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We study the statistical mechanics of a closed random manifold of fixed area and fluctuating volume,
encapsulating a fixed number of noninteracting particles. Scaling analysis yields a unified description of such
swollen manifolds, according to which the mean volume gradually increases with particle number, following a
single scaling law. This is markedly different from the swelling under fixed pressure difference, where certain
models exhibit criticality. We thereby indicate when the swelling due to encapsulated particles is thermody-
namically inequivalent to that caused by fixed pressure. The general predictions are supported by Monte Carlo
simulations of two particle-encapsulating model systems: a two-dimensional self-avoiding ring and a three-
dimensional self-avoiding fluid vesicle. In the former the particle-induced swelling is thermodynamically
equivalent to the pressure-induced one, whereas in the latter it is not.

DOI: 10.1103/PhysRevE.78.021132 PACS number�s�: 64.60.De, 87.16.D�, 64.60.Cn, 68.35.Md

I. INTRODUCTION

There has been considerable interest in the past few de-
cades in the statistical mechanics of membranes and surfaces
�1�. This has been partly motivated by the ubiquity of bilayer
membrane vesicles �2� in various natural and industrial sys-
tems. Since the lateral size L of such envelopes is much
larger than their thickness, they can be treated to a good
approximation as �d−1�-dimensional manifolds, d being the
embedding dimension. Another consequence of the thinness
of the membrane is that it resists stretching much more
strongly than bending. Hence, the surface area A of the mem-
brane is usually assumed fixed. The statistical mechanics of
such a manifold involves an interplay between conforma-
tional fluctuations and bending elasticity, leading to a char-
acteristic persistence length lp �3,4�; over distances smaller
than lp, the manifold is essentially smooth, whereas beyond it
the surface becomes random. When the manifold is closed �a
vesicle�, its smoothness is affected not only by the elastic
persistence length, but also by the degree of swelling �e.g,
volume-to-area ratio�.

The various studies of vesicle thermodynamics can be
classified in two groups according to the volume constraint
that they impose �for a given A�. One body of works, —e.g.,
Refs. �5–8�—considers the ensemble of fixed volume V.
These studies, aimed at actual bilayer vesicles, assume the
low-temperature limit lp�L, in which the vesicle is repre-
sented by a continuous closed surface in three dimensions
�3D�. The various equilibrium shapes are derived as ground
states of the elastic Helfrich Hamiltonian �7�, depending on
the dimensionless volume-to-area ratio V /A3/2. Another body
of works treats the ensemble of fixed pressure difference p
across the manifold. The studied systems include Gaussian
�9�, freely jointed �10,11�, and self-avoiding �12–14� rings in
2D, as well as model fluid vesicles in 3D �15–21�. Most of
these works assume the random, high-temperature limit �lp
�L�, yet the crossover to lp�L was addressed as well
�11,12,18,19�.

As long as equilibrium averages are concerned, the en-
sembles of fixed V and fixed p are equivalent; i.e., they are
related by a smooth, single-valued �Legendre� transform. We
focus here on another swelling scenario, where the manifold
encapsulates a fixed number Q of particles while its volume
is unconstrained. The interest in such particle-swollen mani-
folds is not merely theoretical; most actual vesicles are im-
mersed in solution and their membrane, over sufficiently
long, experimentally relevant time, is semipermeable, allow-
ing solvent exchange while keeping the solute trapped inside
�22–24�. Note that the particle number Q does not a priori
imply a certain osmotic pressure, because the manifold is
free to change its mean volume and, hence, the mean particle
concentration. Nonetheless, since the mean volume and pres-
sure should monotonously increase with Q, one expects to
find equivalence �i.e., certain well-behaved transforms� be-
tween the fixed-Q ensemble and the other two. We have
recently demonstrated, however, that these ensembles are not
equivalent for a freely jointed ring in 2D �25�. A second-
order transition between crumpled and swollen states, which
occurs in the fixed-p ensemble at a critical pressure pc �10�,
disappears in the fixed-Q case. The criticality is avoided as
the system selects such a mean volume that the mean pres-
sure always lies above pc for any value of Q. Thus, the
regions of phase space covered in the two ensembles are
different.

In the current work we generalize these results, obtaining
a unified description for a �d−1�-dimensional random mani-
fold in d dimensions, swollen by either a fixed pressure dif-
ference or a fixed number of trapped particles. We thereby
clarify when the swelling scenarios are thermodynamically
equivalent and when they are not. It should be borne in mind
that, while the current work is focused on strongly fluctuat-
ing, random manifolds �L� lp�, the bending rigidity and size
of real vesicles place them in the low-temperature, smooth
regime �L� lp� �26�.

We begin in Sec. II with a heuristic scaling analysis,
which nevertheless yields the correct qualitative swelling be-
havior as found in previously studied models. We then pro-
ceed to verify these general results using Monte Carlo �MC�
simulations of two model manifolds: a self-avoiding ring in
2D �Sec. III�, for which the two scenarios are found to be*hdiamant@tau.ac.il
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equivalent, and a self-avoiding fluid vesicle in 3D �Sec. IV�,
for which they are not. The results are analyzed and summa-
rized in Sec. V.

II. SCALING ANALYSIS

We apply a scaling theory �13,27,28� to a closed
�d−1�-dimensional random manifold, composed of N nodes
and embedded in d dimensions. In response to perturbation
�pressure difference p or Q noninteracting trapped particles�,
the manifold is assumed to be divided into subunits, or blobs,
containing g nodes each. The blobs are defined such that
each of them stores a tensile energy equal to the thermal
energy kBT�1 �28�,

��d−1 � 1, �1�

where � is the surface tension induced in the manifold due to
the perturbation and �d−1 is the projected area of a blob. At
length scales smaller than the blob size � the manifold is
unaffected by the perturbation and assumed to obey the
power law

�d−1 � g�, �2�

where � is a swelling exponent characterizing the unper-
turbed manifold statistics. At distances larger than � the per-
turbation stretches the manifold. The total projected area is
given by the number of blobs times the projected area per
blob,

Rd−1 � �N/g��d−1. �3�

So far, Eqs. �1�–�3� have been independent of the nature of
perturbation �p or Q�. The difference between the two cases
enters via the Laplace law, which takes the following forms
in the fixed-p and fixed-Q ensembles, respectively:

�/R � p , �4a�

�/R � Q/Rd. �4b�

Solution of Eqs. �1�–�3� and �4a� leads to the following
power laws for the fixed-p case:

�V� � Rd � Nd/�d−1��pN1/�d−1��d�1−��/�d�−1�,

� � �pN1/�d−1����d−1�/�d�−1�. �5a�

�This result, in a different form, has been already obtained in
Ref. �15�.� Two observations readily follow from Eq. �5a�.
First, the characteristic pressure difference, required to ap-
preciably swell the manifold �i.e., to obtain R�N1/�d−1��,
scales as p�N−1/�d−1�, regardless of �. This characteristic
value reflects the interplay between the mechanical work of
inflating an object of volume �Nd/�d−1� and the surface en-
tropy of N degrees of freedom, pNd/�d−1��N. Second, in
cases where d�=1 the exponents diverge—i.e., the analysis
breaks down—and one expects criticality �13�. Both conclu-
sions are borne out by previously studied models. Gaussian
�9� and freely jointed �10� rings, having d=2 and �=1 /2
�i.e., d�=1�, behave critically at pc�N−1, the former swell-
ing to infinite volume and the latter undergoing a second-

order transition to a smooth state. By contrast, self-avoiding
rings, with d=2 and �=3 /4, swell gradually with p �12–14�.

Turning to the fixed-Q case, we find from Eqs. �1�–�3�
and �4b� the power laws

�V� � Nd/�d−1��Q/N�d�1−��/�d−1�,

� � �Q/N��. �5b�

The corresponding observations in this case are as follows.
First, appreciable swelling occurs for Q�N, regardless of �
and d. Thus, the number of encapsulated particles required to
swell the envelope scales with the area only, rather than the
volume. This is a consequence of considering a vanishing
external pressure �26�. In such a case the particle entropy
��Q� has to compete only with the surface one ��N�. Sec-
ond, there is no divergence of exponents in Eq. �5b�—i.e., no
criticality. Both conclusions are consistent with findings re-
garding particle-encapsulating freely jointed rings in 2D
�25�.

The two blob analyses, along with the resulting power
laws �Eqs. �5a� and �5b��, should hold as long as 1�g�N.
This corresponds to the restrictions N−d�/�d−1�� p�N−1/�d−1�

and 1�Q�N. At larger swelling, nonetheless, we expect the
manifold to be smooth, having �V��Nd/�d−1�. According to
Laplace’s law this leads to a surface tension �� pN1/�d−1� and
��Q /N. Combining these large-swelling results with Eqs.
�5a� and �5b�, and provided there is no criticality �d��1�,
we conjecture the following scaling relations, expected to
hold for all values of p and Q:

�V� = Nd/�d−1�fp�pN1/�d−1�� ,

� = hp�pN1/�d−1�� , �6a�

�V� = Nd/�d−1�fQ�Q/N� ,

� = hQ�Q/N� . �6b�

The scaling functions for the mean volume, fp and fQ, should
cross over from the power laws of Eqs. �5a� and �5b� for
small arguments to constant values for large arguments. The
scaling functions for the surface tension, hp and hQ, are ex-
pected to cross over from the power laws of Eqs. �5a� and
�5b� to linear ones. The validity of Eqs. �5b� and �6b� has
been already proven for a particle-encapsulating freely
jointed ring in 2D �25�. In addition, the scaling of Eq. �6a�
has been demonstrated in the swelling of those rings with
increasing p above the critical point �10�. We now proceed to
check the validity of Eqs. �5a�, �5b�, �6a�, and �6b� in two
additional model systems.

III. SELF-AVOIDING RING IN 2D

We first follow the model and MC scheme presented in
Refs. �12–14� for a 2D self-avoiding ring subject to an in-
flating pressure difference p. The manifold is represented by
a closed chain of N self-avoiding circles �beads� of diameter
	= �5 /9�l, linked by tethers of maximum length l�1. In
each MC step every bead is moved to a random position
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within a square of �−0.2	 ,0.2	�2 about its former position.
These values of 	, l, and maximum step size ensure that
self-intersection of the ring cannot occur. The move is
weighted by W=ep
V, where 
V is the difference in �2D�
volume of the ring due to the move, and is accepted provided
that �i� self-avoidance is fulfilled, �ii� tethers do not exceed
their maximum length, and �iii� W exceeds a random number
in the range �0,1�. Simulations were performed for N
=50–800.

The mean volume of the ring as a function of pressure
difference is presented in Fig. 1. The different data sets col-
lapse onto a single curve once the mean volume is rescaled
by the maximum volume of the ring, Vmax=N2 / �4��, and the
pressure by N−1, in accordance with Eq. �6a�. This scaling
law, however, yields a vanishing mean volume for p=0,
whereas the unperturbed ring has a finite mean volume of
V0�N2�, �=3 /4. In the thermodynamic limit �N→�� the
correction is negligible, V0 /Vmax�N−1/2→0, but for finite
rings the scaling of Eq. �6a� breaks down for sufficiently
small p, as seen in Fig. 1. Therefore, to capture the initial
linear dependence of �V� on p, as predicted by Eq. �5a� for
d=2 and �=3 /4, we replot in Fig. 1 �inset� the data for
�V�−V0. The initial increase of �V�−V0 with p seems to be
consistent with a linear law, although we cannot claim to
have clearly confirmed it.

Next, we turn to particle-encapsulating manifolds by set-
ting p=0 and introducing Q ideal particles at random posi-
tions inside the ring. Hard-core repulsion is introduced be-
tween the particles and envelope beads �but not between the
particles themselves�, with particle-bead minimum distance
of 	. The MC step is extended to include repositioning of
each particle within a square of �−0.2	 ,0.2	�2 about its
former position. This maximum step size, together with the
hard-core repulsion between particles and envelope beads
and maximum tether length, ensure that particles cannot exit
the ring. Rings of N=50–800 have been simulated, with Q
ranging between 0 and 20N.

In Fig. 2 we present the mean volume as a function of Q.
In agreement with Eq. �6b� all data collapse onto a single
curve when �V� is scaled by N2 and Q by N. As in the case of
fixed p, discussed above, scaling breaks down for very small
Q when �V� becomes affected by the finite volume of the
unperturbed state. The power law predicted by Eq. �5b� for
2D self-avoiding rings �d=2, �=3 /4�, �V��Vmax�Q /N�1/2, is
nevertheless verified after subtracting V0 from the mean vol-
ume �Fig. 2, inset�.

To demonstrate the equivalence of the fixed-p and fixed-Q
scenarios for this system we transform the data for pressur-
ized rings �Fig. 1� according to Q�p�= p�V�p�� and present
them in Fig. 2 alongside the data for fixed Q. The data sets of
the two scenarios match nicely over the entire ranges of p
and Q.

IV. SELF-AVOIDING FLUID VESICLE IN 3D

The second manifold we consider is a discrete model of a
fluid vesicle, which was extensively studied by MC simula-
tions under fixed pressure difference p �15–20�. The vesicle
is represented by a closed, triangulated, off-lattice network of
N nodes �self-avoiding spheres� of diameter 	= l /	2, inter-
connected by a fixed number of tethers of maximum length
l�1. Membrane fluidity is mimicked by constantly varying
the network connectivity. The MC step comprises two parts.
�i� Each bead is moved randomly within a cube of
�−0.1	 ,0.1	�3 about its former position �self-avoidance per-
mitting�. The move is weighted by a Boltzmann factor of
ep
V, where 
V is the change in volume caused by the move.
�ii� N attempts are made to break a randomly chosen tether,
which has formed the common side of two triangles, and
rebuild it between the two other corners of those triangles
�provided that the required tether length does not exceed l�.
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FIG. 1. �Color online� Mean volume of 2D self-avoiding rings
as a function of pressure difference. Data were obtained by MC
simulations for different ring sizes N and rescaled according to Eq.
�6a�, Vmax=N2 / �4�� being the maximum volume of the ring. The
inset shows the same data on a log-log scale after the mean volume
of the unperturbed ring, V0�N3/2, has been subtracted from �V�. A
solid line of slope 1 is shown for reference.
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FIG. 2. �Color online� Mean volume of 2D self-avoiding rings
as a function of number of encapsulated particles. Data were ob-
tained by MC simulations for different ring sizes N and rescaled
according to Eq. �6b�, Vmax=N2 / �4�� being the maximum volume
of the ring. Also plotted are the data points from the fixed-p simu-
lation �Fig. 1�, whose horizontal coordinate is calculated as
p�V�p�� /N. The inset shows the data on a log-log scale after the
mean volume of the unperturbed ring, V0�N3/2, has been sub-
tracted from �V�. A solid line of slope 1 /2 is shown for reference.
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The choice of 	, l, and maximum step size prevents a bead
from passing through another part of the network, making
the manifold self-avoiding.

The swelling of this model vesicle as a function of p
follows three regimes �15�. �i� At low pressures the vesicle is
in a collapsed state, having branched-polymer statistics,
where the mean volume and mean-square radius of gyration
scale as �V��R2�N, with negligible dependence on p
�15,29–31�. �ii� At a critical pressure, p= p*�N�, the vesicle
undergoes a first-order transition to a swollen state, whose
mean volume gradually increases with p as �V�� p0.47N1.73

�15�. �iii� At sufficiently large p the power-law behavior
crosses over to asymptotic swelling toward the maximum
volume.

The blob analysis presented in Sec. II obviously fails in
regime �i� of low swelling, since the volume enclosed in such
collapsed manifolds does not follow the standard relation
�V��Rd. Instead, we use the fact that the ratio between the
cross-section �frame� area of the manifold and its real surface
area is vanishingly small. Such a manifold has a constant
surface tension, ��1 �in units of kBT / l2� �32�. Applying
Laplace’s law, p�� /R�N−1/2, we find that the deflated re-
gime �i� is valid for pN−1/2; i.e.,

p  N−1/2: �V� 
 V0 � N . �7�

In regime �ii� the scaling analysis of Sec. II holds. Compari-
son of the previously obtained power law, �V�� p0.47N1.73,
with Eq. �5a� for d=3, gives �=0.787 �15�. Our modified
scaling analysis �Eqs. �5a� and �6a�� indicates that p is scaled
with N−1/2. We note that the power-law dependence of the
critical pressure p* on N has been controversial �19�, with
exponents ranging between −0.5 �16� and −0.69 �20�. The
scaling argument for p� p*, together with Eq. �7� for p
� p*, strongly suggest that p*�N−1/2 �33�.

We have repeated the MC simulations for fixed p, as pre-
sented in Ref. �15�, while extending them to larger vesicles
and higher pressure values. The results are shown in Fig. 3,
scaled according to Eq. �6a�. The first-order transition at p*

�N−1/2 is clearly reproduced, and the predicted scaling for
the entire range of p� p* is confirmed. The scaling for p
� p* is not inconsistent with the power law of Ref. �15� and
Eq. �5a�, having � between 0.7 and 0.8 �Fig. 3, inset�, yet this
regime is too narrow to be clearly resolved.

We now turn to particle-encapsulating vesicles. Repeating
the aforementioned argument for the deflated state of regime
�i�, Q / �V��� /R�N−1/2, we find

�V� � N3/2�Q/N� . �8�

�This linear dependence of �V� on Q will be shown in Sec. V
to be intimately related to the phase transition observed as a
function of p.� The scaling law of Eq. �8� for the low-
swelling regime turns out to be similar to that of Eq. �5b�.
Hence, despite the inadequacy of the blob analysis in regime
�i�, we expect the scaling conjecture, Eq. �6b�, to hold for all
values of Q in this model as well.

To check these predictions we modified the MC scheme
presented above by setting p=0 and adding Q ideal particles
of diameter 	, randomly positioned inside the vesicle. The

particles do not interact with each other, but have a hard-core
repulsion with the network nodes, keeping them trapped in-
side the vesicle. The MC step is extended to include random
repositioning of each particle within a cube of �−0.1	 ,0.1	�3

about its former position. Vesicles with N ranging between
162 and 642 and Q up to 10N �for the smallest vesicle� have
been simulated.

Results for the mean volume as a function of Q for vari-
ous vesicle sizes are shown in Fig. 4. Once the volume V0 of
the unperturbed �branched� state �Eq. �7��, which is inacces-
sible to particles due to their excluded-volume interaction
with the manifold, is subtracted from �V�, the data collapse
onto a single curve according to Eq. �6b�. Two power-law
regimes are seen in Fig. 4 �inset�. At low swelling �V� in-
creases linearly with Q, in agreement with Eq. �8� �34�. At
about Q
0.08N the swelling crosses over to a different
power law which, when fitted to Eq. �5b�, yields �=0.75�2�.
This value is close to that found in the fixed-p simulations,
�=0.787 �15,35�. For larger values of Q this power-law re-
gime should cross over to asymptotic saturation toward the
maximum volume. Because of computer limitations we
could sample only the lowest edge of this regime �Fig. 4,
inset�.

Unlike the case of fixed p, the vesicle gradually swells
with Q, exhibiting no phase transition. To further verify the
absence of a first-order transition we have measured the
probability distribution function of the volume, P�V�, as a
function of Q. Whereas under fixed p, at p= p*, one finds a
bimodal distribution �Ref. �15� and Fig. 5�a��—i.e., coexist-
ence of collapsed and swollen states—for particle-
encapsulating vesicles we obtain unimodal distributions for
all values of Q �Fig. 5�b��.

Finally, let us consider the effective pressure exerted by
the encapsulated ideal particles, p=Q / �V�. From Eq. �6b� we
have
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FIG. 3. �Color online� Mean volume of 3D self-avoiding fluid
vesicles as a function of pressure difference, as obtained by MC
simulations for different vesicle sizes N. Data are scaled according
to Eq. �6a�, exhibiting a discontinuous transition at p*�N−1/2. For
p� p* the data collapse onto a single curve. The inset presents the
same data for p� p* on a log-log scale. A solid line of slope 0.6
�corresponding to �=0.75� is shown for reference.
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p = N−1/2��Q/N�, ��x� = x/fQ�x� . �9�

In the low-swelling regime we have found a linear behavior,
fQ�x�1��x �Eq. �8� and Fig. 4, inset�. Thus, ��x�1�
=const; i.e., the effective pressure does not change with Q
throughout this regime. Figure 6 demonstrates the data col-
lapse according to Eq. �9�, as well as the finite, constant
pressure pmin at low swelling even for the smallest values of
Q. �In calculating the concentration and pressure from the
simulations we have considered the particle-accessible vol-
ume, �V�−V0.� One expects pmin to coincide with the transi-
tion value under fixed pressure, p*. �Compare also Fig. 5�a�,
plotted for p= p*, with Fig. 5�b�, where the effective pressure
is essentially fixed at pmin for all curves.� We find, however,
p*
1.8pmin. This discrepancy may stem from the interaction
of the particles with the vesicle, making them deviate from
the ideal-gas behavior, particularly in the deflated state.

V. DISCUSSION

The scaling analysis presented in Sec. II yields a unified
account of the swelling of random manifolds with increasing
pressure difference or number of encapsulated particles. The
validity of this description has been demonstrated for several
model systems in Secs. III and IV and in Ref. �25�. Similar
scaling analyses for the case of fixed p were previously pre-
sented in Refs. �13,15�. Those analyses and ours coincide in
the power-law regime, Eq. �5a�. However, while the previous
analyses are focused on the weak-swelling regime and con-
structed to include the random, unperturbed state of the
manifold, the one presented here is aimed at encompassing
the high-swelling behavior. Thus, on the one hand, our scal-
ing relations, Eqs. �6a� and �6b�, cannot account for the un-

perturbed state and give a vanishing mean volume in the
limit of vanishing perturbation. The range of p �or Q� where
this deficiency is relevant, nonetheless, vanishes in the ther-
modynamic limit �36�. On the other hand, whereas the pre-
vious analyses assumed that scaling broke down at suffi-
ciently large swelling �13,15�, we have claimed that Eqs. �6a�
and �6b� should hold for the entire range of p or Q. Although
there is a priori no reason why the scaling behavior should
have this broad range, we analytically proved the conjecture
for freely jointed rings in 2D at fixed p� pc �10� or fixed Q
�25�. In the current work we have provided further numerical
support of the scaling conjecture in several additional sys-
tems: 2D self-avoiding rings at fixed p or fixed Q and 3D
fluid vesicles at fixed p� p* or fixed Q. Hence, provided that
the swelling exhibits no criticality, the scaling relations, Eqs.
�6a� and �6b�, seem to be applicable in a broad range of
systems.

The analysis presented here for the swelling with Q yields
new scaling relations, which have been confirmed in all stud-
ied systems. The different behavior of particle-encapsulating
manifolds lies in the response of manifold volume to changes
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FIG. 4. �Color online� Mean volume of 3D self-avoiding fluid
vesicles as a function of the number of trapped particles, as ob-
tained by MC simulations for different vesicle sizes N. Data col-
lapse onto a single curve according to Eq. �6b� once the volume of
the unperturbed vesicle, V0�N, is subtracted from �V�. The inset
represents the same data on a log-log scale, exhibiting a linear
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in the number of encapsulated particles. The resulting par-
ticle concentration and effective pressure depend on this re-
sponse and, therefore, may have a nontrivial dependence on
Q. In certain cases this may lead to thermodynamic inequiva-
lence of the fixed-p and fixed-Q ensembles. Equivalence
breaks down when the two ensembles are no longer related
by a one-to-one smooth transform. In the two examples
where inequivalence has been demonstrated—2D freely
jointed rings �25� and 3D fluid vesicles �Sec. IV�—both con-
ditions of smoothness and single-valuedness are violated: �i�
a criticality in the fixed-p ensemble makes the transform
Q�p�= p�V�p�� nonanalytic, and �ii� the effective pressure in
the fixed-Q ensemble is bounded from below by a finite
value; i.e., states of low pressure are inaccessible �cf. Fig. 6�.
We now show that this combination of criticality under fixed
p and inaccessible states for fixed Q is not a coincidence.

Let us consider a general power-law response to particle
number, �V��Q�. Transforming to the fixed-p ensemble, we
get p�Q�=Q / �V��Q1−� and �V�� p�/�1−��. Several observa-
tions follow from these relations. First, thermodynamic sta-
bility dictates that �V� increase with p—i.e., ��1. We are
left with two different cases. �i� If ��1, there is no critical-
ity and arbitrarily small values of Q will correspond to arbi-
trarily small values of p. Hence, in this case there is equiva-
lence. �ii� If �=1, we expect both criticality under fixed p
and inaccessibility of small-pressure states at fixed Q—i.e.,
inequivalence of the two swelling scenarios. For maximum
�, the manifold volume is maximally susceptible to changes
in Q �linear in Q�, to the extent that the concentration and
pressure do not change with Q �cf. Fig. 6�. Thus, criticality
and inequivalent phase spaces come hand in hand. In a stan-
dard case, where the blob analysis of Sec. II holds, we get
from Eq. �5b� �=d�1−�� / �d−1�, and the condition ��1 is
equivalent to d��1. In addition, one has a geometrical
lower bound for the swelling exponent, which cannot be
smaller than that of a folded, compact manifold,
�� �d−1� /d. This leads to the restriction ��1 / �d−1�,
which is consistent with, and stricter than, the thermody-

namic one, ��1. Hence, we conclude that for most systems,
which obey the analysis of Sec. II, case �ii� above, involving
criticality and inequivalence, can occur only in 2D—i.e., for
d=2 and �=1 /2 �10,25�.

All of these general conclusions are supported by specific
examples. A 2D self-avoiding ring is an example of case �i�
above. It obeys the scaling analysis of Sec. II with d=2, �
=3 /4—i.e., �=1 /2. �The value of � has been confirmed by
simulations; see Fig. 2.� This system exhibits no criticality
under fixed p, and the two ensembles have been found
equivalent �Fig. 2�. The more interesting case �ii� has been
encountered in three systems. Two examples are provided by
Gaussian and freely jointed rings in 2D �25�. For both ex-
amples the blob analysis holds, and d=2, �=1 /2 �i.e., d�
=1�. The third example of the anomalous case �ii� is a 3D
fluid vesicle �Sec. IV�, for which the blob analysis of Sec. II
fails, yet a linear dependence of �V� on Q has been found
�Eq. �8� and Fig. 4�. Indeed, under fixed p �9,10,15� all three
examples exhibit phase transitions.

This host of examples leads to the expectation that the
picture described here, including the scaling relations and
possible phase transitions, should hold for any random mani-
fold swollen by either a pressure difference or encapsulated
particles. In cases where the blob analysis of Sec. II is valid,
one needs to know merely the dimensionality d and the sta-
tistics of the unperturbed manifold ��� to predict the qualita-
tive swelling behavior. In other, exceptional cases �e.g, the
3D fluid vesicle of Sec. IV� it suffices to know the response
of the unperturbed manifold to a small number of encapsu-
lated particles �i.e., ��.

The thermodynamic inequivalence between the fixed-p
and fixed-Q scenarios, reported above for certain systems,
also implies inequivalence between the canonical and grand-
canonical ensembles in those systems. This is because fixing
the chemical potential � of the encapsulated particles inevi-
tably fixes also the mean pressure p that they exert on the
manifold, as these two intensive variables are related via the
particles’ equation of state. �For example, for ideal particles
�=ln p.� Once again, because of the unconstrained volume,
the system cannot attain arbitrarily small concentrations as Q
is decreased, and, therefore, the full range of � is not cov-
ered. The inequivalence of the fixed-Q and fixed-� en-
sembles has been directly demonstrated for freely jointed 2D
rings �25�.

In the current work we have not explicitly considered the
bending rigidity of the vesicle. Such a bending-free descrip-
tion is valid in two limits: �i� At sufficiently strong swelling
the fluctuations of any vesicle are governed by surface ten-
sion rather than bending rigidity. �ii� If the manifold is suf-
ficiently large �L� lp�, bending rigidity merely renormalizes
the molecular length a to lp and the number of surface de-
grees of freedom N to Na2 / lp

2. It is this random, strongly
fluctuating case which has been the focus of the current
work. On the one hand, due to their bending rigidity
���10kBT� and size �0.1–10 �m�, real bilayer vesicles are
smooth and do not satisfy limit �ii�. On the other hand, some
of our most significant results �e.g., the inaccessibility of
low-pressure states� concern weak swelling, outside limit �i�,
where the bending rigidity of real vesicles plays an important
role. Thus, the direct relevance of the current work to real

0.1 0.2 0.3
Q/N

8

10

12

14

16

18

pN
1/

2
=

Q
N

1/
2 /(

〈V
〉-

V
0)

N = 162
N = 252
N = 362
N = 492
N = 642

FIG. 6. �Color online� Effective pressure of encapsulated par-
ticles as a function of particle number, as obtained by MC simula-
tions for various vesicle sizes N. Data collapse according to Eq. �9�.
Note the finite effective pressure at small Q. The arrow indicates the
crossover between the two swelling regimes at Q
0.08N.
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bilayer vesicles is limited. Yet, overall, this work and the
specific examples associated with it highlight the qualitative
differences which may emerge between pressurized mani-
folds and particle-encapsulating ones. Indeed, the different
behavior of particle-encapsulating vesicles is manifest also in
realistic scenarios involving smooth membranes—e.g.,
highly swollen bilayer vesicles in solution �26�.
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