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Topography and instability of monolayers near domain boundaries
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We theoretically study the topography of a biphasic surfactant monolayer in the vicinity of domain bound-
aries. The differing elastic properties of the two phases generally lead to a nonflat topography of ‘‘mesas,’’
where domains of one phase are elevated with respect to the other phase. The mesas are steep but low, having
heights of up to 10 nm. As the monolayer is laterally compressed, the mesas develop overhangs and eventually
become unstable at a surface tension of aboutK(dc0)2 (dc0 being the difference in spontaneous curvature and
K a bending modulus!. In addition, the boundary is found to undergo a topography-induced rippling instability
upon compression, if its line tension is smaller than aboutKdc0. The effect of diffuse boundaries on these
features and the topographic behavior near a critical point are also examined. We discuss the relevance of our
findings to several experimental observations related to surfactant monolayers:~i! small topographic features
recently found near domain boundaries;~ii ! folding behavior observed in mixed phospholipid monolayers and
model lung surfactants;~iii ! roughening of domain boundaries seen under lateral compression;~iv! the absence
of biphasic structures in tensionless surfactant films.
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I. INTRODUCTION

Monolayers of amphiphilic molecules~surfactants! at
water-air or water-oil interfaces are used in numerous ap
cations to reduce interfacial tension, control wetting prop
ties, stabilize emulsions and foams, etc.@1,2#. Monolayers of
biological surfactants~phospholipids! are commonly studied
as models for the surfaces of cell membranes and are
encountered in various biological systems@3#. An important
example is the lung surfactant monolayer covering the
veoli in lungs, whose main function is to lower the surfa
tension of the lungs, thereby drastically reducing the m
chanical work required for breathing@4#.

Amphiphilic monolayers generally have a finite spontan
ous curvature arising from the asymmetry of the molecu
as well as the asymmetry with respect to electrostatic in
actions~i.e., the differing dielectric properties of the pola
and nonpolar phases forming the interface! @5#. Despite this
tendency to bend, homogeneous monolayers are almos
ways flattened by the water-air or water-oil interfacial te
sion. Only for very low~sometimes even negative@6#! ten-
sion does a nonflat conformation become energetic
favorable for a homogeneous monolayer.~This is achieved,
e.g., by extensive lateral compression.! Such a reversible de
parture from a flat, two-dimensional state to a thre
dimensional conformation is referred to as thebuckling tran-
sition and has drawn considerable attention@6–8#. However,
it is not commonly observed in practice@7#, since it is usu-
ally preceded by other modes of collapse such as monol
breakage into multilayers@9,10# and ejection of vesicles o
micelles@11#. The possibility to explore the third dimensio
upon compression is of particular interest in the case of l
surfactant monolayers, which are required to change t
projected area significantly during the compressio
expansion cycle of breathing.

The two-dimensional fluid comprising a monolayer m
separate into domains of different coexisting phases. Sin
1063-651X/2001/63~6!/061602~12!/$20.00 63 0616
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component monolayers exhibit coexistence between gas
liquid-expanded phases, liquid-expanded and liqu
condensed phases, and liquid-condensed and solid ph
@1–3#, whereas mixed monolayers may form domains of d
fering composition. A special, well-studied property of su
factant monolayers is the stabilization of finite domains a
modulated phases due to long-range electrostatic interac
@12,13#. The coupling between lateral variations in compo
tion and curvature was thoroughly studied as well@8,14–20#,
mainly with regard to various domain structures on surfa
and shape transformations of bilayer vesicles.

Despite extensive research on surfactant monolayers t
are important features, in particular of biphasic monolaye
which are not well understood. Recent experiments on mi
phospholipid monolayers have revealed a new type of lo
folding upon compression, which is believed to be importa
for the function of lungs@21# ~see Fig. 8!. Another observed
feature is the appearance of rough domain boundaries u
compression@22# ~see Fig. 9!.

In the current work we study the relation between late
domain structure and monolayer topography in more de
focusing on the conformation of monolayers in the vicin
of domain boundaries@23#. We thereby try to shed som
light on the unexplained features mentioned above. Doma
of different density and/or composition in a biphasic mon
layer should generally have differing elastic properties,
particular, different spontaneous curvatures. The requ
ments of mechanical equilibrium and smoothness of
monolayer surface lead to nonflat conformations attemp
to ‘‘reconcile’’ the different properties of the contiguous d
mains. These simple mechanical considerations result
surprisingly rich behavior, including the formation of ove
hangs and emergence of instabilities, as discussed in the
lowing sections. In principle, one has to consider the top
raphy and lateral composition as two coupled degrees
freedom in order to study the thermodynamics of the tw
©2001 The American Physical Society02-1
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DIAMANT, WITTEN, EGE, GOPAL, AND LEE PHYSICAL REVIEW E63 061602
dimensional fluid in the monolayer@8,14–20#. However, this
is not the aim of the current work. Rather than accounting
both composition and height variations, we assume the e
tence of domains and focus on the topography alone as
ing from the mechanical response to the lateral structure

The Monge representation and linearization of pro
equations have been ubiquitously used in the theore
modeling of monolayers and membranes@2#. These math-
ematical simplifications describe the topography by a sing
valued height function assumed to have moderate slopes
contrast, the phenomena discussed in the current work
volve, in an essential way, steep slopes and overhangs
thus avoid the Monge representation and solve the nonlin
profile equations. In order for the mathematics to rem
tractable we resort to another simplification—the profile
assumed to be uniform along one lateral direction~namely,
the direction parallel to the domain boundary!—rendering
the nonlinear equations one-dimensional. This constrain
further discussed in the next section; it is partially relaxed
the treatment of boundary rippling in Sec. V.

The basic model and its assumptions are presented in
II. We then proceed in Sec. III to review the simplest case
an infinitely sharp, straight domain boundary@23#. Despite
its simplicity, this limiting case demonstrates most of o
qualitative results. The calculation is refined in Sec.
where a boundary of nonzero thickness is considered. In
V we study the stability of a straight domain boundary
lateral undulations. The topographic behavior of a monola
near its critical point is examined in Sec. VI. Finally, in Se
VII, we discuss the various results and their relevance
experiments.

II. MODEL

Four length scales are distinguished when studying
elasticity of a biphasic monolayer: the typical domain sizeL,
the width of a domain boundaryj, the typical spontaneou
radius of curvaturec0

21, and the elastic length,l5(K/g)1/2,
determining the lateral extent of height variations (K being
the bending modulus andg the surface tension!. An impor-
tant observation is that in most practical cases the dom
size is much larger than all other length scales—L is typi-
cally of order 10mm, whereasj, c0

21, and l are of order
1–10 nm. This allows us to focus on a single, straight bou
ary between two large domains and regard the centers o
domains as infinitely far away. We thus represent the bou
ary region as a surface whose far left and far right ha
different spontaneous curvatures,c01 andc02 @24#. ~Through-
out this paper we assume, without loss of generality,c01
.c02.) The surface is uniform in they direction parallel to
the boundary but can curve in thexz plane, as depicted in
Fig. 1~a!.

In fact, an inflected conformation perpendicular to t
boundary is a straightforward consequence of such a la
structure. Far away from the boundary~i.e., at the centers o
the two contiguous domains! the surface is flat. Because o
the nonzero spontaneous curvature the far-left side is
jected to a bending moment ofKc01, supplemented by a
tensile torque of2gh1, where2h1 is the height of this side
06160
r
is-
is-

al

-
By
n-

e
ar
n

is
n

ec.
f

r

c.

r
.
o

e

in

-
he
d-
e

ral

b-

relative to the boundary@see Fig. 1~b!#. Similarly, a moment
of Kc021gh2 is exerted on the far-right side. Mechanic
equilibrium requires that these two moments balance e
other, i.e.,

h5h11h25Kdc0 /g5l2dc0 , ~1!

wheredc0[c012c02. Thus, an inflected conformation wit
a finite height difference occurs for any finitedc0 andg. A
measure of the inflection sharpness ish/l5ldc0. As com-
pression increases~i.e., g decreases@25#!, the inflection be-
comes higher and sharper. Note that the integrated he
difference is insensitive to details of the inner boundary
gion. Equation~1! can therefore serve as a rigorous sum r
for more detailed calculations such as those presente
Secs. III and IV.

The elastic energy to be minimized in order to find t
monolayer topography@26# is

G5E
A
dA~ 1

2 Kc22Kc0c!1gE
A
d~A2Ap!1tE

R
d~R2y!,

~2!

where A denotes the monolayer surface,Ap its projection
onto thexy reference plane,c the local surface curvature,R
the trajectory of the domain boundary, andt the line tension
of the boundary. The functional~2! has been defined suc
that a flat surface with a straight domain boundary runn
parallel to they axis is the reference state of zero energ
Since the surface we consider in Secs. III and IV is unifo
in they direction, we may represent it by the local angleu(s)
it makes with the referencexy plane at curvilinear distances
from the boundary@see Fig. 1~b!#. The energy functional~2!
is then rewritten as

FIG. 1. ~a! Schematic sketch of the monolayer in the bounda
region. A boundary lying parallel to they axis separates two larg
domains denoted by 1 and 2.~b! Cross-section parallel to thexz
plane. The monolayer conformation is parametrized by the an
u(s) it makes with thexy reference plane at curvilinear distances
from the boundary.
2-2
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TOPOGRAPHY AND INSTABILITY OF MONOLAYERS . . . PHYSICAL REVIEW E 63 061602
g@u~s!#[
G

L
5E

2`

`

ds@ 1
2 K u̇22Kc0u̇1g~12 cosu!#,

~3!

whereL is the length of the boundary, a dot denotesd/ds,
and c0 is not regarded as a constant but varies withs. In
order for the surface to be smooth everywhere we req
thatu(s) be a continuous function@27#. It is useful to notice
that, despite the linear term inu̇, the functional~3! is invari-
ant unders reversal,s→2s. This is because we can brea
any plausible choice ofc0(s) into a constant, (c011c02)/2,
plus an odd function ofs and, assuming that the surfac
becomes flat far away from the boundary, the constant t
does not contribute to the integral. In other words, we m
specialize to the casec0152c02. Hence, minimization will
necessarily produce symmetric angle profilesu(s) and anti-
symmetric topographiesh(s). ~Note that this argument doe
not hold if K is taken as nonuniform@23#.!

III. SHARP DOMAIN BOUNDARY

We begin with the simple case where the boundary thi
nessj is much smaller than the other length scales, exte
ing our earlier work@23#. ~We show in Sec. IV that the
condition for this sharp limit is in fact weaker, the requir
ment being merelyjdc0!1.! In this limit the boundary may
be regarded as infinitely sharp, accompanied by a s
function jump in spontaneous curvature,

c05H c01 s,0

c02 s.0.

Substituting this spatial variation ofc0 in Eq. ~3! we can
integrate the linear term inu̇. The energy is then rewritten a

g@u~s!#5E
2`

`

ds@ 1
2 K u̇21g~12 cosu!#2Kdc0u0 , ~4!

whereu0[u(s50) is the maximum inflection angle.
The integral in Eq.~4! has the familiar form of the Sine

Gordon action. Variation with respect tou(sÞ0) gives a
Sine-Gordon profile equation,

ü5l22 sinu. ~5!

First integration of Eq.~5! yields

u̇5H 2l21 sin~u/2! s,0

22l21 sin~u/2! s.0.
~6!

In the current, simple case, due to the boundary conditi
u(s→6`)50, second integration can be carried out
well. The following soliton profile is obtained:

tan
u

4
5tan

u0

4
exp~2usu/l!. ~7!

Finally, we need a condition for the jump in curvature at t
sharp boundary. This is derived mathematically by either
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tegratingü of Eq. ~5! over an infinitesimal length around th
boundary, or taking the variation ofg with respect tou0. The
same result is obtained, nonetheless, by a simple mom
balance argument: the bending moment acting on the bou
ary from the left,K@ u̇(02)2c01#, must balance the one ac
ing from the right,K@ u̇(01)2c02#. Hence,

u̇~02!2 u̇~01!5dc0 ,

which determinesu0 as

sin
u0

2
5

ldc0

4
5

h

4l
. ~8!

The dependence of the slope on the ratioh/l in the sharp-
boundary limit readily follows from dimensional analysi
Yet, the exact nonlinear dependence given by Eq.~8! is es-
sential for our main results, as will be demonstrated belo

Thus, we infer again that for any finitedc0 and g the
monolayer attains an inflected shape whose profile is gi
by Eqs.~7! and ~8!. Integrating*2`

` dssinu(s), one verifies
that the general sum rule for the total height difference,
~1!, is satisfied. The energy of the inflected conformation
calculated by substituting the obtained profile back in E
~4!,

g~u0!5Kdc0S 2tan
u0

4
2u0D , ~9!

which, as expected, is negative foru0,p, i.e., the inflected
shape is favored over the flat one. We also calculate
projected area as a function of tension, either by integrat
Ap5L*2`

` dscosu, or by the following derivative,

DL[
A2Ap

L
5

]g

]g
5

32

dc0
sin

u0

2
sin2

u0

4
, ~10!

and the lateral compressibility,

C52
]DL

]g
5

1

K~dc0!3

@4 sin~u0/2!#3 sin~3u0/2!

cos~u0/2!
. ~11!

As the monolayer is compressed by progressively
creasingg or increasingDL ~depending on the experimenta
setup!, the inflected profile becomes sharper@larger u0, Eq.
~8!#, higher@largerh, Eq. ~1!#, and more favorable@lower g,
Eq. ~9!#. The process is demonstrated in Fig. 2. Forg
,1

8K(dc0)
2 the inflection angleu0 becomes larger thanp/2

and a stable overhang forms. However, beyond a crit
value of compression,

g,gc5
1

16
K~dc0!2, DL.DLc5

16

dc0
, ~12!

Eq. ~8! has no solution. This occurs in the current calculati
when u05u0c5p, at which point the inflection remains fi
nite, h5hc516/dc0, yet the lateral compressibility diverge

C;~p2u0!21;~g2gc!
21/2. ~13!
2-3
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DIAMANT, WITTEN, EGE, GOPAL, AND LEE PHYSICAL REVIEW E63 061602
Note that this instability is revealed only in the nonline
representation of the elastic problem@e.g., via Eq.~8! which
is nonlinear inu0]. A theory relying on the Monge represen
tation and moderate slopes would inevitably miss it.

The divergence of lateral compressibility implies that e
tra surface area can be pulled into the boundary region w
out resistance. Thus, one expects the monolayer to atta
folded structure that will be stabilized by higher, nonlinea
elastic terms. A detailed description of this folded shape
beyond the scope of the current work. Moreover, the tra
tion from an inflected to a folded state is treated here a
spinodal-like instability. A more detailed study might yield
folded structure as energetically favorable prior to this ins
bility, i.e., a binodal-like transition preceding the one trea
here. In a macroscopic measurement of a pressure-area
therm the instability will appear as a plateau, much like a
other first-order transition. Hence, distinguishing it fro

FIG. 2. ~a! Slope angle profiles~in radians! near a sharp domain
boundary as compression is increased. The curves are obta
from Eqs.~7! and ~8! using the values~from bottom to top! ldc0

51,3,4. The uppermost curve is the critical profile.~b! The corre-
sponding spatial conformations. All lengths are given in units
(dc0)21.
06160
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other mechanisms requires microscopic visualization of
monolayer@28#.

IV. DIFFUSE DOMAIN BOUNDARY

We now examine the effect of a domain boundary of
nite thickness. That is, we suppose that rather than chan
abruptly,c0 varies gradually fromc01 to c02 over a distance
j. We begin with a heuristic argument for the limit of a ve
diffuse boundary, wherej is much larger thanl and
(dc0)21. Consider a small elementds in the boundary re-
gion. The difference in bending moments acting on its t
ends,Kd( u̇2c0)5K( ü2 ċ0)ds, is balanced by a difference
in tensile torquegdh5g sinuds. In the limit of very largej

the curvature changes very slowly, such thatü;u0 /j2 is
negligible compared toċ0;2dc0 /j. We thus obtain

sinu0;l2dc0 /j5h/j. ~14!

The mesa slope in this diffuse limit, unsurprisingly, depen
on h/j rather thanh/l. We can infer from Eq.~14! several
less expected results as well. The equation has no solu
for u0.u0c5p/2 ~rather thanp), whereupon the mesa
height is of the order ofj, i.e., very large compared tol.
Thus, at the critical compression the entire wide bound
lies almost vertically, having a small lateral dimension. T
critical tension is

gc;Kdc0 /j, ~15!

i.e., much smaller than its value in the sharp lim
„;K(dc0)2

…, implying that the monolayer can sustain mu
higher compression than in the sharp case.~Naturally, asj
tends to infinity one expects the resulting almost-unifo
monolayer to become increasingly stable to t
heterogeneity-driven folding.!

In order to check these results in more detail and study
crossover between the sharp and diffuse limits, we now t
to a detailed treatment of a simple, specific example. Le
assume that the spontaneous curvaturec0 changes linearly
across the boundary,

c05H c01 s,2j/2

c012dc0~s/j11/2! 2j/2,s,j/2

c02 s.j/2.

Substituting the spatial dependence ofc0 in the energy func-
tional ~3! and taking the variation with respect tou(s), we
obtain the following profile equations:

ü5H l22 sinu usu.j/2

l22 sinu2dc0 /j usu,j/2.
~16!

The boundary conditions in the current case are continuity
u and u̇ at s56j/2 and, as before, flatness at infinity.

First integration of Eq.~16! gives

ed

f

2-4
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u̇25H 4l22 sin2
u

2
usu.j/2

4l22 sin2
u

2
2~2dc0 /j!~u2u1! usu,j/2,

~17!

where u1[u(2j/2)5u(j/2). As in Sec. III, we can now
calculate the energy of the inflected conformation as a fu
tion of u0 andu1 by substituting the profile~17! back in the
energy functional~3!. The result is

g~u0 ,u1!

Kdc0
5

4

ldc0
H 4 sin2

u1

4
1E

u1

u0
duFsin2

u

2
2

l2dc0

2j

3~u2u1!G1/2J 2u1 . ~18!

Second integration, which would yield the topograph
profile, cannot be analytically performed in the current ca
Instead, we seek the equation foru0 that replaces Eq.~8! for
finding the point of instability. Minimizingg of Eq. ~18! with
respect tou0 gives one relation betweenu0 andu1,

u02u15
2j

l2dc0

sin2
u0

2
. ~19!

This equation reflects a moment balance for the secti
2`,s,0; it is also obtained by settingu̇(0)50 in Eq.
~17!. Minimization with respect tou1 yields the second rela
tion betweenu0 andu1,

E
u1

u0F 2j

l2dc0

sin2
u

2
2~u2u1!G21/2

du5S jdc0

2 D 1/2

. ~20!

It stems from the moment balance on the section2j/2,s
,0 and can be also obtained from integration of the pro
equation~16! along this section.

Equations~19! and~20! can be solved numerically foru0.
As in Sec. III, one finds a minimum valueg5gc ~i.e., a
maximum value ofl) beyond which there is no solution t
the equations and the monolayer becomes unstable. From
fact that the various parameters are grouped in Eqs.~19! and
~20! into two dimensionless terms,jdc0 and j/(l2dc0)
5j/h, it follows that the critical tension must satisfy th
scaling law

gc5
Kdc0

j
F~jdc0!, ~21!

whereF(x) is a certain ‘‘universal,’’ dimensionless function
In Fig. 3~a! we have plotted the functionF(x) as obtained
from numerical integration of Eqs.~19! and ~20!.

In the sharp limit,jdc0!1, gc must become independen
of j. Hence,F(x) is linear for smallx so as to getgc
;K(dc0)2. Indeed, in this limit Eq.~20! reduces tou02u1
.jdc0/8 which, together with Eq.~19!, recovers the results
of Sec. III @cf. Eqs. ~8! and ~12!#, sin(u0/2).ldc0/4
06160
c-

.

e

the

5h/(4l), u0c.p, and gc. 1
16 K(dc0)2. We thus conclude

that the results of Sec. III are valid as long asj!(dc0)21.
In the diffuse limit,jdc0@1, Eq. ~20! reduces to

sinu0.l2dc0 /j5h/j, ~22!

as was anticipated in Eq.~14!. This leads tou0c.p/2, gc
.Kdc0 /j. HenceF(x).1 for x@1, as is verified in Fig.
3~a!. To summarize these results,

gc5
Kdc0

j
F~jdc0!

F~x!.H x/16 x!1

1 x@1.
~23!

Recall that we have obtained the results in both the sharp
diffuse limits independently of the detailed shape ofc0(s).

FIG. 3. Effect of diffuse boundary on mesa instability.~a! Res-
caled critical tension, (j/Kdc0)gc , required for the transition. The
solid line is the result for a boundary of finite thickness@i.e., the
scaling functionF(x) of Eq. ~23!#. The dashed line is the corre
sponding result for an infinitely sharp boundary@Eq. ~12!#. ~b! Criti-
cal inflection angle. For very sharp boundaries the angle at insta
ity is p, whereas for very diffuse ones it is reduced top/2.
2-5
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Hence, varying the spatial dependence ofc0 would merely
affect the exact shape ofF(x) in between these limits. The
more diffuse the boundary, the higher the compression
quired for folding, the higher the mesa wall at the instabili
and the smaller the critical inflection angle. Diffuse boun
aries thus allow a biphasic monolayer to withstand stron
compression and higher mesas. Despite the smaller inflec
angle there is always an overhang topography at the inst
ity, i.e., p/2,u0c,p. The dependence of the critical inflec
tion angle on boundary thickness is shown in Fig. 3~b!.

V. INSTABILITY OF THE DOMAIN BOUNDARY

Until now we have considered only topographies that
not vary along the direction of the domain boundary, a
thus do not affect its length. The departure from a flat c
formation near a domain boundary, as studied in the prev
sections, is energetically beneficial, i.e., the inflection ene
per unit length,g, is negative. Hence, as far as the top
graphic effect is concerned, it would be favorable to incre
the boundary length. In other words, the topography eff
tively reduces the line tension of the phase boundary,
reduction being given byg of Eqs.~9! or ~18! for a sharp or
diffuse boundary, respectively. Consequently, if the bare
tension of the boundary@29#, t, is smaller than the maximum
value ofugu, then, for a certain inflection angleu0,u0c , the
effective line tension will turn negative and one expects
boundary to ripple. Assuming hereafter a sharp boundary
obtain the condition for rippling by settingu05u0c5p in
Eq. ~9! @30#,

t,tc5~p22!Kdc0 . ~24!

The inflection angle and surface tension required for r
pling, u0r andg r , are then obtained from the equations

FIG. 4. Surface-tension vs line-tension diagram of topograph
for a sharp domain boundary. Ift.tc5(p22)Kdc0 the mesa to-
pography remains straight upon decreasing surface tension un
becomes unstable atg5gc5

1
16K(dc0)2. If t,tc the mesa wall

ripples below a surface tensiong5g r.gc .
06160
e-
,
-
r

on
il-

o
d
-

us
y

-
e
-
e

e

e
e

-

u0r22tan
u0r

4
5

t

Kdc0

g r5
gc

sin2~u0r /2!
, ~25!

where, as defined in Eq.~12!, gc5 1
16 K(dc0)2. The diagram

in Fig. 4 summarizes the results concerning the topograp
transitions near a sharp boundary as a function of surf
tension and line tension.

Let us now examine the spatial form of the rippling tra
sition. In Sec. III we assumed a straight, sharp dom
boundary, which can be represented in Cartesian coordin
as the lineR(y)5(x50,y,z50). We now wish to perturb
the inflected conformation by considering a boundary t
slightly wiggles with amplitudea and wave numberq. The
full three-dimensional problem is formidable. We therefo
restrict ourselves to a simple subset of perturbation
uniform displacements of the inflected shape in thex direc-
tion, whose magnitude undulates in they direction ~see Fig.
5!. Since we do not exhaust all available conformations,
minimum energy that we are about to calculate might
higher than the true minimum. Hence, the following resu
should be considered as an upper-bound estimate for the
pling instability. Nevertheless, this estimate is expected to
good as long as the wiggling wavelength is much larger th
the inflection extent,ql!1. In this limit the two lateral
length scales can be separated, as has been done in Se
and one expects the preferred perturbations to resemble
of Fig. 5. Employing this simplification, we can represent t
perturbed boundary by the curveR(y)5(x5a sinqy,y,z
50), and conveniently parametrize the monolayer surface

r ~s,t !5~x~s,t !,y~s,t !,z~s,t !!

x~s,t !5E
0

s

cosu~s8!ds81a sinqt, y~s,t !5t,

z~s,t !5E
0

s

sinu~s8!ds8,

such that in the ‘‘material coordinates’’ (s,t) the boundary
line is again given byR(t)5(s50,t,z50).

In order to use the energy functional~2! we need to rep-
resent the geometrical parameters of the surface—its m
curvaturec(s,t), area elementdA(s,t), projected area ele
mentdAp(s,t), and boundary arclengthdR(s,t)—using the
new coordinates. This technical calculation is presented
the Appendix.

s

l it

FIG. 5. Schematic sketch of the assumed rippling perturbatio
2-6
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Substituting Eqs.~A3!–~A6! into the elastic energy ex
pression, Eq.~2!, and expanding to second order in the ri
pling amplitudea, we obtain

g@u~s!#[G/L5g(0)1a2g(1)

g(1)5 1
4 ~t8q21bq4!, ~26!

whereg(0)@u(s)# is the energy functional in the straight cas
given by Eq.~3!, andL5*dt. The coefficientst8 andb are
functionals of the topographyu(s):

t85t1E ds@K~22 5
2 sin2 u!u̇222Kc0 cos2 uu̇1g sin2 u#

b5KE dssin2 u. ~27!

They act as effective line tension and bending modulus,
spectively. The one-dimensional bending modulusb is pro-
portional to K, the two-dimensional modulus of the shee
when the boundary curves the monolayer must bend wit
~see Fig. 5!, leading to a cost in bending energy.

In principle, one could now minimizeg of Eq. ~26! with
respect tou(s) and find the perturbed shape,u(s)5u (0)(s)
1a2u (1)(s). However, sincedg(0)/du (0)50, substituting the
perturbed shape back ing would yield, up to ordera2, g
5g(0)@u (0)#1a2g(1)@u (0)#. Thus, if we are merely intereste
in the perturbedenergy, we may just substitute in Eq.~27!
the unperturbed topographyu (0)(s) as found in Sec. III@Eqs.
~6! and ~8!#. This yields

t85t2Kdc0S u022 tan
u0

4 D ,

~28!

b5
32K

3dc0
sin

u0

2 S 12 cos3
u0

2 D .

When the effective line tension vanishes,t850, there is a
q50 ~i.e., second-order! rippling transition, as already an
ticipated in Eqs.~24! and ~25!. ~Strictly speaking, since the
domain boundary is finite and closed, the transition is
countered only att852p2b/L2, i.e., for the lowest-order
undulation ofq5p/L.! The rippling of the one-dimensiona
boundary is thus analogous to the Euler buckling of an e
tic rod @31#.

Upon further compression, or if the monolayer
‘‘quenched’’ to t8,0, all modes satisfying

q,q* 5S 2t8

b D 1/2

5
A3

4A2
dc0Fu022 tan~u0/4!2t/~Kdc0!

sin~u0/2!@12 cos3~u0/2!#
G 1/2

,

~29!

become unstable and their amplitudes start growing. We
pect the observed unstable modes to have roughly the s
scale as the upper boundq* . The scale of the rippling wave
06160
,

e-

;
it

-

s-

x-
me

length is thus set by (dc0)21, which is usually much smalle
than the boundary lengthL. Hence, although this is strictly a
q50 instability, one expects in practice to observe a dens
wiggling boundary on the scale of the entire domain. A
other interesting observation is that, beyond the onset of
pling, q* does not always increase monotonically with co
pression. The nonmonotonic behavior becomes m
pronounced the smaller the value oft/(Kdc0), as demon-
strated in Fig. 6. For small values of this parameter, the
fore, one expects the boundary to ripple densely beyond
onset of instability and then, upon further compression,
turn to a less rough shape. Recall that our ansatz concer
the preferred perturbation is expected to give reliable res
as long asq!l21. We have found that the rippling mode
obeyq&dc0. On the other hand, a stable, sharp topograp
requiresl21*dc0/4 @see Eq.~8!#. Thus, our assumption is
only marginally fulfilled and the results should be regard
merely as a qualitative guide.

VI. BEHAVIOR NEAR A CRITICAL POINT

The topographic effects described in this article rely on
contrast between different domains. Hence, when a mo
layer at coexistence reaches a critical point, these effects
expected to vanish along with the domain structure. Vario
parameters affecting the topography dramatically cha
when the critical point is approached: the density contr
becomes increasingly weak~leading to a smallerdc0), do-
main boundaries get diffuse~larger j), and the bare line
tension between domains,t, tends to zero. Thus, althoug
the topography must clearly disappear at the critical point
exact behavior has to be examined in detail. For exampl
is uncleara priori whether, with respect to topography, th
monolayer is driven toward the diffuse limit~largerjdc0) or
the sharp one~smallerjdc0).

As the temperatureT approaches its critical valueTc , T̂
[uT2Tcu/Tc→0, we have@32#

FIG. 6. Dependence of rippling wave number on inflecti
angle for various values of line tension~from top to bottom!:
t/(Kdc0)50.05, 0.1, 0.2, 0.5, 1. For higher line tensio
t/(Kdc0).p22.1.14, there is no rippling.
2-7
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j;T̂2n→`

dc0;T̂b→0, ~30!

where, for a two-dimensional fluid~2D Ising model!, n51
andb51/8. Hence, the height difference, given by Eq.~1!,
decays as

h5l2dc0;T̂b5T̂1/8. ~31!

Since jdc0;T̂2n1b;T̂27/8→`, it is the diffuse limit of
Sec. IV that applies near the critical point.@The three-
dimensional topography could affect the critical behavior
the two-dimensional fluid in the monolayer as a ‘‘hidden
annealed variable. Hence, the critical exponents should
modified according to the Fisher renormalization@33#. In the
case of a two-dimensional fluid~or Ising model!, however,
the Fisher renormalization leaves the exponents intact.#

We now explore further details of the topographic critic
behavior. For small inflection angles we expect in the diffu
limit @cf. Eq. ~22!#

u0.h/j;T̂n1b5T̂9/8. ~32!

Indeed, the topography has been found in Sec. IV to dep
on two dimensionless quantities,jdc0 andj/(l2dc0)5j/h,
both of which diverge at the critical point—the former
T̂2n1b5T̂27/8 and the latter asT̂2n2b5T̂29/8. Studying
Eqs. ~19! and ~20! in this asymptotic limit, one findsu0
.h/j and u1.u0/2, which verifies Eq.~32!. Substituting
these results in Eq.~18! for the inflection energy, we get

g.2
Kl2dc0

2

2j
;T̂n12b5T̂5/4. ~33!

Thus, the topographic contribution to the heat capacity of
monolayer vanishes as]g/]T̂;T̂1/4, whereas the heat capa
ity of the two-dimensional fluid diverges logarithmical
@32#. This consistently demonstrates that the critical behav
of the monolayer remains unaffected by the topography.

How does the approach to the critical point influence
instabilities studied in the previous sections? The folding
stability in the diffuse limit requires, according to Eq.~23!, a
surface tension lower than

gc.Kdc0 /j;T̂n1b;T̂9/8→0. ~34!

In practice, therefore, as soon as the required lateral pres
exceeds that of the critical point the folding instability w
become unattainable.

The effect on the boundary-rippling instability studied
Sec. V is more delicate. Upon approaching the critical po
the bare line tension of the boundary gets vanishingly sm
as @34,35#

t;T̂m→0, m51. ~35!

Thus, the resistance to rippling becomes increasingly we
Yet, at the same time the driving force for rippling, i.e., t
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energyg gained due to the inflected topography, gets wea
as well. According to Eq.~33! the latter vanishes slightly
faster, asT̂5/4. Hence, it is the bare line tension that win
close to the critical point, and the boundary topograp
should flatten out atTc as a smooth step without ripples.

VII. DISCUSSION

We have demonstrated in this work that biphasic mo
layers are generally nonflat, having inflected shapes in
vicinity of domain boundaries. This leads to an overall t
pography of mesas where domains of one phase are hi
than those of the other. As the monolayer is progressiv
compressed the mesas grow more pronounced, subsequ
developing overhangs, and finally becoming unstable.

Substituting typical values for phospholipid monolaye
@2#—g.10–50 ergs/cm2, K.10 – 50 kBT, c0

21.5 – 10
nm—we getl.1 – 10 nm,ldc0.0.1–1, andh.0.1–10
nm. Hence, the mesas are steep but low. The numerical v
of ldc0 implies that the predicted instability (ldc0>4) may
be observed for attainable pressures. The energy per
length gained by departing from the flat state to a sharp
flection is, according to Eq.~9!, g.Kdc0.1 –10 kBT/nm.
Hence, for a typical domain size ofL;1 –10 mm, the in-
flected conformation is ‘‘frozen,’’ i.e., robust under therm
fluctuations. This justifies our mechanical, ‘‘zero
temperature’’ approach.

As a more specific example, we may consider a mo
layer whose behavior is governed by electrostatic inter
tions. The deviation from a flat conformation is there
driven by variations in the lateral charge density,s(s). In the
typical case of strong screening,c/k!1, wherek21 is the
Debye screening length, one obtains@5# Kc05ps2/ek2 and
K53ps2/2ek3, e being the dielectric constant of wate
~Note the finite, positivec0; charged monolayers spontan
ously tend to curve into the aqueous phase.! Consequently,
substituting typical values ofs. 1 charge per 0.3–1 nm2

and k21.1 –10 nm, we reach similar conclusions to tho
above.

We have studied domain boundaries of finite thickness
well. The qualitative features of inflected conformation a
instability do not disappear for any boundary thicknessj. On
one hand, for a given compression a diffuse boundary le
to more moderate slopes compared to a sharp one. On
other hand, it shifts the folding instability to a higher pre
sure, thus strengthening the monolayer and allowing
higher mesas to be stabilized. Unfortunately, conventio
means of increasingj, e.g., heating toward a critical poin
also reduce the domain contrastdc0, thus suppressing the
topography. We have studied this delicate interplay close
a critical point in Sec. VI. Our results for diffuse boundari
show that the simple, infinitely sharp limit gives good resu
as long asj,(dc0)21, which holds in most practical cir-
cumstances except near a critical point.

One might worry about additional factors that would d
stroy the inferred topography. Such a factor is the cost
gravitational energy of displacing water from the flat inte
face. This energy per unit area is aboutdrgh2

;104 kBT/cm2, wheredr is the difference in density of the
2-8
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two phases andg is here the gravitational acceleration. Thu
due to the small height of the mesas~1–10 nm!, gravity is
negligible over all relevant lateral length scales~up to
meters!. ~Beyond the topographic instability, however, th
monolayer may become much more folded, and gravity m
have a significant stabilizing role.! Another factor to worry
about is the van der Waals attraction between the infe
overhang and the underlying surface, which might make
overhang collapse. The attraction energy per unit are
roughly H/h2, whereH is the Hamaker constant divided b
12p ~typically a few kBT) and h.l2dc0 is the overhang
height @36#. The lateral extent of the overhang isl, and the
resulting energy per unit length,H/(l3dc0

2), is to be com-
pared with the inflection energy,Kdc0. The ratio is
(H/K)(ldc0)23!1, sinceK of a lipid monolayer is a few
tenskBT and ldc0. 3–4 to get an overhang@cf. Eq. ~8!#.
Hence, the van der Waals attraction is too weak to sign
cantly affect the overhang.

The topography of mesas and overhangs is thus a ro
result that should be observable in practice. Such an ob
vation is difficult, however, because of the small height d
ferences and fluidity of the interface. Very recently a n
experimental technique has been presented, utilizing n
specular scattering of intense light to visualize small to
graphic features in phopholipid monolayers@37#. Although
the study was focused on features of a pure liquid-conden
phase, height differences were reported at boundarie
liquid-expanded domains coexisting with a gas phase
well as liquid-condensed domains in a liquid-expand
phase.~Interestingly, a stronger signal was obtained in t
former case, perhaps due to a larger contrast in spontan
curvature.! It is still unclear whether these experimental fin
ings are related to the topography discussed here or to m
molecular effects.

Recent experiments on mixed phospholipid monolay
have revealed a new type of folding instability@21,23#.
When the monolayer is compressed and enters a coexist
region, there is a critical pressure at which micron-scale fo

FIG. 7. Pressure-area isotherm for a mixed monolayer of DP
and POPG, as measured during a compression-expansion cycl
Langmuir trough. The mole ratio is DPPC:POPG57:3 and the tem-
perature 25 °C. The folding instability is indicated by an arrow.
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appear. The folding is significantly more reversible th
other collapse mechanisms and is therefore thought to b
key importance to the function of lungs. Figure 7 shows
pressure-area isotherm as measured for a mixed phospho
monolayer of dipalmitoylphosphatidylcholine~DPPC! and
palmitoyloleoylphosphatidylglycerol~POPG!. The folding is
manifested by a plateau in the isotherm.~The same phenom
enon was observed in dipalmiloylphosphatidylglyce
monolayers at a much higher surface tension@21#.! Figure 8
presents a sequence of fluorescence microscopy image
the monolayer just before and just after the instability.

We believe that this folding phenomenon is initiated
the topographic instability of boundary regions as obtain
from our model.~Further evolution and propagation of th
fold are determined by other factors not taken into accoun
the current work, such as the viscoelasticity of the monola
@23,38#.! If the hypotheses regarding the biological signi
cance of the folding and its relation to topography are c
rect, it may represent an interesting solution of Nature t
delicate mechanical problem. Using a mixed surfact
monolayer to cover the lung leads to domain formation up
compression, which in turn allows the topographic instabil
and folding. Additional constituents~e.g., proteins! may en-
sure that the folding is not preceded by other, irreversi
collapse mechanisms@21#. This design provides the mono
layer with a unique way to yield gracefully to compressi
and reduce its projected area, while avoiding irreversibi
and loss of surfactant.

Folding of the mesa structure is in many cases preemp
by other instabilities. One type of collapse is delamination
breakage of the monolayer into multiple layers@9,10#. It oc-
curs when the surfactant sheet yields to a combination
bending and lateral compressive stresses. Since the m

C
in a

FIG. 8. Fluorescence microscopy images of the folding insta
ity in a 7:3 DPPC:POPG monolayer at the air-water interface.~a!
Section of the monolayer just before folding (t50), exhibiting the
biphasic domain structure. Dark regions are DPPC-rich; bright o
are POPG-rich.~b! The same section att51/30 s. A micron-scale
fold appears in between domain walls~indicated by arrow!. The
image is blurred because of monolayer movement during fold
The inset shows a contrast-enhanced image of the fold, magn
by 50%. ~c! The fold at t52/30 s, having propagated to nearb
domains.~d! The fold att54/30 s, after the fast monolayer move
ment has ceased.
2-9
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help relieve part of the inherent bending stresses exerted
flat monolayer, one expects the breakage to occur~somewhat
counterintuitively! away from the boundary, inside the mo
frustrated domain~i.e., the one having higher spontaneo
curvature!. Another mode of monolayer collapse is buddi
and ejection of vesicles into the aqueous phase@11#. Recent
experiments on mixed phospholipid monolayers have sho
that vesiculation is promoted by increased temperature
may coexist with folded structures@39#. The effect of topog-
raphy on delamination and budding, as well as the interp
between the various collapse modes, are yet to be studie
detail.

Another general conclusion arising from this work rela
to fluid surfaces of vanishing tension. Such surfactant fil
are encountered, e.g., in emulsions,L3 ~‘‘sponge’’! phases
and large, unsupported bilayer vesicles@2#. The topographic
instability found for a finite tension implies that these te
sionless surfaces cannot sustain a stable domain structur
the best of our knowledge a static domain structure has n
been observed in those systems. We attribute it to the in
table shape instability that would occur near domain bou
aries if such a structure existed.

We have studied a possible rippling of the domain bou
ary upon compression. This phenomenon arises from a c
petition between the topographic features accompanying
domain boundary and its bare line tension. The thresh
value of line tension required to get rippling istc.g
.(1 –10)kBT/nm, which is of the same order as line tensi
values measured in experiments@40–44#. The rippling is
therefore a realistic, observable feature. There is alread
well-established mechanism for shape transformations
monolayer domains, driven by a competition between l
tension and long-range electrostatic interactions@45–47,40#.
We offer the topographic rippling as an additional mech
nism that should be observed in practice. There are th
major features distinguishing the two phenomena.~i! In the
electrostatic mechanism an infinite straight boundary is ne
stable. Consequently, the stable domain size and wavele
of boundary instability have the same scale,L;q21

; let/dp2
, wherel is a molecular size anddp the difference in

dipole densities of the two phases@45#. Hence, shape defor
mations occur on the scale of the entire domain@40,45,46#,
leading to a sequence of well-resolved, ‘‘quantized’’ tran
tions. By contrast, the length scale of the topographic
pling, (q* )21;(dc0)21&0.1 mm, is much smaller than
and unrelated to,L. Thus, we expect this instability to appe
as a small-scale roughening of the domain boundary.~ii ! The
topographic rippling, being an elastic mechanism, should
be very sensitive to changes in electrostatic parameters
as ionic strength and molecular charge.~iii ! As demonstrated
in Sec. V, the rippling wavelength may exhibit in certa
circumstances a peculiar nonmonotonic behavior as a fu
tion of pressure. In addition, we have shown in Sec. VI t
topographic rippling is inhibited near a critical point. Henc
boundary rippling could be smoothed out by heating
monolayer toward its critical temperature. This is in contr
with common surface instabilities that are usually promo
by increasing temperature.

In a recent experiment on a pure DPPC monolayer
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coexistence between liquid-expanded and liquid-conden
phases, a domain-boundary instability of submicron sc
has been observed@22#. This is demonstrated in Fig. 9. At
critical pressure slight roughening appears simultaneousl
all domain boundaries. Upon little further compression t
roughening becomes denser and the boundaries look fu
due to optical limitations. A detailed presentation of this e
fect will be given in a forthcoming publication@22#. The
small length scale of this instability~compared to the entire
domain size! is in accord with the topography-induce
mechanism discussed above. Yet, further study is require
order to clarify the relation between the two effects.

The phenomena described in this work—mesa formati
mesa instability, boundary rippling—arise from rather ba
considerations. Nevertheless, there is still a gap betw
theory and experimental observations. The relation betw
the topographic instability as obtained from the elastic mo
and the observed folding in biphasic lipid monolayers is s
to be established. In particular, the current theory does
account for the fully developed folded structure and its s
bility, as observed in experiments. Topography-induc
boundary rippling and its distinction from the known ele
trostatic mechanism is yet another intriguing feature to
experimentally investigated. We hope to close this gap
future publications.

The mesa topography is a novel interfacial feature p
dicted by our work. If mesas exist, which is yet to be de
sively proven by experiment, they should have important i
plications on various interfacial aspects, such as surf
interactions with dissolved molecules, behavior in confin
geometries, and possible applications for controllable na
structures. We would like to draw special attention to t
unique overhang topography predicted by the model. Un
the right compression all the domains in a biphasic mo
layer should develop regular lips at their edges. Such c
trollable nanoscale grooves might be technologically use
e.g., for capturing and encapsulating~bio!polymers.

FIG. 9. Roughening of domain boundaries upon compression
observed by fluorescence microscopy. The monolayer consis
DPPC molecules and lies over an aqueous solution of 0.2 M N
at temperature 24.5 °C. Dark regions correspond to a liqu
condensed phase and bright ones to a liquid-expanded phase
lateral pressures and molecular areas~in mN/m and Å2, respec-
tively! are: ~a! 16.9, 54.8;~b! 19.4, 53.0;~c! 21.6, 51.9;~d! 23.4,
51.2. Images were enhanced with contrast.
2-10
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APPENDIX DIFFERENTIAL GEOMETRY
OF A RIPPLED BOUNDARY

In the rippled state we represent the domain boundary
the curve R(y)5(x5a sinqy,y,z50) and parametrize the
monolayer surface as

r ~s,t !5„x~s,t !,y~s,t !,z~s,t !…

x~s,t !5E
0

s

cosu~s8!ds81a sinqt, y~s,t !5t,

z~s,t !5E
0

s

sinu~s8!ds8. ~A1!

We now need to represent the various properties of the
face using the ‘‘material coordinates’’ (s,t) @48#.
r-

-

le
w

ta

.
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r.
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The determinant of the metric tensor associated with
surface of Eq.~A1! is

G5~]sr3] tr !2511~qa cosqt sinu!2. ~A2!

The Jacobian of the transformation (x,y)→(s,t) is J
5]sx] ty2] tx]sy5 cosu. Using these expressions we fin
the area element,

dA~s,t !5G1/2dsdt5~11q2a2 cos2 qt sin2 u!1/2dsdt,
~A3!

and its projection onto thexy plane,

dAp~s,t !5Jdsdt5 cosudsdt. ~A4!

An element of the boundary curve is given bydR
5(qa cosqt, 1,0)dt, and the resulting arclength element is

dR~s,t !5@11~qa cosqt!2#1/2dt. ~A5!

What is left to be calculated is the local surface curvat
c(s,t). The local normal to the surface is given by

n5G21/2~]sr3] tr !5G21/2~2 sinu,qa cosqt sinu,cosu!.

The mean curvature can then be calculated either from
trace of the curvature tensor,

c~s,t !52 1
2 tr~]ni /]r j !,

or by momentarily resorting to the Monge representation

c5¹•@G21/2¹z~x,y!#,

where the¹ operator is defined in thexy plane. The result is

c~s,t !5G23/2@~11q2a2 cos2 qt!u̇1q2a sinqt sinu#.
~A6!
i-
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