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Topography and instability of monolayers near domain boundaries

H. Diamant! T. A. Witten! C. Ege? A. Gopal? and K. Y. C. Leé
1James Franck Institute and Department of Physics, University of Chicago, 5640 South Ellis Avenue, Chicago, lllinois 60637
Department of Chemistry and Institute for Biophysical Dynamics, University of Chicago, 5735 South Ellis Avenue,
Chicago, lllinois 60637
(Received 9 February 2001; published 23 May 2001

We theoretically study the topography of a biphasic surfactant monolayer in the vicinity of domain bound-
aries. The differing elastic properties of the two phases generally lead to a nonflat topography of “mesas,”
where domains of one phase are elevated with respect to the other phase. The mesas are steep but low, having
heights of up to 10 nm. As the monolayer is laterally compressed, the mesas develop overhangs and eventually
become unstable at a surface tension of abigfic,)? (¢, being the difference in spontaneous curvature and
K a bending modulysIn addition, the boundary is found to undergo a topography-induced rippling instability
upon compression, if its line tension is smaller than aboéit,. The effect of diffuse boundaries on these
features and the topographic behavior near a critical point are also examined. We discuss the relevance of our
findings to several experimental observations related to surfactant monola@yersall topographic features
recently found near domain boundariés) folding behavior observed in mixed phospholipid monolayers and
model lung surfactantsiii ) roughening of domain boundaries seen under lateral compregsibthe absence
of biphasic structures in tensionless surfactant films.
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I. INTRODUCTION component monolayers exhibit coexistence between gas and

Monolayers of amphiphilic moleculegssurfactants at  liquid-expanded phases, liquid-expanded and liquid-
water-air or water-oil interfaces are used in numerous applieondensed phases, and liquid-condensed and solid phases
cations to reduce interfacial tension, control wetting proper{1-3], whereas mixed monolayers may form domains of dif-
ties, stabilize emulsions and foams, ¢fic2]. Monolayers of  fering composition. A special, well-studied property of sur-
biological surfactantgphospholipids are commonly studied factant monolayers is the stabilization of finite domains and
as models for the surfaces of cell membranes and are alsnodulated phases due to long-range electrostatic interactions
encountered in various biological systef8$. An important [12,13. The coupling between lateral variations in composi-
example is the lung surfactant monolayer covering the altion and curvature was thoroughly studied as W&/lL4-24Q,
veoli in lungs, whose main function is to lower the surfacemainly with regard to various domain structures on surfaces
tension of the lungs, thereby drastically reducing the meand shape transformations of bilayer vesicles.
chanical work required for breathind]. Despite extensive research on surfactant monolayers there

Amphiphilic monolayers generally have a finite spontane-are important features, in particular of biphasic monolayers,
ous curvature arising from the asymmetry of the moleculesvhich are not well understood. Recent experiments on mixed
as well as the asymmetry with respect to electrostatic interphospholipid monolayers have revealed a new type of local
actions(i.e., the differing dielectric properties of the polar folding upon compression, which is believed to be important
and nonpolar phases forming the interfaf®|. Despite this  for the function of lung$21] (see Fig. 8 Another observed
tendency to bend, homogeneous monolayers are almost dkature is the appearance of rough domain boundaries upon
ways flattened by the water-air or water-oil interfacial ten-compressiori22] (see Fig. 9.
sion. Only for very low(sometimes even negatiyé]) ten- In the current work we study the relation between lateral
sion does a nonflat conformation become energeticallglomain structure and monolayer topography in more detail,
favorable for a homogeneous monolay@rhis is achieved, focusing on the conformation of monolayers in the vicinity
e.g., by extensive lateral compressjoBuch a reversible de- of domain boundarie$23]. We thereby try to shed some
parture from a flat, two-dimensional state to a three-light on the unexplained features mentioned above. Domains
dimensional conformation is referred to as thekling tran-  of different density and/or composition in a biphasic mono-
sition and has drawn considerable attentjiér-8]. However, layer should generally have differing elastic properties, in
it is not commonly observed in practi¢&], since it is usu- particular, different spontaneous curvatures. The require-
ally preceded by other modes of collapse such as monolayenents of mechanical equilibrium and smoothness of the
breakage into multilayerf9,10] and ejection of vesicles or monolayer surface lead to nonflat conformations attempting
micelles[11]. The possibility to explore the third dimension to “reconcile” the different properties of the contiguous do-
upon compression is of particular interest in the case of lungnains. These simple mechanical considerations result in a
surfactant monolayers, which are required to change theisurprisingly rich behavior, including the formation of over-
projected area significantly during the compression-hangs and emergence of instabilities, as discussed in the fol-
expansion cycle of breathing. lowing sections. In principle, one has to consider the topog-

The two-dimensional fluid comprising a monolayer mayraphy and lateral composition as two coupled degrees of
separate into domains of different coexisting phases. Singldreedom in order to study the thermodynamics of the two-
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dimensional fluid in the monolay¢8,14—20. However, this
is not the aim of the current work. Rather than accounting for
both composition and height variations, we assume the exis-
tence of domains and focus on the topography alone as aris-
ing from the mechanical response to the lateral structure.
The Monge representation and linearization of profile
equations have been ubiquitously used in the theoretical
modeling of monolayers and membrané&d. These math-
ematical simplifications describe the topography by a single-
valued height function assumed to have moderate slopes. By
contrast, the phenomena discussed in the current work in-
volve, in an essential way, steep slopes and overhangs. We
thus avoid the Monge representation and solve the nonlinear
profile equations. In order for the mathematics to remain
tractable we resort to another simplification—the profile is
assumed to be uniform along one lateral directipamely,
the direction parallel to the domain bounderrendering
the nonlinear equations one-dimensional. This constraint is

further discussed in the next section; it is partially relaxed in " : :
region. A boundary lying parallel to theaxis separates two large

the treatment of boundary rippling in Sec. V. ! ’
The basic model and its assumptions are presented in Seqiqmams denoted by 1 and &) Cross-section parallel to thez

[I. We then proceed in Sec. Ill to review the simplest case oflane. The monolayer conformation is parametrized by the angle
an infinitely sharp, straight domain boundd@g]. Despite 6(s) it makes with thexy reference plane at curvilinear distanse
. L T from the boundary.
its simplicity, this limiting case demonstrates most of our

ualitative results. The calculation is refined in Sec. IV . . -
\C/lvhere a boundary of nonzero thickness is considered. In Se{:elatlve to the .boundarﬁsee Fig. 1b)]. Slmlla_rly, a mome*?t
V we study the stability of a straight domain boundary toOF KCozt+ 7h is exerted on the far-right side. Mechanical
lateral undulations. The topographic behavior ofamonolayquu'“b.rlum requires that these wo moments balance each
near its critical point is examined in Sec. VI. Finally, in Sec. other, i.e.,
VII, we discuss the various results and their relevance to
experiments.

FIG. 1. (a) Schematic sketch of the monolayer in the boundary

h=h,+h,=Kdcy/y=\26cy, (1

where co=cCq;—Co,. Thus, an inflected conformation with
II. MODEL a finite height difference occurs for any finite, and y. A

Four length scales are distinguished when studying th&easure of the inflection sharpnessisa =\ éc,. As com-
elasticity of a biphasic monolayer: the typical domain dize Pression increasese., y decrease$25]), the inflection be-

the width of a domain boundarg, the typical spontaneous comes higher and sharper. Note that the integrated height
radius of curvatureg %, and the elastic length, = (K/y)2 difference is insensitive to details of the inner boundary re-

gion. Equation(1) can therefore serve as a rigorous sum rule
for more detailed calculations such as those presented in
gecs. llhand IV.

The elastic energy to be minimized in order to find the
monolayer topographj26] is

determining the lateral extent of height variations lpeing
the bending modulus ang the surface tensignAn impor-
tant observation is that in most practical cases the domai
size is much larger than all other length scaléss typi-
cally of order 10um, whereast, cgl, and\ are of order
1-10 nm. This allows us to focus on a single, straight bound-
ary bgtween_ two large domains and regard the centers of the; — f dA(LKc2—Kcge) + ),f d(A—Ay)+ Tf d(R—y),
domains as infinitely far away. We thus represent the bound- A A R
ary region as a surface whose far left and far right have 2
different spontaneous curvatureg; andcg, [24]. (Through-
out this paper we assume, without loss of generatiy, ~where A denotes the monolayer surfack, its projection
>Cpp.) The surface is uniform in thg direction parallel to  onto thexy reference plang; the local surface curvatur&®
the boundary but can curve in the plane, as depicted in the trajectory of the domain boundary, anthe line tension
Fig. 1(a). of the boundary. The functiondR) has been defined such
In fact, an inflected conformation perpendicular to thethat a flat surface with a straight domain boundary running
boundary is a straightforward consequence of such a lateralarallel to they axis is the reference state of zero energy.
structure. Far away from the bounddre., at the centers of Since the surface we consider in Secs. Il and IV is uniform
the two contiguous domaipshe surface is flat. Because of in they direction, we may represent it by the local ang(&)
the nonzero spontaneous curvature the far-left side is sulit makes with the referencey plane at curvilinear distance
jected to a bending moment d&€cy;, supplemented by a from the boundarysee Fig. 1b)]. The energy functional)
tensile torque of- yh,, where—h, is the height of this side is then rewritten as
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tegratingd of Eq. (5) over an infinitesimal length around the
boundary, or taking the variation gfwith respect tod,. The
3) same result is obtained, nonetheless, by a simple moment-
balance argument: the bending moment acting on the bound-
whdereL is the |en9tdh gf the boundary, g dot denottéslhs, ary from the left,K[ 8(0~) — coy], must balance the one act-
and ¢, is not regarded as a constant but varies véthn ing from the right. K[ 8(0+) — cas]. Hence
order for the surface to be smooth everywhere we require ¢ GtKLE(0™) = Col- ’
that (s) be a continuous functiof27]. It is useful to notice 807 )— (0% ) = 8¢,

that, despite the linear term iy the functional3) is invari-

ant unders reversal,s— —s. This is because we can break which determined), as

any plausible choice ofy(s) into a constant, ¢y;+ Co,)/2,

plus an odd function ok and, assuming that the surface - b0 _ )\500: L ®
becomes flat far away from the boundary, the constant term 2 4 aNT

does not contribute to the integral. In other words, we may

specialize to the casey,;= — Cy,. Hence, minimization will The dependence of the slope on the ratia in the sharp-
necessar“y produce symmetric ang|e proﬁ‘}gs) and anti- boundary limit readin follows from dimensional analysis.
symmetric topographieis(s). (Note that this argument does Yet, the exact nonlinear dependence given by Bjjis es-

G o . )
g[a(s)]zr=f7 dg 3K 6#?—Kcoh+ y(1— cosd)],

not hold if K is taken as nonuniforf23].) sential for our main results, as will be demonstrated below.
Thus, we infer again that for any finitéc, and y the
lIl. SHARP DOMAIN BOUNDARY monolayer attains an inflected shape whose profile is given

o _ by Egs.(7) and(8). Integrating/~ ., dssin#(s), one verifies
We begin with the simple case where the boundary thickthat the general sum rule for the total height difference, Eq.
ness¢ is much smaller than the other length scales, extendt1), is satisfied. The energy of the inflected conformation is

ing our earlier work[23]. (We show in Sec. IV that the calculated by substituting the obtained profile back in Eq.
condition for this sharp limit is in fact weaker, the require- (4),

ment being merely¥ 5cy<<1.) In this limit the boundary may

be regarded as infinitely sharp, accompanied by a step- _ 0o
function jump in spontaneous curvature, 9(6o) =K dco| 2tan;-— 6o, ©
_ | Co1 s<0 which, as expected, is negative fég<<, i.e., the inflected
Co= Coz S>0. shape is favored over the flat one. We also calculate the

projected area as a function of tension, either by integration,
Substituting this spatial variation afy in Eq. (3) we can A,=LJZ. dscosé, or by the following derivative,

integrate the linear term ifl. The energy is then rewritten as
A=A, d9 32 0y 00
= =— =—sm—sm27, (10

AL= 75,5, 52

g[a(s)]=J dg 2K 6%+ y(1— cosh)]—Kdcely, (4)
- and the lateral compressibility,

where 6= 0(s=0) is the maximum inflection angle. ) 5
The integral in Eq(4) has the familiar form of the Sine- Cc—_ JAL _ 1 [4sin6¢/2)]" sin(36,/2) (11)
Gordon action. Variation with respect t#(s#0) gives a Yy K(dcy)® cog 6y/2) '

Sine-Gordon profile equation,

As the monolayer is compressed by progressively de-

6=\"2siné. (50  creasingy or increasingAL (depending on the experimental
o ] . setup, the inflected profile becomes sharpkrger 6,, Eq.
First integration of Eq(5) yields (8)], higher[largerh, Eq.(1)], and more favorablglower g,
1 Eq. (9)]. The process is demonstrated in Fig. 2. For
h= 2\ "sin(6/2) s=<0 6) <3K(8cp)? the inflection angled, becomes larger tham/2

—2x"tsin(6/2) s>0. and a stable overhang forms. However, beyond a critical

. _.value of compression,
In the current, simple case, due to the boundary conditions

0(s— +tx)=0, second integration can be carried out as 1 )
well. The following soliton profile is obtained: Y<7:=7gK(5C0)% AL>ALC:$O’ (12)

@) Eqg. (8) has no solution. This occurs in the current calculation
when 6y= 6y.= 7, at which point the inflection remains fi-

) N ) . nite, h=h.=16/5c,, yet the lateral compressibility diverges,
Finally, we need a condition for the jump in curvature at the

sharp boundary. This is derived mathematically by either in- C~(m—0p) *~(y— 7y Y2 (13

tan< = tan 20 IN
an4—an4exp( [s|/N).
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' ' ' ' other mechanisms requires microscopic visualization of the
monolayer{ 28].

IV. DIFFUSE DOMAIN BOUNDARY

We now examine the effect of a domain boundary of fi-

1 nite thickness. That is, we suppose that rather than changing
abruptly,c, varies gradually frontg; to ¢y, over a distance

&. We begin with a heuristic argument for the limit of a very
diffuse boundary, wheref is much larger than\ and
(8cy) ~L. Consider a small elements in the boundary re-
gion. The difference in bending moments acting on its two
ends,Kd(6—co)=K(6—cy)ds, is balanced by a difference

in tensile torqueydh= y sinéds In the limit of very large¢

the curvature changes very slowly, such tiilat 6,/£2 is

negligible compared te,~ — 8cy/£. We thus obtain

=30 =20 -10 10 20 30

Sinfy~N\28cy/é=hlé. (14)

The mesa slope in this diffuse limit, unsurprisingly, depends
on h/¢ rather tharh/\. We can infer from Eq(14) several
less expected results as well. The equation has no solution
for 6y>6y.=w/2 (rather thanw), whereupon the mesa
height is of the order of, i.e., very large compared to.
Thus, at the critical compression the entire wide boundary
lies almost vertically, having a small lateral dimension. The
critical tension is

v~ Kocyl€, (15

i.e., much smaller than its value in the sharp limit
(~K(8cp)?), implying that the monolayer can sustain much
higher compression than in the sharp cad&turally, asé

tends to infinity one expects the resulting almost-uniform
FIG. 2. (a) Slope angle profileéin radiang near a sharp domain Mmonolayer to become increasingly stable to the

boundary as compression is increased. The curves are obtainé@terogeneity-driven folding. _ _
from Eqs.(7) and (8) using the valuegfrom bottom to top \ 8¢, In order to check these results in more detail and study the

=1,3,4. The uppermost curve is the critical profile) The corre-  crossover between the sharp and diffuse limits, we now turn
sponding spatial conformations. All lengths are given in units ofto a detailed treatment of a simple, specific example. Let us
(8co) L. assume that the spontaneous curvatyehanges linearly
across the boundary,

Note that this instability is revealed only in the nonlinear
representation of the elastic probl¢mg., via Eq.(8) which Coz S<—¢/2
is nonlinear infy]. A theory relying on the Monge represen-
tation and moderate slopes would inevitably miss it. Co=1 Cor~ ICo(S/EF1/2)  —&/2=s=¢/2

The divergence of lateral compressibility implies that ex- Coz2 s>¢/2.
tra surface area can be pulled into the boundary region with-
out resistance. Thus, one expects the monolayer to attain Substituting the spatial dependencecgfin the energy func-
folded structure that will be stabilized by higher, nonlinear-tional (3) and taking the variation with respect #s), we
elastic terms. A detailed description of this folded shape isbtain the following profile equations:
beyond the scope of the current work. Moreover, the transi-
tion from an inflected to a folded state is treated here as a Y |s| > &/2
spinodal-like instability. A more detailed study might yield a 0=y, _, .
folded structure as energetically favorable prior to this insta- NEsing—sco/é [s|<¢l2.
bility, i.e., a binodal-like transition preceding the one treated
here. In a macroscopic measurement of a pressure-area isb?€ boundary conditions in the current case are continuity of
therm the instability will appear as a plateau, much like anyd and 6 at s= = ¢/2 and, as before, flatness at infinity.
other first-order transition. Hence, distinguishing it from First integration of Eq(16) gives

(16)
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6
AN"2sin? 5 |s|>¢/2

4N 2?sir? g—(Zﬁcolf)(a— 6,) |s|<él2,
17

where 6,=60(— &/2)=6(&/2). As in Sec. lll, we can now
calculate the energy of the inflected conformation as a func-

tion of 6y and 8, by substituting the profil€17) back in the
energy functional3). The result is

bo
[ ["as
01

1/2
X(0— 01)} ]—el.

6 \25c
2 2¢

Sir?

6
4 sif—= +

9(00,0:) 4
4

Kéc,  \dcy

(18)

Second integration, which would yield the topographic
profile, cannot be analytically performed in the current case.

Instead, we seek the equation f@y that replaces Eq8) for
finding the point of instability. Minimizingy of Eq. (18) with
respect tod, gives one relation betweefy, and 6,

2§
A25¢,

0o

5

0p— 0,= sir? (19
This equation reflects a moment balance for the section
—0<s<0; it is also obtained by setting(0)=0 in Eq.
(17). Minimization with respect t@, yields the second rela-

tion betweend, and 6,

J

—1/2 5500

2¢
2

N268c,

b 12
) . (20

=

6
. sinZE—(G— 61)

equation(16) along this section.
Equationg19) and(20) can be solved numerically fa,.

As in Sec. lll, one finds a minimum valug= 1, (i.e., a
maximum value ofA) beyond which there is no solution to
the equations and the monolayer becomes unstable. From
fact that the various parameters are grouped in E.and
(20) into two dimensionless termstdc, and &/ (\28c,)

=¢/h, it follows that the critical tension must satisfy the

scaling law
Kdcg

3

F(£dco), (21)

Y=

whereF(x) is a certain “universal,” dimensionless function.
In Fig. 3@ we have plotted the functioR(x) as obtained

from numerical integration of Eq$19) and (20).

In the sharp limit£dcy<1, y. must become independent

of &. Hence,F(x) is linear for smallx so as to gety,
~K(8cp)?. Indeed, in this limit Eq(20) reduces tod,— 6,

= £68¢,/8 which, together with Eq(19), recovers the resul
of Sec. Il [cf. Egs. (8) and (12)], sin(6y2)=X\dcy/4

PHYSICAL REVIEW E 63 061602

0.2

120

100

20 40 80

0.6

100 120

60 80

Edc,

FIG. 3. Effect of diffuse boundary on mesa instabilit) Res-

caled critical tension, {/K écy) v., required for the transition. The
solid line is the result for a boundary of finite thickndse., the

scaling functionF(x) of Eg. (23)]. The dashed line is the corre-

0.5 L .
20 40

It stems from the moment balance on the sectio&/2<s . T EY -0
<0 and can be also obtained from integration of the profileSPonding result for an infinitely sharp bound@Bg. (12)]. (b) Criti-
cal inflection angle. For very sharp boundaries the angle at instabil-

ity is 7, whereas for very diffuse ones it is reducedst(?.

=h/(4\), 6p.=m, and y.= 1K (5co)%. We thus conclude
tlat the results of Sec. Il are valid as longé&s (cy) L.

t
In the diffuse limit,£é6cy>1, Eq.(20) reduces to

sinfy=N26cy/é=hl¢, (22)
as was anticipated in Eq14). This leads tofy.= /2, v,
=Kécy/é. HenceF(x)=1 for x>1, as is verified in Fig.
3(a). To summarize these results,

Kdcg

Y= F(£dco)
x/16 x<1
FOO=11 w1 (23)

ts Recall that we have obtained the results in both the sharp and
diffuse limits independently of the detailed shapecgfs).
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. STRAIGHT MESA
S~ 4t 1
= RIPPLED
MESA
3 - 4
b0 —2tan® = "
o | 4 =
or AN = K sc,
;
FOLD
Yc
0 L » e —
V=" , (25
0 0.5 T/T 1 1.5 r S|n2( 00r/2)

c

FIG. 4. Surface-tension vs line-tension diagram of topographieg\me.re’ as deflneq in Eq12), .= 15K(5C°). - The diagram .
for a sharp domain boundary. #> 7,= (7 — 2)K 5c, the mesa to- " F|g.l4 summarizes the results concerning th.e topographic
pography remains straight upon decreasing surface tension until fransitions near a sharp boundary as a function of surface

becomes unstable ai= yC:%SK((Sco)Z. If <7, the mesa wall tension and line ten_5|0n. ) o
ripples below a surface tension=y,> 7, . Let us now examine the spatial form of the rippling tran-

sition. In Sec. Il we assumed a straight, sharp domain
. . boundary, which can be represented in Cartesian coordinates
Hence, varying the spatial dependencecgfwould merely as the lineR(y)=(x=0y,2z=0). We now wish to perturb

affect the exact shape §i(x) in be_tween these limits. _The the inflected conformation by considering a boundary that
more diffuse the boundary, the higher the compression rez

. . ; . ... slightly wiggles with amplitudea and wave numbeg. The
quired for folding, the higher the mesa wall at the |nstab|l|ty,fu|? th?/ee—gi?nensional pr%blem is formidable. qutherefore
and the smaller the critical inflection angle. Diffuse bound-

) . . . restrict ourselves to a simple subset of perturbations—
aries thus allow a biphasic monolayer to withstand strongey, niform displacements of the inflected shape in thirec-

compressior_l and higher mesas. Despite the smaller inﬂeCtifﬁbn, whose magnitude undulates in telirection (see Fig.
fanglle there is always an overhang topography "?‘t. the_|nstab| . Since we do not exhaust all available conformations, the
'Fy’ .e., m/2< o< . The erendgnce of th? crlpcal inflec- minimum energy that we are about to calculate might be
tion angle on boundary thickness is shown in Figh)3 higher than the true minimum. Hence, the following results
should be considered as an upper-bound estimate for the rip-
pling instability. Nevertheless, this estimate is expected to be
good as long as the wiggling wavelength is much larger than
Until now we have considered only topographies that dahe inflection extentgh<<1. In this limit the two lateral
not vary along the direction of the domain boundary, andength scales can be separated, as has been done in Sec. Ill,
thus do not affect its length. The departure from a flat con-and one expects the preferred perturbations to resemble that
formation near a domain boundary, as studied in the previousf Fig. 5. Employing this simplification, we can represent the
sections, is energetically beneficial, i.e., the inflection energyperturbed boundary by the curvB(y)=(x=asinqy,y,z
per unit length,g, is negative. Hence, as far as the topo-=0), and conveniently parametrize the monolayer surface as
graphic effect is concerned, it would be favorable to increase

V. INSTABILITY OF THE DOMAIN BOUNDARY

the boundary length. In other words, the topography effec- r(s,t)=(x(s,t).y(s,t),z(s,t))

tively reduces the line tension of the phase boundary, the

reduction being given by of Egs.(9) or (18) for a sharp or _ F ! ; _
diffuse boundary, respectively. Consequently, if the bare line X(s,) 0 cosf(s’)ds' +asinqt, y(sy=t,

tension of the boundaif\29], 7, is smaller than the maximum

value of|g|, then, for a certain inflection angl®< 6., the s

effective line tension will turn negative and one expects the 2(s,t)= fo sing(s")ds’,
boundary to ripple. Assuming hereafter a sharp boundary, we

obtain the condition for rippling by settingo= o= in  gych that in the “material coordinates’s{t) the boundary

Eq. (9) [30], line is again given byR(t)=(s=0t,z=0).
In order to use the energy function@) we need to rep-
< 1= (m—2)K 8¢q. (24) resent the geometrical parameters of the surface—its mean

curvaturec(s,t), area elementlA(s,t), projected area ele-

mentdA,(s,t), and boundary arclengtthR(s,t)—using the
The inflection angle and surface tension required for rip-new coordinates. This technical calculation is presented in
pling, 6y, andy,, are then obtained from the equations the Appendix.
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Substituting Eqs(A3)—(A6) into the elastic energy ex- 2 ' ' ' '
pression, Eq(2), and expanding to second order in the rip-
pling amplitudea, we obtain
g[6(s)]=G/L=g@+a%g® el |
g™M=1(7"a*+bg’), (26) S
<3 |
whereg(®)[ 6(s)] is the energy functional in the straight case, *®
given by Eq.(3), andL = [dt. The coefficientsr’ andb are
functionals of the topograph#g(s): 05 L )
T = T+f ds[K(2— 3 sir? 6) 6?— 2Kcy coS 66+ y sir? 6]
0 0.2 0.4 0.6 0.8 1
b=Kf dssir? 6. 27 0/

o . . FIG. 6. Dependence of rippling wave number on inflection
They act as effective line tension and bending modulus, reangle for various values of line tensiofirom top to bottor

spectively. The one-dimensional bending moduus pro-  7/(Ksc,)=0.05, 0.1, 0.2, 0.5, 1. For higher line tension,
portional toK, the two-dimensional modulus of the sheet; /(K scy) > 7—2=1.14, there is no rippling.
when the boundary curves the monolayer must bend with it

(see Fig. 3 leading to a cost in bending energy. _ length is thus set bydc,) 2, which is usually much smaller

In principle, one could now minimizg of Eq. (26)(0")V'th than the boundary length Hence, although this is strictly a
respect tod(s) and find the perturbed shap(s)=6""(s) =0 instability, one expects in practice to observe a densely
+a?0™)(s). However, S|_ncég(0)/6g(0):0, substltutng the wiggling boundary on the scale of the entire domain. An-
perturbed shape back i would yield, up to ordem®, g other interesting observation is that, beyond the onset of rip-
=9 916V]+a’gM[¢)]. Thus, if we are merely interested pjing, q* does not always increase monotonically with com-
in the perturbecenergy we may just substitute in E427)  pression. The nonmonotonic behavior becomes more
the unperturbed topograpt§°)(s) as found in Sec. lEGs.  pronounced the smaller the value (K co), as demon-

(6) and(8)]. This yields strated in Fig. 6. For small values of this parameter, there-
0 fore, one expects the boundary to ripple densely beyond the

= T_K500< 60— 2 tan—2| , onset of instability and then, upon further compression, re-
4 turn to a less rough shape. Recall that our ansatz concerning

(28 the preferred perturbation is expected to give reliable results
@) as long agg<\ 1. We have found that the rippling modes
2) obeyqg= dcy. On the other hand, a stable, sharp topography
requires\ ~ 1= 8cy/4 [see Eq.(8)]. Thus, our assumption is
When the effective line tension vanishe$=0, there isa  only marginally fulfilled and the results should be regarded
q=0 (i.e., second-ordgrrippling transition, as already an- merely as a qualitative guide.
ticipated in Eqs(24) and(25). (Strictly speaking, since the
domain boundary is finite and closed, the transition is en-
countered only atr’' = —w2b/L?, i.e., for the lowest-order V1. BEHAVIOR NEAR A CRITICAL POINT

undulation ofq=/L.) The rippling of the one-dimensional  The topographic effects described in this article rely on a
boundary is thus analogous to the Euler buckling of an elasgonirast between different domains. Hence, when a mono-

32K 7]
sin—o( 1- cos

b= 35¢, 52

tic rod [31]. _ , _ layer at coexistence reaches a critical point, these effects are
Upon  further compression, or if the monolayer is gypected to vanish along with the domain structure. Various
“quenched” to 7' <0, all modes satisfying parameters affecting the topography dramatically change
12 when the critical point is approached: the density contrast
q<g* :(_) becomes increasingly wedleading to a smalleécg), do-
b main boundaries get diffusdarger £), and the bare line

12 tension between domains, tends to zero. Thus, although

0= 2 tan o/4) — 7/ (K &¢o) the topography must clearly disappear at the critical point, its

SiN(6o/2)[1— cos(6,/2)] ’ exact behavior has to be examined in detail. For example, it

29) is uncleara priori whether, with respect to topography, the

monolayer is driven toward the diffuse linfiargerééc,) or

become unstable and their amplitudes start growing. We exthe sharp onésmaller£sc). i

pect the observed unstable modes to have roughly the same As the temperatur@ approaches its critical valug;, T

scale as the upper bouid . The scale of the rippling wave- =|T—T.|/T.—0, we have32]

J3

= oc
42""°
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E~T 7
5co~TP—0, (30)

where, for a two-dimensional fluiD Ising model, v=1
and 8= 1/8. Hence, the height difference, given by Ed),
decays as

h=X\28c,~TA=T8 (30
Since £é8cy~T " "A~T 80, it is the diffuse limit of
Sec. IV that applies near the critical poirfThe three-

dimensional topography could affect the critical behavior o
the two-dimensional fluid in the monolayer as a “hidden,
annealed variable. Hence, the critical exponents should b

modified according to the Fisher renormalizatj83]. In the
case of a two-dimensional fluigbr Ising mode), however,
the Fisher renormalization leaves the exponents irftact.

PHYSICAL REVIEW E63 061602

energyg gained due to the inflected topography, gets weaker
as well. According to Eq(33) the latter vanishes slightly

faster, asT® Hence, it is the bare line tension that wins
close to the critical point, and the boundary topography
should flatten out aT. as a smooth step without ripples.

VIl. DISCUSSION

We have demonstrated in this work that biphasic mono-
layers are generally nonflat, having inflected shapes in the
vicinity of domain boundaries. This leads to an overall to-
pography of mesas where domains of one phase are higher

sthan those of the other. As the monolayer is progressively
» compressed the mesas grow more pronounced, subsequently

developing overhangs, and finally becoming unstable.
Substituting typical values for phospholipid monolayers

[2]—y=10-50 ergs/c) K=10-50 kgT, c,*=5-10

nm—we getA=1-10 nm,\86cy=0.1-1, andh=0.1-10

We now explore further details of the topographic critical "M. Hence, the mesas are steep but low. The numerical value
behavior. For small inflection angles we expect in the diffuse®f A 5Co implies that the predicted instabilith c,=4) may

limit [cf. Eq. (22)]

o=hlE~TV P=T® (32)

be observed for attainable pressures. The energy per unit
length gained by departing from the flat state to a sharp in-
flection is, according to Eq.9), g=Ké&cq=1-10kgT/nm.
Hence, for a typical domain size &f~1-10 um, the in-

Indeed, the topography has been found in Sec. IV to depenfiiected conformation is “frozen,” i.e., robust under thermal

on two dimensionless quantitiesdc, and &/ (\28cg) = &/h,

fluctuations. This justifies our mechanical, ‘“zero-

both of which diverge at the critical point—the former as temperature” approach.

T-7*A=T77"8 and the latter asT " #=T"%8 Studying
Egs. (19) and (20) in this asymptotic limit, one find®),
=h/¢ and 6,=0,/2, which verifies Eq.(32). Substituting
these results in Eq18) for the inflection energy, we get

KA26¢3

__ __Fv+28_F5l4
g 2¢ T ™"

(33

As a more specific example, we may consider a mono-
layer whose behavior is governed by electrostatic interac-
tions. The deviation from a flat conformation is thereby
driven by variations in the lateral charge densitys). In the
typical case of strong screening,x<1, wherex ! is the
Debye screening length, one obtajB$ Kcy= 7mo?/ ex? and
K=3mo?2ex®, € being the dielectric constant of water.
(Note the finite, positivecy; charged monolayers spontane-

Thus, the topographic contribution to the heat capacity of th@usly tend to curve into the agqueous phaggonsequently,

monolayer vanishes aig/aT~ T4 whereas the heat capac- SUPStit
ity of the two-dimensional fluid diverges logarithmically

uting typical values ofr= 1 charge per 0.3—1 nin
and x~'=1-10 nm, we reach similar conclusions to those

[32]. This consistently demonstrates that the critical behavioPPOVE:

of the monolayer remains unaffected by the topography.

We have studied domain boundaries of finite thickness as

How does the approach to the critical point influence thewell. The qualitative features of inflected conformation and
instabilities studied in the previous sections? The folding inNstability do not disappear for any boundary thickngs®n

stability in the diffuse limit requires, according to EJ3), a
surface tension lower than

ye=K 8ol E~TVTA~T98_,0, (34)

one hand, for a given compression a diffuse boundary leads
to more moderate slopes compared to a sharp one. On the
other hand, it shifts the folding instability to a higher pres-
sure, thus strengthening the monolayer and allowing for
higher mesas to be stabilized. Unfortunately, conventional

In practice, therefore, as soon as the required lateral pressufeeans of increasing, e.g., heating toward a critical point,
exceeds that of the critical point the folding instability will also reduce the domain contradt,, thus suppressing the

become unattainable.

topography. We have studied this delicate interplay close to

The effect on the boundary-rippling instability studied in a critical point i_n Sec. VI. Our results for diffuse boundaries
Sec. V is more delicate. Upon approaching the critical poinshow that the simple, infinitely sharp limit gives good results
the bare line tension of the boundary gets vanishingly smalks long asé<(sco) ~*, which holds in most practical cir-

as[34,35

~THr—=0, p=1. (35)

cumstances except near a critical point.

One might worry about additional factors that would de-
stroy the inferred topography. Such a factor is the cost in
gravitational energy of displacing water from the flat inter-

Thus, the resistance to rippling becomes increasingly weakace. This energy per unit area is aboutpgh?
Yet, at the same time the driving force for rippling, i.e., the ~10* kgT/cn?, wheredp is the difference in density of the
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area (Az/mo|ecu|e) FIG. 8. Fluorescence microscopy images of the folding instabil-

ity in a 7:3 DPPC:POPG monolayer at the air-water interfaage.

FIG. 7. Pressure-area isotherm for a mixed monolayer of DPP¢€ction of the monolayer just before folding=0), exhibiting the
and POPG, as measured during a compression-expansion cycle ifP#hasic domain structure. Dark regions are DPPC-rich; bright ones

Langmuir trough. The mole ratio is DPPC:PORP®3 and the tem-  are POPG-rich(b) The same section at=1/30 s. A micron-scale

perature 25 °C. The folding instability is indicated by an arrow. fold appears in between domain walisdicated by arrow The
image is blurred because of monolayer movement during folding.

two phases and is here the gravitational acceleration. Thus, The inset shows a contrast-enhanced image of the fold, magnified
due to the small height of the mes@s-10 nn), gravity is by 50%. (c) The fold att=2/30 s, having propagated to nearby
negligible over all relevant lateral length scalésp to  domains.(d) The fold att=4/30 s, after the fast monolayer move-
meters. (Beyond the topographic instability, however, the ment has ceased.
monolayer may become much more folded, and gravity may
have a significant stabilizing roleAnother factor to worry  appear. The folding is significantly more reversible than
about is the van der Waals attraction between the inferredther collapse mechanisms and is therefore thought to be of
overhang and the underlying surface, which might make th&ey importance to the function of lungs. Figure 7 shows a
overhang collapse. The attraction energy per unit area igressure-area isotherm as measured for a mixed phospholipid
roughly H/h?, whereH is the Hamaker constant divided by monolayer of dipalmitoylphosphatidylcholinddPPQ and
127 (typically a fewkgT) and h=\?8c, is the overhang palmitoyloleoylphosphatidylglycerdPOPG. The folding is
height[36]. The lateral extent of the overhangNs and the  manifested by a plateau in the isotherifihe same phenom-
resulting energy per unit Iengtlhi/()\?’ﬁcg), is to be com- enon was observed in dipalmiloylphosphatidylglycerol
pared with the inflection energyKdc,. The ratio is monolayers at a much higher surface tendidhl.) Figure 8
(H/K) (N 8cy) ~3<1, sinceK of a lipid monolayer is a few presents a sequence of fluorescence microscopy images of
tenskgT and\ 8c,= 3—4 to get an overhangf. Eqg.(8)].  the monolayer just before and just after the instability.
Hence, the van der Waals attraction is too weak to signifi- We believe that this folding phenomenon is initiated by
cantly affect the overhang. the topographic instability of boundary regions as obtained
The topography of mesas and overhangs is thus a robufiom our model.(Further evolution and propagation of the
result that should be observable in practice. Such an obsefeld are determined by other factors not taken into account in
vation is difficult, however, because of the small height dif-the current work, such as the viscoelasticity of the monolayer
ferences and fluidity of the interface. Very recently a new[23,38.) If the hypotheses regarding the biological signifi-
experimental technique has been presented, utilizing norsance of the folding and its relation to topography are cor-
specular scattering of intense light to visualize small topo+ect, it may represent an interesting solution of Nature to a
graphic features in phopholipid monolayd®&y]. Although  delicate mechanical problem. Using a mixed surfactant
the study was focused on features of a pure liquid-condensetonolayer to cover the lung leads to domain formation upon
phase, height differences were reported at boundaries @ompression, which in turn allows the topographic instability
liquid-expanded domains coexisting with a gas phase, agnd folding. Additional constitueni@.g., proteinsmay en-
well as liquid-condensed domains in a liquid-expandedsure that the folding is not preceded by other, irreversible
phase.(Interestingly, a stronger signal was obtained in thecollapse mechanism&1]. This design provides the mono-
former case, perhaps due to a larger contrast in spontaneol@&yer with a unique way to yield gracefully to compression
curvature). It is still unclear whether these experimental find- and reduce its projected area, while avoiding irreversibility
ings are related to the topography discussed here or to moand loss of surfactant.
molecular effects. Folding of the mesa structure is in many cases preempted
Recent experiments on mixed phospholipid monolayerdy other instabilities. One type of collapse is delamination—
have revealed a new type of folding instabilifg1,23.  breakage of the monolayer into multiple lay§gs10]. It oc-
When the monolayer is compressed and enters a coexistencers when the surfactant sheet yields to a combination of
region, there is a critical pressure at which micron-scale fold¥ending and lateral compressive stresses. Since the mesas
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help relieve part of the inherent bending stresses exerted in a
flat monolayer, one expects the breakage to otemmewhat
counterintuitively away from the boundary, inside the more
frustrated domair(i.e., the one having higher spontaneous
curvature. Another mode of monolayer collapse is budding
and ejection of vesicles into the aqueous pHddg. Recent
experiments on mixed phospholipid monolayers have shown ’ =
that vesiculation is promoted by increased temperature and
may coexist with folded structur¢89]. The effect of topog-
raphy on delamination and budding, as well as the interplay
between the various collapse modes, are yet to be studied in
detail.

Another general conclusion arising from this work relates
to fluid surfaces of vanishing tension. Such surfactant films 5 o Roughening of domain boundaries upon compression, as

are encountered, e.g., in emulsiohs, (“sponge”) phases  ,pserved by fluorescence microscopy. The monolayer consists of
and large, unsupported bilayer vesiclé$ The topographic  pppc molecules and lies over an agueous solution of 0.2 M NaCl
instability found for a finite tension implies that these ten-4; temperature 24.5°C. Dark regions correspond to a liquid-
sionless surfaces cannot sustain a stable domain structure. Endensed phase and bright ones to a liquid-expanded phase. The
the best of our knowledge a static domain structure has nev@iteral pressures and molecular ar¢msmN/m and A2, respec-
been observed in those systems. We attribute it to the ineviively) are: (a) 16.9, 54.8;(b) 19.4, 53.0;(c) 21.6, 51.9;(d) 23.4,

table shape instability that would occur near domain bound51.2. Images were enhanced with contrast.

aries if such a structure existed.

We have studied a possible rippling of the domain boundgpexistence between liquid-expanded and liquid-condensed
ary upon compression. This phenomenon arises from a comshases, a domain-boundary instability of submicron scale
petition between the topographic features accompanying thgss peen observd@2]. This is demonstrated in Fig. 9. At a
domain boundary and its bare line tension. The thresholdyitical pressure slight roughening appears simultaneously in
value of line tension required to get rippling i&=g  all domain boundaries. Upon little further compression the
=(1-10KgT/nm, which is of the same order as line tensionrgughening becomes denser and the boundaries look fuzzy
values measured in experimer{$0—44. The rippling is  gye to optical limitations. A detailed presentation of this ef-
therefore a realistic, observable feature. There is already fct will be given in a forthcoming publicatiof22]. The
well-established mechanism for shape transformations afmall length scale of this instabiliticompared to the entire
monolayer domains, driven by a competition between linejomain sizg is in accord with the topography-induced
tension and long-range electrostatic interactipts-47,40.  mechanism discussed above. Yet, further study is required in
We offer the topographic rippling as an additional mecha-der to clarify the relation between the two effects.
nism that should be observed in practice. There are three The phenomena described in this work—mesa formation,
major features distinguishing the two phenomefigin the  mesa instability, boundary rippling—arise from rather basic
stable. Consequently, the stable domain size and wavelengiReory and experimental observations. The relation between
of boundary instability have the same scale~q™*  the topographic instability as obtained from the elastic model
~IeT’5F’2, wherel is a molecular size andlp the difference in  and the observed folding in biphasic lipid monolayers is still
dipole densities of the two phaspt5]. Hence, shape defor- to be established. In particular, the current theory does not
mations occur on the scale of the entire domif,45,44, account for the fully developed folded structure and its sta-
leading to a sequence of well-resolved, “quantized” transi-bility, as observed in experiments. Topography-induced
tions. By contrast, the length scale of the topographic rip-boundary rippling and its distinction from the known elec-
pling, (*) 1~ (8cy) 1<0.1 um, is much smaller than, trostatic mechanism is yet another intriguing feature to be
and unrelated td,. Thus, we expect this instability to appear experimentally investigated. We hope to close this gap in
as a small-scale roughening of the domain boundé@nyThe  future publications.
topographic rippling, being an elastic mechanism, should not The mesa topography is a novel interfacial feature pre-
be very sensitive to changes in electrostatic parameters sucdlicted by our work. If mesas exist, which is yet to be deci-
as ionic strength and molecular charge) As demonstrated sively proven by experiment, they should have important im-
in Sec. V, the rippling wavelength may exhibit in certain plications on various interfacial aspects, such as surface
circumstances a peculiar nonmonotonic behavior as a fundnteractions with dissolved molecules, behavior in confined
tion of pressure. In addition, we have shown in Sec. VI thatgeometries, and possible applications for controllable nano-
topographic rippling is inhibited near a critical point. Hence, structures. We would like to draw special attention to the
boundary rippling could be smoothed out by heating theunique overhang topography predicted by the model. Under
monolayer toward its critical temperature. This is in contrasthe right compression all the domains in a biphasic mono-
with common surface instabilities that are usually promotedayer should develop regular lips at their edges. Such con-
by increasing temperature. trollable nanoscale grooves might be technologically useful,

In a recent experiment on a pure DPPC monolayer aé.g., for capturing and encapsulatitigo)polymers.
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APPENDIX DIFFERENTIAL GEOMETRY
OF A RIPPLED BOUNDARY What is left to be calculated is the local surface curvature

) . c(s,t). The local normal to the surface is given by
In the rippled state we represent the domain boundary by

the curve R(y)=(x=asinqyy,z=0) and parametrize the n=I"Y4Jsxg,r)=T""%— sin6,qacosqtsine,coso).

monolayer surface as .
y The mean curvature can then be calculated either from the

r(s,t)=(x(s1),y(st),z(s,t)) trace of the curvature tensor,

s c(s,t)=—3tr(an;/ar;),

= "Yds' +asi = . . .

x(s,b) fo cosf(s")ds' +asingt, y(s,H=t, or by momentarily resorting to the Monge representation,
c=V-[T""Vz(x,y)],

S
z(s,t)=J sinf(s’)ds’. (A1) ) i . )
0 where theV operator is defined in they plane. The result is

We now need to represent the various properties of the sur- c¢(s,t)=T"34(1+q%a?co< qt) 6+ g2a sinqtsin 6].
face using the “material coordinates’st) [48]. (AB)
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