


Gij
a �r� =

�

2�m
��− K0��r� + �rK1��r��
ij − �rK1��r�

rirj

r2  .

�29�

In the hovering free regions, �−1�h and r�h, the mem-
brane is insensitive to the presence of the substrate. The cor-
rection to the Green’s function of Eq. �10� for these free
regions is

�−1 � h: Geff � Gf + 
Gf ,


Gij
f �r� =

�

2�m
�1 − ��r�2

��r�2 � 2

��r + 1�
+ �r�H−1��r�

+ Y1��r��
ij + �4��r − 1�
��r�2 +

��r�2 − 2

�r
�H−1��r�

+ Y1��r�� − H0��r� + Y0��r� rirj

r2 � . �30�

These two limiting cases �adsorbed and hovering free� are
further subdivided into near and far regions. The near regions
of both cases are governed by 2D shear stresses, leading to
an effective response similar to that of a 2D particulate liquid
with a leading logarithmic behavior. The differences arise
from the different cutoff lengths: �−1 in the adsorbed near
region and �−1 in the free near region. The different depen-
dencies of these lengths on the membrane viscosity lead to
slightly different concentration corrections as �m is modified
to �m

eff. In the adsorbed near region, r��−1��−1, the correc-
tion to the Green’s function of Eq. �8� is given by

h � �−1, r � �−1: Geff � �1 − 2��Gij
an +

�

4�m

ij

=
1

4�m
��− �1 − 2���ln��r/2�

+ � + 1/2� + ��
ij

+ �1 − 2��
rirj

r2 � . �31�

For the free near region, r��−1�h, the Green’s function of
Eq. �11� is modified according to

r � �−1 � h: Geff � �1 − 2��Gij
fn +

�

2�m

ij

=
1

4�m
��− �1 − 2���ln��r/2� + �

+ 1/2� + 2��
ij + �1 − 2��
rirj

r2 � .

�32�

Equation �32� has already been derived in Ref. �3� for a free
membrane.

For all other regions we find no modification of the domi-
nant term in the membrane response due to the presence of
inclusions. This is because the response in these regions is
governed by mechanisms which are unrelated to the propa-
gation of 2D shear stresses in the membrane and, therefore,
insensitive to membrane properties. In the adsorbed far re-
gion, h��−1 and r	�−1, and the supported region, �−1�h
�r, shear stresses are lost to the substrate. The remaining
compressive effect �effective mass dipole� is insensitive to
the presence of inclusions since the membrane is assumed to
be incompressible. Thus, the dominant response in these re-
gions is given by the unperturbed Eqs. �9� and �14�. In the
free far region, �−1�r�h, the response is dominated by 3D
shear stresses in the adjacent fluid, which are obviously in-
different to the inclusions. Hence, in this region the dominant
response remains equal to the unperturbed Eq. �12�.

In the cases where the leading membrane response is not
renormalized by the inclusions, there are nevertheless higher-
order corrections which do depend on �. To conclude this
section we address these large-distance corrections. In the
adsorbed far region the correction to Eq. �9� is exponentially
small in �r and, therefore, negligible. In the free far region
the leading correction to Eq. �12� is obtained from Eq. �30�
in the limit �r	1 as

�−1 � r � h: Geff � Gff + 
Gff,


Gij
ff�r� =

�

�m��r�2�
ij −
2rirj

r2 � . �33�

Thus, the correction is of higher order �1 /r2 compared to 1 /r
in Eq. �12�� but still long ranged. In the supported region we
substitute in Eq. �28� the expansion coth�qh�+2q /�
��qh�−1+3qh and invert back to real space while assuming
the limit r	h. This procedure yields the following correc-
tion to Eq. �14�:

r 	 h 	 �−1: Geff � Gs + 
Gs,


Gij
s �r� =

12�h3

�f�r5�4
ij −
5rirj

r2 � , �34�

which decays algebraically but much faster than the unper-
turbed response �1 /r5 vs 1 /r2�.

V. CORRECTED PAIR-DIFFUSION COEFFICIENTS

Substituting in Eq. �15� the effective response functions,
calculated in Sec. IV, readily gives the corrections to the
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coupling diffusion coefficients to leading order in the area
fraction of inclusions,

DL,T
eff � DL,T + 
DL,T, �35�

where DL,T are the inclusion-free coefficients derived in Sec.
III. We now provide the resulting expressions for 
DL,T in
the various spatial regimes.

A. Adsorbed regime: h™�−1

In the adsorbed regime we use 
Ga of Eq. �29� in Eq. �15�
to get

h � �−1: 
DL�r� � − �
kBT

2�m
K0��r� ,


DT�r� � − �
kBT

2�m
�K0��r� − �rK1��r�� . �36�

These expressions are the corrections to the bare coefficients
given in Eq. �17�. In the adsorbed near region they reduce to

h � �−1: 
DL,T�r � �−1� � �
kBT

2�m
�ln��r/2� + �

+ 1/2 � 1/2� , �37�

where the upper �lower� sign corresponds to the longitudinal
�transverse� coefficient. Equation �37� gives the correction to
the bare coefficients of Eq. �18�. In the adsorbed far region,
r	�−1, the corrections are exponentially small. More spe-
cifically, 
DL���r�−1/2e−�r and 
DT���r�1/2e−�r.

The behavior of the concentration corrections as a func-
tion of separation in the adsorbed regime is shown in Fig. 4.
Notice the range of positive correction to DT, i.e., the un-
usual increase in the transverse coupling due to the presence
of inclusions.

B. Hovering regime: �−1™h

In the hovering free regions, �−1�h and r�h, we substi-
tute 
Gf of Eq. �30� in Eq. �15� to obtain

�−1 � h: 
DL�r � h� � − �
kBT

2�m
� 2

��r�2 + H0��r�

−
H1��r�

�r
+

1

2
�Y2��r� − Y0��r�� ,


DT�r � h� � �
kBT

2�m

�1 − ��r�2�
�r

� 2

�r�1 + �r�
+ H−1��r�

+ Y1��r� , �38�

which are the corrections to the coefficients of Eq. �20�. The
hovering free behavior is further subdivided into near and far
regions. In the free near region, the expressions in Eq. �38�
become

�−1 � h: 
DL,T�r � �−1�

� �
kBT

2�m
�ln��r/2� + � + 1 � 1/2� , �39�

which corrects Eq. �21�. In the free far region Eq. �38� re-
duces to

�−1 � h: 
DL,T��−1 � r � h� � � �
kBT

�m

1

�2r2 , �40�

which are the corrections to DL and DT of Eq. �22�. Note that
in the free far region DT and 
DT both decay as 1 /r2,
whereas DL has a slower decay ��1 /r� than its correction
��1 /r2�. Thus, the longitudinal coefficient in the free far
region remains essentially unaffected by the inclusions. The
results for the hovering free region coincide with those de-
rived in Ref. �3� for a free membrane.

In the last region, the supported region, where r	h
	�−1, the dominant term in the large-distance response �Eq.
�14�� is insensitive to the properties of the membrane. The
corrections to the coupling diffusion coefficients of Eq. �23�,
therefore, are of higher order. Substituting 
Gs of Eq. �34� in
Eq. �15�, we get
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FIG. 4. Corrections to the �a� longitudinal and �b� transverse coupling diffusion coefficients as functions of interparticle distance for the
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�−1 � h: 
DL�r 	 h� � − �
12kBTh3

�f�r5 ,


DT�r 	 h� � �
48kBTh3

�f�r5 . �41�

The spatial behavior of the concentration corrections as a
function of separation in the hovering regime is shown in
Fig. 5. Notice again the broad range of positive correction to
DT, where the transverse coupling increases with the concen-
tration of inclusions. This is a consequence of the unusual
dependence of the bare coefficient on membrane viscosity.
�See Eq. �22� and the text below it.�

VI. CORRELATED DIFFUSION OF LARGE INCLUSIONS

The entire analysis so far has relied on the assumption
that the inclusion size is much smaller than any other length
in the system, a�min��−1 ,h ,r�. Consequently, the coupling
diffusion coefficients derived in Sec. III were independent of
the size and shape of the inclusions. In the adsorbed far
region �r	�−1	h� we can depart from this assumption and
derive the large-separation coupling diffusion coefficients for
large disklike inclusions. In principle, the calculation of pair
mobilities for two large particles is technically hard—one
needs to solve the flow equations with boundary conditions
on the surfaces of the two particles as they move with pre-
scribed velocities �or under prescribed forces�. For the ad-
sorbed far region, however, there is a scheme that bypasses
this difficulty altogether. It is based on symmetry consider-
ations and the knowledge of the exact flow field away from a
single moving disk.

In the adsorbed regime our model becomes equivalent to
an effective 2D Brinkman fluid �15�—i.e., an incompressible
fluid with momentum decay—as previously studied in Refs.
�10–13�. This is clearly seen in the corresponding velocity
response function �Eq. �5��, which contains a momentum de-
cay length �−1.

First, let us recall—for the adsorbed regime—the far flow
in the membrane due to a point force F. According to Eq. �9�

this flow is the same as the one emanating from an effective
2D mass dipole of strength �h /�f�F. Now consider the flow
due to a force F applied to an isolated disk of radius a1,
positioned at the origin. This problem was solved for a 2D
Brinkman fluid in Ref. �11�. Applying the result to our case,
we get in the far field �r	max�a1 ,�−1�� the following dipo-
lar flow:

vi�r� = −
h

�f

m��a1�
2r2 �
ij −

2rirj

r2 �Fj ,

m�x� = 2
xK0�x� + 2K1�x�
xK0�x� + 4K1�x�

. �42�

Thus, no matter how large the disk may be, the far flow
remains equivalent to that induced by a 2D mass dipole; the
only dependence on the particle size is through the dimen-
sionless prefactor m��a�.

In the next step we identify the tensor multiplying F in
Eq. �42� with the coupling mobility of two different
particles—one of radius a1 at the origin and another of van-
ishing radius, a2→0, at r. Due to the symmetry of the cou-
pling mobility, the same tensor also gives the velocity of a
disk of radius a1, positioned at r, due to a point force F
applied to the membrane at the origin. Yet, the latter is the
velocity acquired by a particle of radius a1 as it is embedded
in a flow caused by a mass dipole of strength �h /�f�F. All we
need to do now to get the velocity of a disk of radius a1 due
to a force F exerted on a sufficiently distant disk of radius a2
is to increase the mass-dipole strength at the origin from
�h /�f�F up to �h /�f�m��a2�F, the effective mass dipole cre-
ated by F when it is applied to a particle of radius a2. Hence,
the large-distance coupling mobility is given by

B12,ij�r� = −
h

�f

m��a1�m��a2�
2r2 �
ij −

2rirj

r2 � . �43�

As explained in Sec. III, the coupling diffusion coeffi-
cients can be readily obtained from Eq. �43� as DL�r�
=kBTB12,xx�rx̂� and DT�r�=kBTB12,yy�rx̂�, yielding
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FIG. 5. Corrections to the �a� longitudinal and �b� transverse coupling diffusion coefficients as functions of interparticle distance for the
hovering regime ��−1�h�. Insets focus on the small-distance behavior. Corrections are scaled by �kBT /�m and the distance by the
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r 	 max��−1,a1,a2�: DL,T�r� � �
kBTm��a1�m��a2�h

2�fr
2 ,

�44�

where the plus �minus� sign corresponds to the longitudinal
�transverse� coefficient, and m�x� is defined in Eq. �42�.
Equation �44� gives the large-distance coupling diffusion co-
efficients in the adsorbed regime for two disklike inclusions
of arbitrary radii.

In the limit of small inclusions, �a��1 ��=1,2�, we
have m��a���1, and the result of Sec. III �Eq. �23�� is re-
covered. In the opposite limit of large inclusions, m��a��
�2; and, therefore,

r 	 a� 	 �−1: DL,T�r� � �
2kBTh

�fr
2 . �45�

Thus, going from small to large inclusions changes the large-
distance coupling coefficients by a mere factor of 4. Interest-
ingly, the results for very large inclusions are again indepen-
dent of particle size and shape. We return to this surprising
finding in the next section.

VII. CONCLUSIONS

The aim of this work has been to characterize supported
membranes as effective heterogeneous fluids. The existence
of several length scales in the problem leads to various re-
gimes that are governed by different physical mechanisms
and exhibit different effective dimensionalities �either 2D or
3D�; see Table I. We have provided predictions for the cou-
pling diffusion coefficients of inclusion pairs in those various
regimes, as well as their leading dependence on the concen-
tration of inclusions in the membrane. These predictions can
be directly checked in two-point microrheology experiments
using Eq. �16�.

Since the SD length �−1 is typically of micrometer scale,
common supported membranes should belong in the ad-
sorbed regime, h��−1, which is treated in Secs. III A and
V A. Moreover, the limit of small inclusion size, assumed in
those sections, should be generally valid since the require-
ment is that a be much smaller than �−1���−1h�1/2 rather
than the stricter condition a�h. Hence, we expect this limit
to hold for common membrane inclusions even in cases
where the distance to the substrate is on the order of the
inclusion size �say, a few nm only�. In this common scenario
of a��−1��−1 the substrate is predicted to strongly sup-
press the large-distance correlations as compared to a free
membrane. Comparing the results of Sec. III A with those of
Ref. �3� �or with the equivalent results for the free far region
in Sec. III B�, we find suppression of the longitudinal and
transverse coefficients by factors of orders h /r and �h, re-
spectively. Nonetheless, the correlations always remain long
ranged, with their fastest possible decay being 1 /r2.

For nanometer-scale separation between membrane and
substrate, which is comparable to the membrane thickness,
the substrate may affect the membrane properties.As long as
the membrane remains fluid, such interactions are expected
to merely modify the effective membrane viscosity, and the

theory presented here should remain valid. A more serious
concern is the possible breakdown of the bilayer
description as a uniform slab, which is inherent in the
Saffman-Delbrück model and the current work. At sufficient
proximity to the surface the dynamics of the two membrane
leaflets might decouple. This will occur when the friction
between the lower leaflet and the solid surface exceeds the
one between the two leaflets. The characteristic coefficients
for these two competing drags are, respectively, �f /h
�106 N s /m3 �for h�1 nm� and 108 N s /m3 �26�. Thus,
for all relevant separations h, relative motion of the leaflets
should not play a significant role, and the bilayer can be
considered as a single fluid medium.

There may be cases where the inclusion size is compa-
rable to or larger than �−1—for example, when the inclusion
is a colloid particle or a membrane domain. We have pre-
sented expressions for the large-distance coupling coeffi-
cients in this case as well �Sec. VI�. These results have been
derived for the specific case of disklike inclusions, yet in
both limits of small and large �a they become independent
of the size and shape of the inclusions. The origin of this
surprising universality is that, in the adsorbed regime, the
membrane responds to any size and shape of perturbation
sufficiently far away, as if the perturbation were a mass di-
pole. The “effective inclusion”—i.e., the region around the
perturbation whose dynamics determines the strength of that
mass dipole—is limited in both cases of very small and very
large a by the momentum decay length �−1.

Concerning the effective response of the supported mem-
brane as a function of the area fraction of inclusions, we have
found that the membrane viscosity is modified according to
the law for 2D suspensions �25�, �m

eff=�m�1+2��, yet this
modification should be included also in the parameters � and
� �Eq. �24��. The combined effect is that there is no renor-
malization of the large-distance membrane response with in-
creasing �. The underlying physics is that transverse mo-
mentum is not transferred through the membrane over large
distances and, hence, the response is insensitive to changes
in the membrane viscosity. This insensitivity holds already
for distances much smaller than the largest length scale in the
problem at hand. For the common adsorbed regime, h��−1,
it is valid for r	�−1, as momentum is first lost to the sub-
strate. For the hovering regime, �−1�h, the dependence on
� disappears for r	�−1, as the propagation of stresses be-
comes dominated by the outer fluid.

The subtle effect of increasing the area fraction of inclu-
sions on the membrane viscosity and the governing length
scales influences also the corrections to the coupling diffu-
sion coefficients �Sec. V�. At sufficiently short distances the
leading logarithmic terms are corrected as if the membrane
were a 2D suspension, yet at large distances all corrections to
the coupling coefficients vanish.

The validity of the theory presented here is limited in
several important respects. Our results concerning the cou-
pling diffusion coefficients are all valid only for large sepa-
rations, r	a. In addition, the coupling coefficients derived
in Sec. VI for large inclusions apply only in the adsorbed far
region, r	�−1	h; the corresponding expressions for large
inclusions in the other asymptotic regions are unknown. We
have restricted the analysis of the effective response and cor-
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rections to the coupling coefficients to the leading linear or-
der in the area fraction of inclusions, �. Deviations from the
theory are expected, therefore, as � becomes appreciable.
Nevertheless, as is clear from the discussion above, our main
qualitative results—in particular, the insensitivity of the
large-distance response to �—are expected to be valid for all
values of �, as long as the membrane remains fluid. Finally,
we have not considered membrane fluctuations, which may
have a subtle interplay with the diffusion of membrane in-
clusions �6,22�. As membrane fluctuations are suppressed by
the presence of a nearby surface �20,21�, we do not expect

our main results to be significantly influenced by such ef-
fects.
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