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Abstract

Colloidal systems are composed of mesoscopic rigid particles (10nm-10µm in size) dis-
persed in a molecular, viscous fluid. Earlier studies on a pair of, or a system of many, driven
colloids mostly focused on symmetric objects, such as spheres or spheroids. General treatment
of driven, asymmetric colloids has been recently presented on a single object level, demon-
strating how the coupling between translation, rotation and the external drive can yield new
types of controllable transport phenomena. In this Thesis I study the flow-mediated interac-
tions between arbitrarily shaped, driven colloids, and their effects on orientational alignment
and collective dynamics of asymmetric non-Brownian suspensions.

In the first part of the work we explore the hydrodynamic interactions between two arbi-
trarily shaped objects, which are driven through a viscous fluid, in the limit of zero Reynolds
number. We study rigorously the general properties and symmetries of the pair-mobility ma-
trix governing the instantaneous relative linear and angular velocities of the two objects. We
treat analytically the leading (monopolar and dipolar) interaction, affecting the pair response
at large separation. We focus, in particular, on self-aligning objects— a large class of irregular
objects whose asymmetric shape causes them to orient with an external constant force, or fur-
ther synchronize with a forcing protocol that varies in time. We prove that the instantaneous
hydrodynamic interaction linearly degrades the orientational alignment between two such ob-
jects. The time-dependent effects of hydrodynamic interactions are explicitly demonstrated via
numerically calculated trajectories of model self-aligning objects composed of four point-like
particles (stokeslets). In addition to the orientational effect, we find that the interplay between
the orientational interaction and the translational one, in most cases, leads over time to re-
pulsion between the two objects. Consequently, in the presence of time-dependent aligning
protocols, the mutual degradation of alignment weakens as the two objects move away from
each other, and full alignment is restored at long times.

These findings— the instantaneous relative linear velocity and the effective repulsion over
time— lead us in the second part of the work to study in more detail the implication of hydro-
dynamic interactions on the translational response of two arbitrarily shaped objects. It is well
known that in the case of two identical rigid spheres in an unbounded fluid at zero Reynolds
number, the hydrodynamic interaction does not produce relative translation. We demonstrate
that, more generally, such an effective pair-interaction vanishes in configurations with spa-
tial inversion symmetry; for example, an enantiomorphic pair in mirror image positions has
no relative translation. We show that the breaking of inversion symmetry by boundaries of
the system accounts for the interactions between two spheres in confined geometries, as pre-
viously observed in experiments. The same general principle also provides new predictions
for interactions in other object configurations near obstacles. We examine in detail the time-
dependent relative translation of two self-aligning objects. We show that the typical repulsion
for this class of objects is qualitatively different compared to the more symmetric case of uni-
form prolate spheroids. The mutual separation between the objects, in each case, evolves with
a different asymptotic power law of time.

In the third part we show that the distinctive effects in the motion of irregular object pairs
have an impact on the many-body dynamics of driven colloids. In a sedimenting suspension
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comprising self-aligning objects, the anisotropic response of the objects to flow, caused by their
tendency to align with gravity, act as a mechanism which directly suppresses concentration
and velocity fluctuations. This allows the suspension to avoid the anomalous fluctuations pre-
dicted for suspensions of symmetric spheroids. We show, using fluctuating hydrodynamics,
how the suppression of concentration fluctuations leads to a correlated, hyperuniform struc-
ture. For certain object shapes, the anisotropic response may act in the opposite direction,
destabilizing uniform sedimentation.

The findings of this Thesis thus show sharp qualitative differences between driven colloids
of symmetric shapes and of irregular ones — on the level of a pair of objects, as well as in the
collective dynamics.
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Chapter 1

Introduction

1.1 Background

Muddy water, proteins in our body cells, or the ink which brings forth the hard-copy of this
very Thesis, are all examples of colloidal systems— 10 nanometer to 10 micron sized objects
dispersed in a molecular liquid. Colloidal suspensions exhibit ubiquitous equilibrium phe-
nomena and non-equilibrium processes [1]. The coupling between the fluid-flow and the mo-
tion of the dispersed objects leads to rich and complex dynamics with wide applicability in the
context of designing synthetic materials, e.g., modeling drug-delivery nano-agents [2], and in
understanding emergent phenomena of biological materials, e.g., collective motion of bacte-
ria [3, 4].

The thermal fluctuations of the molecular fluid lead to a stochastic (Brownian) motion of
the colloids. In addition, the medium affects direct, e.g., electrostatic and Van-der-Waals inter-
actions among the suspended objects; induces entropic interactions such as depletion forces;
and gives rise to flow-mediated interactions, i.e., the response of an object to a flow gener-
ated by another object. The latter effect— termed hydrodynamic interactions— is long-ranged
and plays a central role in colloidal systems, especially in non-equilibrium phenomena. The
study of dynamical processes in suspensions is divided into two classes, intrinsically (self-
propelled1) and externally driven objects. Generally, in both cases, the system constantly dis-
sipates energy and therefore, is always out of thermal equilibrium. This Thesis focuses on the
latter class of externally driven systems, and on physical scenarios in which the long-ranged
hydrodynamic interactions prevails all other inter-particle interactions.

Commonly used driving mechanisms are simple body forces such as gravity (sedimenta-
tion) and centrifugal forces (centrifugation), electric fields (electrophoresis), thermal gradients

1Systems of self-propelled objects are known as “active matter” [5].
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10 CHAPTER 1. INTRODUCTION

(thermophoresis), concentration gradients (diffusiophoresis) and shear flows. These under-
lie various related non-equilibrium processes in biological and synthetic materials, and have
many technological applications. For instance, manipulation of DNA molecules and proteins
such as transport, aggregation, and chiral separation of enantiomers [6, 7], are standard pro-
cedures in many biochemical or biophysical laboratories. Other examples are bed fluidization
that is widely used in reactors and water treatment [8] or the electrophoretic ink which is used
in certain electronic displays [9].

The transport of a single symmetric object is well established. The fundamental theories
were instituted more than 100 years ago. For example, the calculation of the drag force on a
sphere of radius ℓ, moving with velocity V through a fluid of viscosity η, was derived by Stokes
in 1851, Fdrag = −6πηℓV. Another example is the analysis of a charged sphere transport in
electrolyte due to an external electric field, which was derived by Helmholtz [10] in 1879 and
Smoluchowski [11] in 1903.

In several cases, the theory was generalized to include the transport of objects with arbi-
trary shape [12–15]. While the study of symmetric objects underlies the physics of driven sys-
tems and provides a simple example of transport phenomena, exploring objects of arbitrary
shape is more practical since many biological and synthetic colloidal objects are not symmet-
ric. Moreover, the absence of symmetry in the shape of the object may sometimes yield new
phenomena, such as: chiral separation by shear flow [16, 17] or by capillary electrophoresis
[7, 18]; programming lock-and-key binding between two asymmetric colloids [19]; efficient
transport of chiral magnetic objects subjected to a rotating magnetic field [2]; and the applica-
tion of an external body force to rotationally synchronize initially incoherent system of chiral
suspensions. The latter system will be one of the focuses of this Thesis.

The rest of this Chapter is organized as follows: In Sec. 1.2 we introduce the hydrodynamic
description of the molecular liquid, specializing to the inertia-less (zero Reynolds number)
regime that characterizes colloidal systems. The fundamental properties of externally driven
colloidal phenomena are discussed in Sec. 1.3. Then we elaborate on the established theories
and phenomena of driven colloids, which are relevant to the work to follow, separating the
review to the levels of a single-object motion (Sec. 1.4), pair of objects dynamics (Sec. 1.5), and
collective behavior (Sec. 1.6). In Sec. 1.7 we present a useful mathematical representation for
the dynamics of asymmetric objects. In Sec. 1.8 we summarize the main notations and symbols
that are used throughout this Thesis. Finally, the outline of the Thesis is given in Sec. 1.9.

1.2 Hydrodynamics of the Dispersing Medium

In colloidal systems, there is a clear length- and time-scale separation between the suspended
objects and the molecular liquid, hence, it is beneficial to describe the latter by a continuum
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model [20]. The fluid is characterized by density, stress and velocity fields at position r and
time t, indicated by ρ(r, t), σ(r, t), and u(r, t) respectively. Conservation of fluid mass is cap-
tured by the continuity equation

∂tρ +∇ · (ρu) = 0. (1.1)

We will focus on incompressible fluids, where the density does not change locally and can be
assumed to be a constant over space and time. We will denote it hereafter by ρf. In this case,
Eq. (1.1) becomes

∇ · u = 0. (1.2)

An additional equation that describes conservation of momentum is given by applying New-
ton’s second law to any fluid volume, which, with the aid of Eq. (1.2), reads

ρf∂tu + ρf(u ·∇)u = ∇ · σ + fext, (1.3)

where fext refers to external force density. In simple viscous flows, in addition to an isotropic
pressure term, the stress tensor includes terms that are proportional to the first derivatives of
the velocity field (shear rate):

σij = −pδij + η(∇iuj +∇jui) + ζ(∇ · u)δij, (1.4)

where p is the pressure field of the fluid, η is the coefficient of shear viscosity, ζ is the coefficient
of bulk viscosity, and δij is Kronecker delta. Substituting this stress definition into Eq. (1.3) and
taking into account the incompressibility of the flow (Eq. (1.2)), we get

ρf∂tu + ρf(u ·∇)u = −∇p + η∇2u + fext. (1.5)

This is the Navier-Stokes equation describing the hydrodynamics of viscous incompressible flu-
ids. Since the bulk viscosity ζ is irrelevant for incompressible flows, η will be referred hereafter
as the viscosity of the fluid. In principle, a complete description of the fluid also includes equa-
tions for energy conservation. However, we will consider an isothermal liquid, in which the
temperature is constant in space and time (i.e., any dissipation is immediately transferred to
an external temperature bath). The above hydrodynamic equations determine a variety of
complex nonlinear phenomena such as turbulence and lift forces. In this Thesis we will fo-
cus on colloidal processes, for which the Navier-Stokes equation can be simplified, as will be
discussed next.

1.2.1 Stokes Equation

Consider a flow with a characteristic length L and a characteristic velocity U. By rescaling
velocity, length, time, pressure and force density according to ū → u/U, r̄ → r/L, t̄ → tU/L,
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p̄ → pL/(ηU), and f̄ → f L2/(ηU), respectively, the Navier-Stokes equations are given as

Re
(
∂t̄ū + ū · ∇̄ū

)
= −∇̄ p̄ + ∇̄2ū + f̄ext, (1.6)

where
Re ≡

ρ f UL
η

(1.7)

is called the Reynolds number of the flow. At high Reynolds number, Re ≫ 1, the non-linear
term dictates non-dissipative energy and momentum transfer between different layers within
the fluid. At this limit, turbulent flow can be generated, and the fluid can be assumed as in-
viscid except for small length scales at which viscosity is important. At low Reynolds number,
Re ≪ 1 the inertial-forces are negligible with respect to the viscous ones, the flow varies slowly
in time and a turbulent behavior cannot occur. The Reynolds number sometimes provides use-
ful experimental transformation between systems of different scales, namely, systems with the
same Reynolds number are expected to exhibit similar phenomena2. For instance, the motion
of a micron-sized object in water should be similar to the one of a mm-sized object moving
with the same velocity in glycerol, since glycerol is ∼ 103 times more viscous than water, but
has approximately the same (1.4 times larger) density.

Colloidal systems are typically characterized by Re ≪ 1. For example, a µm-sized object in
water (ρ f ∼ 103 kg·m−3, η ∼ 10−3 Pa·s), moving with µm s−1 translational velocity or rotating
with s−1 angular velocity, corresponds to Re ∼ 10−6. Therefore, colloidal systems are analyzed
at the limit of zero Reynolds number, in which the Navier-Stokes equation (Eq. (1.5)) becomes

0 = −∇p + η∇2u + fext. (1.8)

Eq. (1.8) is known as the Stokes Equation; it describes inertia-less flows (also termed as “creeping
flows” or “Stokes flows”). The properties of the Stokes equation differ significantly from those
of the Navier-Stokes equation— it is a linear differential equation; it describes a steady state
flow; and it is time-reversible, i.e., invariant under inversion of time, velocities and forces. The
consequences of these properties, in the context of driven colloids, will be dealt with in Sec. 1.3.

The inertia-less limit governs the fluid hydrodynamics in colloidal systems. Therefore, in
the work to follow, the embedding fluid dynamics will be mandated by the Stokes equation,
Eq. (1.8), together with the incompressibility of the flow, stated in Eq. (1.2). In the rest of this
section we elaborate on the properties of hydrodynamic interactions and drag forces in inertia-
less flows, both of these play an important role in the dynamics of driven colloids.

2This is true when there are no additional effects that are not scale-invariant, such as Brownian motion, which
is negligible in large scales but not in small ones.
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1.2.2 Hydrodynamic Interactions

Flows excited by moving objects induce effective hydrodynamic interactions among objects. The
basic properties of these interactions in driven systems are clarified by examining the response
of the fluid to external point force:

−∇p + η∇2u + δ(r − r0)F0 = 0,
∇ · u = 0,

(1.9)

where F0 is a constant vector and δ(r − r0) is the Dirac Delta function. A point force in the
inertia-less regime is called stokeslet, as first coined by Hancock [21] in 19533. Linearity im-
plies that the solution to Eq. (1.9) has the form u(r) = G(r, r0) · F0, where the tensor G is a
Green’s function of the Stokes equation that depends on the geometry of the boundaries, the
boundary conditions, the fluid viscosity and the dimensionality of the flow. Below we consider
the stokeslet flow in two specific 3D geometries— unbounded fluid and a fluid bounded by a
plane wall. These two examples, especially the first one, will be the basis for the analysis in
the following Chapters.

Unbounded 3D Fluid– the Oseen Tensor

The geometry of an unbounded system has translational invariance, thus, the Green’s function
depends only on the distance relative to the forcing point, i.e., G(r, r0) = G(r− r0), and we can
simplify further by taking r0 = 0. The solution to Eq. (1.9) can be obtained by transforming to
Fourier space (r → q), where for any function g(r) we have

g̃(q) =
∫

g(r)eiq·rdr (1.10)

g(r) =
1

(2π)3

∫
g̃(q)e−iq·rdq. (1.11)

Fourier transforming Eq. (1.9) yields the algebraical equations

iqm p̃ − q2ηũm + F0,m = 0,
−iqmũm = 0,

(1.12)

whose solution reads
p̃ = − iF0 · q

q2 , (1.13)

ũm =
1

ηq2

(
δmj −

qmqj

q2

)
F0,j. (1.14)

3Historical note: the solution to Eq. (1.9) was first given in 1896 by Lorentz [22], whereas Stokes [23] was the one
who found the flow generated by a moving sphere in 1851.
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Figure 1.1: The flow lines (thin blue arrows) of the fundamental solutions corresponding to
a stokeslet (green thick arrow) in an unbounded and semi-infinite geometries (left panel and
right panel respectively). The black rectangle on the right panel indicates the plane wall on
which the fluid’s velocity vanishes. A 2D projection is presented as the flows have axial sym-
metry about the stokeslet direction.

By inverting Eq. (1.14) back to real space we have u = G(r) · F0, where

Gmj(r) =
1

8πηr

(
δmj +

rmrj

r2

)
. (1.15)

The tensor G is called the Oseen tensor [24], and it is at the core of hydrodynamic interactions,
as it captures how applying a force at one point in the fluid affects the velocity at some other
point. Eq. (1.15) states that the flow decays algebraically with the distance as r−1 from the
forcing point. This slow decay manifests the long-range nature of hydrodynamic interactions.

The fact that G ∼ 1/(ηr) could have been drawn based on general considerations [25]. Mo-
mentum conservation requires that the total momentum flux through any envelope enclosing
the source is constant, that is, for a spherical envelope of radius r the local flux is proportional
to 1/r2. Since the local flux is given by the stress tensor σ ∼ η∇u ∼ ηu/r, one finds that
u ∼ 1/(ηr). The flow resulting from a stokeslet in an unbounded geometry is given on the left
panel of Fig. 1.1.

3D Fluid Bounded by a Wall with a No-Slip Boundary Condition

We consider a stokeslet in a semi-infinite medium z < h confined by a wall at z = h. The
problem is governed by Eq. (1.9) with a no-slip boundary condition at the wall

u(x, y, h) = 0. (1.16)
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Before writing the solution to the above problem, it is essential to mention the analogy, and
difference, between electrostatics and Stokes flows. The electrostatic potential ϕe generated
by a distribution of charges ncharge in a medium of permittivity ε is dictated by the Poisson
equation ∇2ϕe = −ncharge/ε. The resemblance between the Poisson and Stokes equations
(Eq. (1.8)) implies that finding the electrostatic potential for a given charge density is similar
to the problem of determining a Stokes flow u generated by an external force density fext.
However, there is no exact equivalence between the two problems since the latter involves
an additional pressure field (this field imposes incompressibility and thus is related to mass
conservation, which is not included in electrostatics). This is the essential difference between
the two systems. The current semi-infinite hydrodynamic problem highlights the usefulness
of the analogy together with illustrating its incompleteness.

The analogy suggests that a convenient approach to find flow fields in bounded geome-
tries is the method of images— placing image charges such that the boundary conditions are
satisfied— which is widely used in electrostatics. Now, let us consider the hydrodynamic prob-
lem and assume that the stokeslet is placed at the origin r0 = 0. The analogous electrostatic
problem is for a point charge placed near a grounded plane. A naïve solution based on this
analogy is to place a mirror image stokeslet: −F0δ(r − 2hẑ). However, the flow resulting from
the stokeslet and its image, which is proportional to G(r) − G(r − 2hẑ), does not vanish on
the plane wall at r = (x, y, h) with x, y ̸= 0. The correct solution [24, 26–28] includes addi-
tional singular solutions at the mirror position rm = 2hẑ, associated with a force-dipole and
a fluid-mass-dipole4. The flow generated by these multipoles is given by the first derivatives
of the Oseen tensor and the source flow (∝ r/r3), respectively. The total Green’s function of a
stokeslet near a wall then reads

Gwall
ij (r) = Gij(r)− Gij(r − rm) + 2hΥFD

skj ∂sGik(r − rm) + 2h2ΥMD
kj ∂kuM

i (r − rm), (1.17)

where uM = r/(8ηr3) is a mass source flow, and the tensors of coefficients ΥFD and ΥMD contain
numerical values that imply the direction of the force-dipole and source-dipole:

ΥD
skj =

{
δsjδk3 j = 1, 2
−δsjδk3 j = 3

, ΥMD
kj =

{
δkj j = 1, 2
−δkj j = 3

. (1.18)

An example of the flow generated by a stokeslet pointing in a direction perpendicular to the
wall is given in the right panel of Fig. 1.1.

1.2.3 Drag Forces on Moving Objects

A rigid body is defined as an object in which the distance between any two points is constant.
The kinematics of a rigid object is represented by a translational velocity V, and an angular

4In the hydrodynamic literature there is usually a usage of different terminology concerning singularities; see
Refs. [28, 29].
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velocity ω. More specifically, we choose an arbitrary reference point rigidly affixed to the
object, designated hereafter as the origin of the object, and denote its instantaneous translational
velocity with V. Then, any point of the rigid object, at a position r from its origin, moves with
translational velocity V + ω × r, where ω is the instantaneous angular velocity of the object.
Note that the angular velocity is independent of the choice of origin, and that the origin does
not necessarily lie on the instantaneous axis of rotation of the object.

A rigid object translating and rotating in a medium feels drag forces on its surface that
resist its motion. The corresponding hydrodynamic problem is dictated by the Stokes equation
together with specified boundary conditions at the object’s surface. We will assume no-slip
boundary condition on surfaces, i.e., the flow matches the object velocity at the surface:

u(r) = V + ω × r, r ∈ object’s surface. (1.19)

The linearity of both the Stokes equation and the boundary conditions implies that the flow
u(r) must be linear in V and ω. Therefore, the resulting drag on the object, given by integrating
the hydrodynamic stress (∼ p + η∇u) on the object’s surface, obeys a linear relation as well,
which can be written in a matrix form:(

Fdrag

τdrag

)
= −P

(
V
ω

)
, with P ≡

(
K C̃

C H

)
. (1.20)

The matrix P is called the propulsion matrix5, and it depends on the shape of the object and its
orientation. The propulsion matrix is a generalization of Stokes’ celebrated formula to an object
with arbitrary shape. According to Stokes [23], for a sphere with radius ℓ: K = 6πηℓI3×3,
C̃ = C = 0 and H = 8πηℓ3I3×3, where I3×3 is the identity matrix. For a general shape, the
propulsion matrix is less trivial. Generally, a straightforward calculation of P involves solving
the Stokes equation in a complex geometry, given by the shape of the object. The discussion
on the properties of the propulsion matrix and the different numerical methods to calculate it
is postponed to the next Section, where we consider the inverse matrix of P.

1.3 Being Driven at Zero Reynolds Number

The Stokes equation, Eq. (1.8), possesses the three key features of (i) time reversibility, (ii) lin-
earity, (iii) mediation of long-ranged hydrodynamic interactions. This nature leads to counter-
intuitive consequences and distinct phenomena for the motion of colloids. For example, in his
seminal work, Purcell [30] showed how the propagation of bacteria through water differs sig-
nificantly from the swimming of a human. For µm-sized organisms in water, which live in the
inertia-less regime, reciprocal motion— changing the organism shape back and forward in a re-
versible manner— cannot result in a net translation. This fact stems from the time-reversibility

5This term was coined by Purcell [30], in the literature it is also known as the resistance matrix.



1.3. BEING DRIVEN AT ZERO REYNOLDS NUMBER 17

of the Stokes equation. On the other hand, a human can efficiently swim in water, by applying
periodic motions that generate inertial flows. The aforementioned characteristics of the Stokes
equation play a crucial role in the context of externally driven rigid objects, as will be discussed
in the following sections. In the rest of the section we introduce the main tools and framework
in which general problems of driven suspensions are analyzed.

1.3.1 Mobility Matrix

Consider a rigid object driven through a viscous fluid by an external force F and external torque
τ. The object’s instantaneous linear and angular velocities follow Newton’s and Euler’s second
laws, respectively,

mV̇ = Fdrag + F, (1.21)

I · ω̇ = τdrag + τ, (1.22)

where m is the mass of the object and I is its tensor of inertia. The ratio between the change
of inertia and the drag terms goes as ρo/ρlRe, where ρo is the object’s mass density. Thus, the
limit of zero Reynolds number corresponds to an inertia-less regime, where the inertia of both
fluid and embedded objects are negligible. Under these conditions, at any given time we have
Fdrag = −F and τdrag = −τ. Using Eq. (1.20) we get the linear relation(

V
ω

)
= M

(
F
τ

)
, with M = P−1 ≡

(
A T̃

T S

)
. (1.23)

The matrix M is the self-mobility matrix of the object. It is a geometric property that depends
on the object’s shape and orientation6. The mobility matrix is symmetric, i.e., A = AT, S = ST,
T̃ = TT, and positive definite [31–33]. Onsager relations dictate the former property, whereas
the latter one is demanded by positive energy dissipation rate,

Ėdissipation = (V, ω)T · (F, τ) = η−1(F, τ)T · M · (F, τ) > 0.

The propulsion matrix, P, being the inverse of M, is symmetric and positive-definite as well.
The linear response represented by M comprises tensors— the diagonal blocks A and S, re-
lating between two vectors or two pseudo vectors, respectively; and a pseudo tensor— T,
relating between a vector and a pseudo vector. Henceforth, for simplicity we will refer to M

or its blocks as “matrices”. Following the terminology of Ref. [34] for the 3 × 3 blocks of the
mobility matrix we have: A– the alacrity matrix, S– the screw matrix, and T– the twist matrix.
We note that the different blocks scale as η−1, but with different powers of the object’s typical
linear size ℓ: A ∼ η−1ℓ−1, T ∼ η−1ℓ−2, and S ∼ η−1ℓ−3.

6The mobility matrix also depends on the boundary condition on the object surface. As specified above, we
assume a no-slip boundary condition.
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The mobility matrix depends on the choice of object’s origin. Consider two frames, Σ and
Σ′, which differ only by the point about which the objects’ linear velocity and external torque
are measured. Let h be the vector pointing from the origin in Σ to the origin of Σ′. The relation
between M and M′ can be found by requiring that in both frames, the object feels the same net
force and torque and thus responds with the same motion [32, 34]. This requirement entails
F = F′, τ = τ′ + h × F, V = V′ − ω × h, and ω = ω′, which in turn results in the following
linear transformation [34]:

M =

(
I3×3 h×

0 I3×3

)
M′
(

I3×3 0
−h× I3×3

)
, (1.24)

where a vector y with a superscript × indicates the matrix (y×)ij = ϵikjyk, and ϵ is the Levi-
Civita tensor.

Hereafter we consider the following scenario: We focus on objects subjected only to an ex-
ternal force, with no net torque, e.g., as in sedimentation. This, in turn, allows us to use the
following simplification: To resolve the ambiguity of mobility matrices referring to choice of
different origins, we will choose the object’s origin as the forcing point, viz, where the mea-
sured torque is zero. For instance, in the case of sedimentation, for an object with a uniform
mass distribution the origin is taken at the center of buoyant mass.

The mobility matrix of an arbitrarily shaped object can be determined numerically by
solving a hydrodynamic problem in the proper geometry, defined by the object’s shape; see
Sec. 1.2.3. There are equivalent numerical schemes, known as boundary integral methods, in
which 2D boundary integral equations are solved instead of solving the 3D partial differential
equations governing the Stokes flow [24, 28, 35]. There are more convenient methods for cal-
culating analytically or numerically the mobility matrix of an object, without solving explicitly
the hydrodynamic problem. For example, if the object consists of a discrete set of small spheres,
separated by much larger rigid distances, the mobility matrix can be calculated analytically by
approximating each sphere as a point-force (stokeslet). Since this type of objects will be con-
sidered in the following Chapters, we elaborate on their properties separately in Sec. 1.4.4. In
the case of continuous smooth objects, there are three numerical routines known in the litera-
ture. The first technique uses extrapolation of the stokeslets approximation by smoothing the
singularity of the stokeslets [36]; the second method uses hydrodynamic codes for objects com-
posed of ellipsoids [37]; and the third method uses the known spherical harmonics, or force
multipole expansion, of the Stokes flow outside a single sphere [38–40].

Péclet Number

Even in the absence of driving, a colloidal object suspended in a fluid undergoes a seemingly
random motion due to its incessant collisions with the fluid molecules. This is the well known
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Brownian motion, named after the botanist Robert Brown who observed this transport phe-
nomenon in 1827. Einstein [41] showed that the Brownian motion of an object is equivalent
to a diffusion process. His famous result connects the diffusion coefficients D to the mobility
of the object via fluctuation-dissipation relations— D = kBTM, where T is the fluid temper-
ature. When a Brownian object is subjected to an external drive, its transport and orientation
are dictated by a stochastic feature of diffusion and a deterministic response to the external
drive. The relative strength between these two features is given by the corresponding Péclet
numbers for translation and rotation, respectively:

PeT =
ℓ|V|
DT

, PeR =
|ω|
DR

, (1.25)

where DT are DR are the translational and rotational diffusion coefficients. For Pe ≫ 1 the
dynamics is essentially deterministic while for Pe ≪ 1 the dynamics is stochastic. Throughout
this Thesis we will consider the limit of high Péclet number, Pe ≫ 1, where thermal effects
will be neglected. This limit might not be applicable for very small colloidal objects. In the
case of sedimentation, the translational Péclet number of an object with typical size ℓ is PeT ∼
ℓF/kBT ∼ ℓ4∆ρg/kBT, where ∆ρ is the density difference between the object and the fluid,
and g is the acceleration of gravity. Therefore, for example, a polystyrene sphere with radius
of 1µm suspended in water at room temperature (∆ρ ≈ 40 kg·m−3, kBT ≈ 4 · 10−21J) has a
Péclet number of order 1, whereas a sphere with radius of 10µm at the same conditions has a
Péclet number of order 104.

In the next Sections we consider the motion of driven, non-Brownian objects at zero Reynolds
number.

1.4 Single Object Dynamics

The dynamics of an isolated rigid object subjected to an external force is fully captured by the
mobility matrix in Eq. (1.23)— the instantaneous linear and angular velocities are given as

V = A · F, (1.26)

ω = T · F. (1.27)

Below, we provide a general review on the motion of an isolated object— first we consider
the case of regular objects whose T matrix vanishes, and then we discuss in detail the case of
irregular objects with T ̸= 0.
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Figure 1.2: Left panel: Sedimentation of an isolated prolate spheroid. The spheroid main-
tains its orientation (ω=0) while it is gliding horizontally according to its tilted orientation.
Right panel: sedimentation of two identical, isolated spheres. The hydrodynamic interaction
between the spheres results in (a) translation perpendicular to the force direction, which is ab-
sent in the case of a single sphere, and (b) a change in the magnitude of the settling speed; Yet,
the interaction does not bring about relative translation between the spheres.

1.4.1 Regular Objects

“Regular objects” will refer to objects with T = 0. These objects do not rotate under external
body force, regardless of their orientation in space. Spheres and spheroids are examples of
such objects. The fact that an isolated sedimenting spheroid maintains its orientation can be
understood by symmetry considerations. Consider a spheroid as depicted on the left panel
of Fig. 1.2— it is subjected to a constant force at its center, and its major axis is oriented by
an angle θ from the forcing direction. Assume by negation that the spheroid responds to the
force with a rotation that decreases θ. On the one hand, time-reversibility of the inertia-less
regime requires that inverting the force gives an opposite rotation, viz, increasing θ; On the
other hand, reversing the force keeps the same physical picture, for which we assume that θ

decreases. Hence, we reach a contradiction, and conclude that a spheroid cannot respond with
a rotation to a force.

The translational response of regular objects can have a component perpendicular to the
force direction. For example, a sedimenting prolate spheroid, whose major axis is tilted with
respect to gravity, will glide sideways; see left panel of Fig. 1.2. This gliding effect stems from
the fact the the drag along the spheroid’s major axis is smaller than the drag along the semi-
axis.



1.4. SINGLE OBJECT DYNAMICS 21

1.4.2 Classification of Irregular Objects

“Irregular objects”— defined as objects with non-vanishing T matrix— exhibit complex dy-
namics, as their motion possesses coupling between translation and rotation. The tensor A

and the pseudo-tensor T rotate as the object rotates with angular velocity ω. Thus, Eq. (1.27)
is a nonlinear equation for the object’s orientation. The evolution of A and T in time can be
resolved as follows [34, 42, 43]: the relation between the twist matrix at some time t and after
a small time interval dt, is given by a small rotation,

T(t + dt) =
(
I3×3 − dtω×) · T(t) ·

(
I3×3 + dtω×) .

Keeping terms up to order dt reads

T(t + dt) = T(t) + dt
(
T · ω× − ω× · T

)
.

Next, substituting ω from Eq. (1.27) and taking the limit dt → 0 we find

Ṫ = [T, (T · F)×], (1.28)

where the square brackets denote commutation. The nonlinear differential equation for T in
Eq. (1.28) dictates the object’s orientational dynamics. The translational motion varies in time
as the object changes its orientation. This is captured by the dynamics of A according to

Ȧ = [A, (T · F)×]. (1.29)

The derivation of Eq. (1.29) is similar to the one which gives Eq. (1.28). Once the evolution of
A and T is found, the motion of the object can be integrated from Eq. (1.26) and Eq. (1.27).

In many cases, it is convenient to work in the body frame (Σ(b)) where T(b) is constant. In
this frame, the external force rotates with angular velocity −ω, and therefore its evolution is
dictated by the nonlinear differential equation

Ḟ(b) = −(T(b) · F(b))× F(b), (1.30)

(Here we consider a force which is constant in the laboratory frame. If the external force is
time varying in Σ, then the term ∂tF(b) should be added to the right-hand-side of Eq. (1.30)).
Since |F| is constant, Eq. (1.30) describes a dynamical system on a 2D surface of a sphere. Such
a system can evolve into three different orbits— fixed point, closed orbit, or limit cycle [44].
We divide the objects whose T is nonzero into three classes (not directly related to the latter
three kinds of orbits) [34, 42, 43, 45]:

1. “Symmetric-T” objects— correspond to symmetric T(b). The twist matrix has 3 real
eigenvalues, and thus, the dynamical system for F(b) has six fixed points, given by the
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direction of the corresponding eigenvectors— four of them are neutrally stable and the
two others are unstable. In addition, all the trajectories of F(b) are closed orbits. This fact
can be deduced from an analogy to free rotation from classical mechanics. There, a rigid
object, with a symmetric tensor of inertia I, rotates with a constant angular momentum
L. The motion is mandated by Euler’s equation ω = I−1 · L, in analogy to Eq. (1.27).
The vector L is constrained to lie on a sphere of radius |L|. In addition, the symmetry
of I refers to a conservation of the energy E = 1

2 LT · I · L, which in turn, constrains L to
another closed surface. The two constraining surfaces enforce the trajectory of L(b) to lie
in a closed orbit. Therefore, the orientational motion of a driven symmetric-T colloid in
the laboratory frame is equivalent to the motion achieved by flipping a rigid body to the
air.

2. “Self-aligning” objects— correspond to objects with a twist matrix which is sufficiently
asymmetric such that it has only one real eigenvalue, λ3. This Thesis will mostly focus
on this type of objects. These objects were shown to occupy a significant portion of the
space of irregular objects [34]. The dynamical system in the body frame Σ(b) has one
globally stable fixed point and an unstable one. The matching ultimate dynamics in the
laboratory frame involves an alignment of the eigenvector corresponding to λ3 with the
force direction, and rotation about this direction with an angular velocity λ3|F|. Ref. [34]
studied thoroughly the properties of self-aligning objects. The next Subsection is devoted
to the dynamics of self-aligning objects and its applications.

3. “Non-aligning” objects— correspond to T(b) which has three real eigenvalues but is not
symmetric. The dynamics in this case is richer than in the self-aligning class. Basically,
there are two stable fixed points and limit cycles may also appear.

1.4.3 Dynamics of a Self-Aligning Object

The dynamics of self-aligning objects contains two distinguished features: (1) alignment of a
specific eigen-direction affixed to the object with the force, and (2) axial rotation about this
ultimate aligned state. These two features are captured by the twist matrix T, and thus, are
geometrical properties of the object. In what follows, we analyze in more detail the aligning
dynamics and review the interesting consequences arising from the ultimate rotation.

Let us consider the motion of F(b) according to Eq. (1.30). This autonomous equation has
two fixed points, in opposite directions, given by the eigenvectors ±v3,(b) that corresponds to
λ3. The stability of the fixed points can be determined by the time-derivative of the quantity
F(b) · v3,(b)— its sign tells whether F(b) moves toward or away from the fixed point. One can
show [34, 43] that ∂tF(b) · v3,(b) keeps its sign for any F(b) ̸= ±v3,(b); hence, one direction, v3,(b)

or −v3,(b), is a globally stable fixed point whereas the other is unstable.

Another useful quantification of the fixed point is given by a linear stability analysis. With-
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out loss of generality, assume that v3,(b) is the stable fixed point. Substituting F(b) = v(3) + δF
into Eq. (1.30), and keeping terms up to order O(δF), we have

δ̇F = (v×
3,(b) · T(b) − λ3v×

3,(b)) · δF. (1.31)

The stability matrix (v×
3,(b) · T(b) − λ3v×

3,(b)) has a zero eigenvalue that corresponds to v3,(b),
and two nonzero ones. The real values of the latter two, denoted hereafter by α1 and α2, are
negative, giving the rates at which an aligned state is restored from a slightly misaligned one.
This quantity characterizes the alignability strength of self-aligning objects.

The real eigenvalue λ3 characterizes the ultimate rotation of an externally driven self-
aligning object. The choice of a rotation sense under a unidirectional force— given by the
sign of λ3— implies a chiral response. Such richer responses can be exploited to obtain “steer-
able colloids”— objects whose orientation and transport can be controlled in much more de-
tail. One example is the application of external torque by a rotating uniform magnetic field to
achieve efficient transport of chiral magnetic objects [2]. This is based on the dynamics accord-
ing to V = TT · τ. Another example, which is relevant to this Thesis, is the ability to achieve
orientational alignment of asymmetric objects by applying an external force.

Sedimentation of many identical, self-aligning, non-interacting objects, which are initially
distributed in different orientations, results in partial orientational alignment. It is partial be-
cause each object has its own phase, depending on its own initial orientation. Refs. [46–48]
provided two time-dependent forcing protocols to reach full alignment of non-interacting, self-
aligning objects— (1) a force randomly alternating in time between two directions, and (2) a
force uniformly rotating about an axis. The theory guarantees full alignment only in the limit
of an infinitely dilute system, in which the interaction between the objects is neglected. The
effect of hydrodynamic interactions on orientational alignment is one of the subjects studied
in this Thesis.

1.4.4 Stokeslets Objects

In this Thesis we aim to study general properties of driven asymmetric objects, thus, we do not
restrict ourselves to specific object shapes. A useful approach to demonstrate, or to numerically
explore, generic trends is through randomly generated objects. Arguably the simplest form of
an arbitrarily shaped object is the so-called stokeslets object — a discrete set of small spheres,
separated by much larger, rigid distances, where each sphere is approximated as a point force.
The usefulness of this simple type of objects was illustrated in Ref. [34] which studied general
properties of the motion of a single self-aligning object. We now present in detail how the
mobility matrix of stokeslets objects can be determined explicitly.

The mobility matrix of stokeslets objects can be derived self-consistently from linear rela-
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tions describing the stokeslets’ configuration [34, 49]. This method is based on the approach
of Kirkwood and Riseman, as described by Ref. [50]. Consider an object consisting of N
stokeslets, which moves with linear and angular velocities V and ω. The configuration and
its kinematics are represented by the following sets of N 3-vectors (denoted by underlined let-
ters, see Sec. 1.8): the stokeslets’ strengths, f = (f1, . . . , fN); their positions measured from the
object’s origin, r = (r1, . . . , rN); and the velocities of the spheres representing the stokeslets,
v = (v1, . . . , vN). Each sphere is of radius ϱ, where ϱ < min(r1, . . . , rN). An illustration of a
stokeslet object is given in Fig. 1.3 (see also Fig. 2.2). The boundary conditions at the sphere
surface enter only through its self-mobility coefficient (i.e., through the use of the Stokes mo-
bility). The velocity of the nth sphere is known from the object’s linear and angular velocities,
vn = V + ω × rn. In a matrix form we can write

v = U ·
(

V
ω

)
, with U =


I3×3,−r×1

...
I3×3,−r×N

 . (1.32)

Next, we derive the linear relation between the stokeslets and the spheres’ velocities. Consider
the stokeslet at position rn. The flow at that point is generated by the other stokeslets, u(rn) =

Σm ̸=nG(rn − rm) · fm. The stokeslet at that point is proportional to the velocity of the sphere
relative to the local flow, fn = (6πηϱ)−1 (vn − u(rn)). This gives a linear relation between the
stokeslets and the velocities of the spheres,

v = L · f, (1.33)

where the 3N × 3N matrix L is composed of the following N2 3 × 3 blocks:

(Lnm) =

{
G(rn − rm) if n ̸= m
(6πηϱ)−1I3×3 if n = m

. (1.34)

Let us now find the mobility matrix, in Eq. (1.23), which gives the object’s linear and angu-
lar velocities as a response to the external force and torque acting on it. The latter two must be
equal to the sum of the stokeslets and the corresponding total torque, respectively. In a matrix
form we can write (

F
τ

)
= UT · f, (1.35)

where U is defined in Eq. (1.32). Using the linear relations of Eq. (1.32), Eq. (1.33), and Eq. (1.35)
we have

UT · L−1 · U ·
(

V
ω

)
=

(
F
τ

)
From this expression we identify the self-mobility matrix as

M =
[
UT · L−1 · U

]−1
. (1.36)
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Figure 1.3: Illustration of a stokeslet object. The object comprises small spheres, with radius ϱ,
separated by rigid, dragless distances. Each sphere represents a stokeslet (red solid arrows).
The linear velocity of the i-th stokeslet is vi (green dashed arrows), and its position relative to
the object’s origin is ri (black dashed lines).

The expression in Eq. (1.36) allows to calculate the mobility matrix of stokeslets objects,
based on the stokeslets’ configuration, the radius of the spheres they represent, and the Oseen
tensor alone. The method described here can be generalized to the case of a discrete set of
spheres with different radii [34, 49], or to the case of non-sparse objects [49]. In the latter
scenario one can use the Rotne-Prager-Yamakawa tensor [51, 52]— a finite-size correction to
the Oseen tensor. In addition, stokeslets objects provide a framework for calculating mobilities
of compact objects, as mentioned in Sec. 1.3.1.

1.5 A Pair of Objects

The motion of two objects involves long-ranged correlations, excited by the force on each ob-
ject. The self-mobility of a single object (Eq. (1.23)) can be generalized to the case of two or
more objects which are driven through a viscous fluid— the velocities of the suspended ob-
jects at a given moment are proportional to the external forces acting at that moment [53]. In
Particular, the instantaneous response of two rigid objects, a and b, subject to external forces
and torques Fa, Fb and τa, τb is captured by a 12 × 12 pair-mobility matrix [24, 32, 53]:

Va

ωa

Vb

ωb

 =


Aaa (Taa)T Aab (Tba)T

Taa Saa Tab Sab

(Aab)T (Tab)T Abb (Tbb)T

Tba (Sab)T Tbb Sbb




Fa

τa

Fb

τb

 . (1.37)

As in the single-object case, the pair-mobility in Eq. (1.37) is a symmetric and positive definite
matrix. It depends on the whole geometry of the system (i.e., the shapes of the objects, their
mutual configuration, the shapes of the surrounding boundaries, and the choice of objects’ ori-
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gins), as well as the boundary conditions at all the surfaces. The diagonal 6 × 6 blocks (with
the superscripts aa or bb) correspond to the self-response of the objects, which nevertheless de-
pends on the configuration of both objects. The off-diagonal 6× 6 blocks (with the superscripts
ab or ba) describe the pair hydrodynamic interaction.

Previous studies on the mobility of object pairs and the resulting time-dependent trajecto-
ries focused on the case of symmetric objects, e.g., spheres [54–56], and spheroids [57–60]. In
addition, several numerical techniques were developed to study pair-mobilities of arbitrarily
shaped colloids [61, 62]. The hydrodynamic interaction between two identical sedimenting
spheres, isolated in an unbounded fluid, affect the magnitude and the direction of the individ-
ual sphere’s motion [54], see right panel of Fig. 1.2. Nevertheless, the interaction does not bring
about any relative translation— the spheres neither reduce nor increase their mutual distance
while settling through the fluid. This remarkable result can be related to the time-reversal
symmetry of the Stokes equations [63]. Assume by negation that the spheres get further apart
while forced along the −z direction. Reversibility implies that if the forces are reversed, i.e.,
pointing along the z direction, then the spheres will get closer; however, reversing the forces
does not change the physical picture, and we reach a contradiction. Thus, we deduce the fact
that the spheres maintain their relative separation under the same force.

1.5.1 Hydrodynamic Pseudopotentials

Pair configurations which deviate from the geometry of two spheres in an unbounded fluid
may lead to relative translation induced by hydrodynamic interaction. For instance, consider
two point-like objects (stokeslets) placed in parallel to a solid wall and forced away from the
wall. The flow generated by one stokeslet will advect the other object towards it (and vice
versa); see flow lines of a stokeslet near a wall on the right panel of Fig. 1.1. Hence, two
objects moving away from the wall develop relative velocity, making them approach one an-
other. In the same manner, settling of two spheres towards the wall leads to separation be-
tween the spheres, as was demonstrated in numerical simulations by Tran-Cong and Phan-
Thien [62]. Squires and Brenner [64] showed how such flow-mediated effects can explain the
optical tweezers experiments in Ref. [65], which measured long-ranged attraction between two
like-charged spheres in the presence of a similarly charged wall. Similar apparent interactions
were observed in other pair configurations [66], as well as in more complex phenomena, such
as collective phonon-like excitations in driven object arrays [67, 68]. Squires [69] referred to
such effects as “hydrodynamic pseudopotentials” as the apparent interactions merely originate
from the flow velocity fields generated by the driven objects rather than from any direct, e.g.,
electrostatic or van der Waals interaction.

Whereas previous studies of such hydrodynamic couplings treated specific experimental
scenarios, this Thesis addresses the general geometrical principles underlying apparent hydro-
dynamic interactions.
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1.6 Three to Many Objects

The vanishing relative velocity between two spheres is violated already at the level of three
spheres. Moreover, it has been shown that the settling trajectories of three spheres in a verti-
cal plane within a quiescent, unbounded 3D-fluid are sensitive to the initial configuration of
the spheres [70]. This chaotic behavior arises purely from hydrodynamic interactions in the
inertia-less regime. Although the Stokes equation governing the flow are linear, the dynamics
of a driven suspension is dictated by a nonlinear equation, including, for example, the 1/R
Oseen interaction between object pairs with mutual separation R; see Eq. (1.15). The effect of
the nonlinear, long-ranged interactions is even more pronounced in the case of a many-body
system. There, they lead to a stochastic-like behavior of the driven suspension. Examples
for related ubiquitous physical processes are sedimentation— the settling of colloidal objects
under gravity [71]; bed fluidization [72]— where an upward constant fluid flow is injected
through a settling suspension; and externally sheared colloidal materials [73]. An example
for clear evidence of stochasticity is the diffusion of a tracer object in the midst of the driven
suspension, as was observed in numerical simulations [74] and experiments [75, 76] of sedi-
menting non-Brownian spheres.

1.6.1 Sedimentation

We focus on steady sedimentation, i.e, a bulk of settling objects with a constant, spatially uniform
number density, and whose statistical state is stationary [77]. The many-body long-ranged
interactions, and the non-equilibrium nature of this process, lead to various paradoxes where
theory or simulations do not agree with experiments. Some of these paradoxes were eventually
resolved, whereas others are still under debate; see recent Reviews in Refs. [63] and [78]. In this
section we present the problem of sedimenting spheres, which has been extensively studied in
experiments and previous theoretical works.

Consider a suspension consisting of spheres of radius ℓ. Each sphere is subjected to a con-
stant external force— a combination of gravity and buoyancy— F = − 4πℓ3

3 (ρo − ρ f )gẑ, where
ρo is the object’s mass density and g is the acceleration of gravity. We indicate the velocity
of an isolated sphere by Vs, which according to Stokes’ Formula reads Vs = F/(6πηℓ). In a
sedimenting suspension, the many-body hydrodynamic interactions result in a distribution of
objects’ velocities, both in parallel and perpendicular to gravity. In the dilute limit, a naïve
estimation of the mean settling velocity can be achieved by calculating the velocity of a test
object, while all the other objects are assumed to be point-like,

V̄i = Vs,i +
∫

L3
Gij(r)Fjc0dr, (1.38)

where G is the Oseen tensor given in Eq. (1.15), c0 is the mean number density of the suspen-
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sion, and L3 is the volume of the system. Since G ∼ 1/r the integral in Eq. (1.38) diverges
with the size of the system, V̄ ∼ Vsφ(L/ℓ)2, where φ = c04πℓ3/3 is the volume fraction of the
suspension. However, experiments clearly indicate a finite mean settling velocity, measuring
V̄ ≈ Vs(1 − 5φ) for the dilute limit φ ≪ 1. While two isolated sedimenting spheres settle
faster than a single one, many spheres, on average, settle more slowly (this effect is sometimes
termed hindered velocity). A quantitative theoretical treatment that explains the experimental
results was first given by Batchelor [79]. He noted that in a finite container, having an impen-
etrable bottom, the mean velocity of the whole suspension must vanish; Thus, he concluded
that there must be a steady fluid backflow from the bottom of the container, which on average
cancels the flow generated by the settling spheres. The volume flux carried by the sedimenting
objects, and therefore the backflow, is proportional to φ. An explicit calculation yields [79, 80]

V̄ = Vs(1 − 6.55φ). (1.39)

(An alternative renormalization analysis was given by Hinch [81]. He modified the fluid equa-
tions by considering effective density and viscosity.)

Another key issue of steady sedimentation, which is still under debate, is the magnitude
of the settling velocity variance. Caflisch and Luke [82] pointed out that the magnitude of ve-
locity fluctuations of individual objects should diverge with the system’s size. This prediction
has been evident in numerical simulations [74, 83–86] as well; however, experimentally, the
indefinite growth of velocity fluctuations with system size has not been observed [71, 75, 76].
Over the years, several theories [63, 87–89] have been developed to resolve this discrepancy
between experiments and theory or simulations.

The extent of object’s velocity fluctuation in steady sedimentation is directly related to the
statistics of objects’ number density. This can be shown by the following scaling argument of
Ref. [80]. Consider a blob of radius R. The number of objects inside the blob has an average
∼ c0R3, and, assuming Poissonian fluctuations, a standard deviation ∼

√
c0R3. The velocity

fluctuation of the blob can be found by equating the force fluctuation within the blob and the
total drag acting on it, 6πηRδV =

√
c0R3F. Thus, the velocity variance grows as the linear size

of the blob, δV2 ∼ R. Since there is no limitation on the size of the blob, this scaling argument
suggests that the variance of settling velocity should diverge with the system’s size L. This
is the famous Caflish-Luke result. Conversely, if we demand that the velocity fluctuation be
independent of system size, then the variance of the number of objects in the blob should
increase as R2, i.e., as the surface rather than the volume. (See Sec. 1.6.2 below.)

The relation between concentration and velocity fluctuations can be quantified more ex-
plicitly [63, 89]. A local fluctuation in number density, c(r), corresponds to a fluctuation in
force density, c(r)F, which in turn generates a flow

ui(r) =
∫

Gij(r − r′)c(r′)Fj(r′)dr′ = −F
∫

Giz(r − r′)c(r′)dr′. (1.40)
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The resulting velocity point-correlation reads

⟨u2
i (0)⟩ = F2

∫
Giz(r′)Giz(r′′ + r′)⟨c(r′)c(r′′ + r′)⟩dr′dr′′ ∼

∫ 1
r2 ⟨c(0)c(r)⟩dr, (1.41)

or in Fourier space

⟨u2
i (0)⟩ =

c0F2

(2π)3

∫
|G̃iz(q)|2S(q)dq ∼

∫ 1
q4 S(q)dq, (1.42)

where
S(q) = c−1

0

∫
⟨c(0)c(r)⟩eiq·rdr (1.43)

is the static structure factor of the suspension. If there are no long-range correlations in concen-
tration fluctuations, i.e., S(q) ∼ Constant, then the integral in Eq. (1.42) diverges linearly with
the size of the system, in accordance with the scaling result above. Therefore, in the inertia-less
regime, finite velocity fluctuations must be accompanied with a mechanism which smooths in-
homogeneities and results in density correlations characterized by S(q → 0) = qα with α > 1.
Indeed, the latter property was observed in experiments [90] and numerical simulations [91]
of settling spheres; see also Sec. 1.6.2.

The experiments in Refs. [71] and [92] observed large-scale velocity correlations in the form
of swirls, having a finite range of ξ ≈ 20ℓφ−1/3. They measured for 0.01% < φ < 5% a finite ve-
locity variance ⟨u2⟩ ∼ ξ whenever the size of the system (container) was larger than the typical
length ξ. Following these observations of hydrodynamic screening, several screening mecha-
nisms have been suggested, where a characteristic length emerges from correlations between
concentration fluctuations [87], e.g., as a result of stratification [93, 94]; inertial effects [89];
side-wall effects [89]; and noise-induced concentration fluctuations [63, 88].

In this section we have focused on sedimentation of spherical objects, as this phenomenon
demonstrates well the underling physics and the relevant questions referring to the dynamical
process of sedimentation. We note that sedimentation of non-spherical suspensions, such as
spheroids [95, 96], rod-like objects [97–103], and permeable spheres [104], were studied as well.
Moreover, it is crucial to mention that these systems show qualitatively different behavior
from the spherical case. For instance, dilute suspensions of rods exhibit clumping instability,
alignment in the direction of gravity, and occasional flipping [99].

In the next Subsection we present a standard model for analyzing correlations in sedimen-
tation of spheres. As was indicated above, this steady, dynamical process involves suppression
of long-wavelength concentration correlations. Sec. 1.6.2 presents this property— known as
hyperuniformity— in the more general context studied recently.
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Fluctuating Hydrodynamics of Steady Sedimentation

Levine, Ramaswamy, Frey, and Bruinsma (LRFB) [88] studied a stochastic continuum model
(fluctuating hydrodynamics) of steady sedimentation. They considered a coarse-grained model,
ignoring microscopic details, that accounts for large length and time scales of the system.
In such a description only the most slowly-varying fields are considered. For steady sedi-
mentation, these are two conserved variables [105]— concentration of suspended objects and
momentum density of the suspension. The aforementioned chaotic behavior of many-body
dynamics in Stokes flow enters into the description of the long wavelength degrees of free-
dom as two stochastic terms— random fluxes of objects, which is a direct effect of the elim-
inated fast degrees of freedom, and an indirect, diffusive flux. The latter is characterized by
a phenomenological matrix of diffusion coefficients D, measurable in experiments [75]. The
fluctuating object fluxes f(r, t), are assumed to follow a Gaussian white noise with variance
⟨fT(r, t)f(r′, t′)⟩ = 2c0Nδ(r − r′)δ(t − t′) [63, 88], where the phenomenological parameters N

can be determined from numerical simulations [91]. The two non-Brownian stochastic re-
sponses emerge from the complex many-body interactions excited by the external drive F at
each object, therefore: (i) They are not bound to obey a fluctuation-dissipation relation, i.e., D

is not necessarily equal to N. (ii) Based on dimensional considerations, both phenomenologi-
cal parameters, D and N, should scale as ℓVs ∼ F/η. (iii) Following the axial symmetry of the
system, D and N must be axisymmetric tensors, e.g., Dij = D⊥δij + (Dz − D⊥) δizδjz, where ⊥
refers to the direction perpendicular to gravity.

Following the above principles, the objects’ concentration and the velocity fields are cou-
pled via a stochastic advection–diffusion equation

∂tc(r, t) +∇ · [(c0 + c(r, t))V − D · ∇c(r, t)− f(r, t)] = 0, (1.44)

where c(r, t) is the fluctuation in concentration about the mean, and V(r, t) is the objects’ ve-
locity fluctuation field about the mean settling velocity V̄.

While the applicability of fluctuating hydrodynamics for describing steady sedimentation
has been criticized by some authors, e.g., in Ref. [78], it has been successfully applied to explain
several notable properties of steady sedimentation, as described below.

First, the original work by LRFB [88] yields the characteristic length ξ (up to prefactor)
that was measured in early experiments [71, 92]. In their model, the objects are point-like,
and thus, are merely advected with the fluid velocity, V = u, where u is given in Eq. (1.40).
Consequently, the objects’ flow is divergenceless (∂iVi = 0) and proportional to c through the
long-ranged interaction (G(r) ∼ 1/r). This results in a nonlinear (∼ c2) advective term in the
stochastic equation for c(r, t), Eq. (1.44). Substituting V from Eq. (1.40) into Eq. (1.44), and
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Fourier transforming, gives

∂t c̃(q, t) + q · D · q + i
∫

qjG̃jz(k)c̃(k, t)c̃(q − k, t) + iq · f̃ = 0. (1.45)

LRFB utilized a self-consistent scheme, based on one loop expansion in mode-coupling the-
ory [106, 107], and found that the nonlinear advection renormalizes the diffusive relaxation
rate ∼ Dq2, adding a non-diffusive one ∼ γ0(q⊥/q)2. The constant γ0 depends on the the
mean concentration c0, the Péclet number of the suspension Pe ≡ F/(ηDz), and the ratios be-
tween the phenomenological parameters D and N. The resulting structure factor, Eq. (1.43),
reads

S(q) =
Nzq2

z + N⊥q2
⊥

Dzq2
z + D⊥q2

⊥ + γ0(q⊥/q)2
. (1.46)

The non-diffusive relaxation rate γ0(q⊥/q)2 causes S(q) to decay to zero as q2, except for the
line q = qẑ for which S(qz → 0) = Nz/Dz. The nonlinear mechanism by LRFB produces
screening— that is, regulates velocity variance according to Eq. (1.42)— when the inhomo-
geneity is sufficiently anisotropic (as γ0 is nonzero for certain ranges of D⊥/Dz and N⊥/Nz;
see Ref. [88]).

There are other non-equilibrium processes that can be described by fluctuating hydrody-
namic models. In another example that explores sedimentation of spheres, it was shown that
Eq. (1.44) captures the essential details of more recent experiments, once a vertical concentra-
tion gradient (stratification) is included in the statistical properties of sedimentation [94].

1.6.2 Hyperuniformity

“Hyperuniformity” [108] refers to a system of point pattern that does not possess infinite-
wavelength fluctuations7. While a perfect crystal falls into this definition, recently, many stud-
ies indicated the hyperuniform structure of various disordered systems and highlighted the
importance of such characterization [108, 110–112]. The structure of these systems lies be-
tween that of a crystal, which is ordered and has long-ranged density correlations, and that
of a liquid— a disordered state, with no density correlations at large-scales. Below, following
previous studies, we provide a mathematical definition of hyperuniformity and mention the
interesting basic properties of hyperuniform systems, which are relevant to this Thesis.

Consider N points distributed in d-dimensional space. The point pattern’s statistics can be
characterized as follows: Let us mark by N(R) the number of points in a d-dimensional sphere
of radius R, whose center is positioned at some arbitrary point. The number variance of points
within the spherical window is

σ2
N ≡

⟨
N2(R)

⟩
− ⟨N(R)⟩2 , (1.47)

7Such point patterns are also known as “superhomogeneous” [109].
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where the angular brackets denote ensemble average over different realizations of the point
distribution. In the case of a Poisson distribution, for increasing window size, the number
variance scales as σ2

N(R) = ⟨N(R)⟩ ∼ Rd, viz, grows as the sphere’s volume. Systems in which
the number variance grows more slowly than Rd are termed hyperuniform8. A crystal is thus
hyperuniform since it has σ2

N(R) ∼ Rd−1 [108].

The suppression of long wavelength fluctuations in hyperuniform systems can be captured
by the static structure factor defined in Eq. (1.43). One can show [108, 112] that for such systems
S(q) → 0 as q → 0. This important signature of hyperuniformity is relevant to scattering
experiments.

Recent studies showed how hyperuniform structures are useful for designing materials
with photonic gaps [113, 114]; play a role in self-organization processes [110, 111, 115]; under-
lie non-equilibrium transitions from “active” to static absorbing states (including universality
with some resemblance to equilibrium phase transitions) [112]; and govern the structure of
some jammed systems, such as maximally random jammed object packings [116]. In this The-
sis we report a new type of dynamic hyperuniformity in the sedimentation of irregular objects
(Chapter 4).

1.7 Orientational Dynamics of a Rigid Object

The mobilities of a single, or many, asymmetric objects depend on the orientations of the ob-
jects. Therefore, the treatment of a suspension of asymmetric objects must include an efficient
representation of 3D object orientations. Below we provide such a convenient representation,
which will be used in the Thesis (Chapter 2 and Chapter 3).

1.7.1 Quaternions

Studying the dynamics of arbitrarily shaped objects involves the complexity of rotations in 3D
space. The orientation of a rigid object in the laboratory frame is defined by a 3D rotation of
axes affixed to the object (the body frame)— there is a 3× 3 rotation matrix R such that a vector
y(b) in the body frame is oriented along y(l) = R · y(b) in the laboratory frame. The choice of
the axes affixed to the object with respect to the laboratory frame is arbitrary. One way to
represent a rotation in three dimensions is by an axis of rotation, n̂, and a rotation angle, θ.
This representation consists of three independent variables since |n̂| = 1. The corresponding

8There are several subtleties concerning the windows’ shape and the choice of its center. We ignore these issues
for simplicity and clearer representation of the subject.
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rotation matrix is given by the Rodrigues’ rotation formula

Rij(n̂, θ) = (1 − cos θ)n̂in̂j + cos θδij + sin θϵikjn̂k. (1.48)

In this thesis we will use a more convenient representation of 3D rotations, which is given by
four parameters (Γ, Ω) defined as

(Γ, Ω) ≡
(

cos
(

θ

2

)
, n̂ sin

(
θ

2

))
. (1.49)

These are the Euler-Rodrigues parameters9 [117, 118] (also known as Euler parameters or unit
quaternion of rotation). The 4-vector Q̂ = (Γ, Ω) satisfies |Q̂| = Γ2 + Ω2 = 1. In terms of
computational simplicity, efficiency, and stability, this representation surpasses the alternative
ones (e.g., Euler angles, or the axis-angle representation described above); Therefore it is ubiq-
uitous in the fields of computer graphics and computer vision [119], as well as in numerical
studies of physical phenomena, e.g., calculations of aircraft orbits [120], molecular dynamics
simulations [121–123], and studies of colloidal motions [124, 125]. In addition, it can facili-
tate analytical description, as is evident in the elegant work by Favro [126] on the Brownian
motion of arbitrarily shaped objects. Below we describe the properties of the Euler-Rodrigues
representation.

1. The parameters (Γ, Ω) and (−Γ,−Ω) correspond to the same rotation. This comes from
the fact that rotating with angle θ about n̂ is equivalent to rotating with angle 2π − θ

about −n̂.

2. The rotation matrix as a function of (Γ, Ω) is given by

R(Γ, Ω) = I3×3 + 2ΓΩ× + 2(Ω×)2, (1.50)

where I3×3 is the identity matrix, and as defined above Ω× indicates the matrix (Ω×)ij =

ϵikjΩk, with ϵ being the Levi-Civita tensor.

3. Composition of two rotations: rotating by (Γ0, Ω0) = (cos(θ0/2), n̂0 sin(θ0/2)) and then
by (Γ′, Ω′) = (cos(θ′/2), n̂′ sin(θ′/2)), where n̂′ is measured in the body frame, results
in the parameters

(Γ′
0, Ω′

0) = (Γ′Γ0 − Ω′ · Ω0, Γ′Ω0 + Γ0Ω′ − Ω′ × Ω0). (1.51)

4. Connection between the object angular velocity and the time derivative of (Γ, Ω): Con-
sider an object whose orientation at time t results from the rotation (Γ(t), Ω(t)). A sub-
sequent rotation in an infinitesimal time interval dt can be represented by a small angle

9This representation is related to Pauli matrices: Any 3-vector y can be identified with a 2-dimensional matrix
Y = y · σ = ∑3

i=1 yiσi, where σi is the i-th Pauli matrix. A rotation in 3D by (Γ, Ω) corresponds to a 2-dimensional
rotation matrix W(Γ, Ω) = Γ + iΩ · σ, meaning y′ = R(Γ, Ω)y ⇐⇒ Y′ = W(Γ, Ω) · Y · WT(Γ, Ω).
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ω(b)dt ≪ 1 around some axis n̂, where ω(b) = ω(b)n̂ is the instantaneous angular ve-
locity of the object measured in the body frame. The orientation of the object at time
t + dt is given by combining, according to Eq. (1.51), the small orientation (1, n̂ω(b)dt/2)
successively to the given orientation (Γ(t), Ω(t)):

(Γ(t + dt), Ω(t + dt)) =
(

Γ(t) +
ω(t)dt

2
· Ω, Ω(t) + Γ

ω(t)dt
2

− ω(t)dt
2

× Ω

)
.

In a matrix form we can write(
Γ̇
Ω̇

)
=

1
2

(
0 −ωT

(b)

ω(b) −ω×
(b)

)(
Γ
Ω

)
, or

(
Γ̇
Ω̇

)
=

1
2

(
0 −ωT

(l)

ω(l) ω×
(l)

)(
Γ
Ω

)
, (1.52)

where ω(l) = R(Γ, Ω) · ω(b) is the angular velocity measured in the laboratory frame.
Given the angular velocity evolution ω(l), the object’s orientational dynamics can be
found by numerical integration10 according to Eq. (1.52).

5. Changing the laboratory frame from Σ to Σ̄ by rotation (Γ0, Ω0) corresponds to(
Γ̄
Ω̄

)
=

(
Γ0 ΩT

0

−Ω0 Γ0I3×3 − Ω×
0

)(
Γ
Ω

)
. (1.53)

Since all the 4-vector considered here are of norm 1, the above transformation is unitary.

6. The dot product of two orientation 4-vectors is given as usual by

(Γa, Ωa) · (Γb, Ωb) = ΓaΓb +Ωa ·Ωb = cos
(

θa

2

)
cos

(
θb

2

)
+(n̂a · n̂b) sin

(
θa

2

)
sin
(

θb

2

)
.

The unitary transformation in Eq. (1.53) guarantees that the dot-product is conserved
under rotations of the laboratory frame.

1.8 Glossary of Main Notations and Symbols

The dynamics of arbitrarily shaped objects is complex and requires an elaborate notation. We
use the following notation regarding vectors, tensors, and matrices throughout the Thesis:

1. 3-vectors are denoted by a bold letter, v, and unit 3-vectors by a hat, v̂.

2. A set of 3-vectors are denoted by underscore, F.

3. Matrices are marked by a blackboard-bold letter, e.g., M, where the dimension of the
matrix is understood from the context.

10While using the numerical scheme it is important to preserve the relation Γ2 + Ω2 = 1 [121].
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4. Tensors of rank 3 are denoted by a capital Greek letter, e.g., Φ.

5. Subscripts with parentheses, e.g., M(2), represent a term in a multipole expansion.

6. In×n is the n × n identity matrix.

7. The matrix y× obtained from the vector y is defined as (y×)ij = ϵikjyk, such that, for any
vector x, y× · x = y × x.

Next, we provide the main symbols and definitions which are used in the current Chapter
and in the work to follow:

1. u: fluid velocity.

2. η: the fluid’s viscosity.

3. G(r): The Oseen tensor.

4. ℓ: the typical linear size of an object, e.g., the radius of a sphere, or one of the axes of a
spheroid. For objects of irregular shape, the linear length which is relevant to mobility
problems (known as the “hydrodynamic radius”) is proportional to the object radius of
gyration [34].

5. V: the linear velocity of an object.

6. ω: the angular velocity of an object.

7. F: the external force acting on an object.

8. τ: the external torque acting on an object.

9. M: Full mobility matrix.

10. A: Alacrity matrix, which gives the linear velocity of an object as a response to an exter-
nal force.

11. T: Twist matrix, which gives the angular velocity of an object as a response to an external
force.

12. object’s origin: the point about which the external torque on an object and its linear
velocity are measured.

13. λ3: the real eigenvalue of the T matrix of a self-aligning object.

14. t−1
align: the slowest rate at which a self-aligning object, once misaligned, returns to its

aligned state under constant force. This rate is given by t−1
align = αF/(ηℓ2), where α is

a dimensionless parameter related to the component of T via max
{

α1ηℓ2, α2ηℓ2}; see
Eq. (1.31) and the text below it.

15. φ: volume fraction of a suspension.

16. (Γ, Ω): Euler-Rodrigues 4-parameters which represent the object’s orientations.
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1.9 Outline of the Thesis

In this Introduction we have presented the crucial role of hydrodynamic interactions in the
dynamics of externally driven colloidal dispersions. The theories established in previous stud-
ies mostly focused on suspensions of symmetrically shaped objects. On the collective level,
the long-ranged interactions may create large-scale structures and strong fluctuations, as in
the sedimentation of spherical colloids. At the level of a forced pair of symmetric objects, sev-
eral works addressed the apparent hydrodynamic interactions (pseudopotentials) which were
observed in experiments involving confined geometries. The dynamics of arbitrarily shaped
objects has been examined more recently, at the level of a single object. The combination of
driving and hydrodynamics generally leads to rotation-translation coupling (i.e., in the case
of irregular objects). In turn, such coupling can be exploited to achieve rotational coherence
between non-interacting colloids.

The rich behavior of an isolated, irregular object under external drive raises two ques-
tions: (1) What is the effect of hydrodynamic interactions on the orientational alignment of
self-aligning colloids? (2) More generally, in a system of two or many colloids, do irregular
objects exhibit new phenomena which is absent in the case of symmetric colloids?

In this Thesis we address these fundamental questions. We consider the limits of zero
Reynolds number and high Péclet number, viz, we neglect inertia and thermal fluctuations.
We aim to explore general properties of the hydrodynamic interaction which are independent
of the nature of specific objects. We thus do not restrict ourselves to specific shape, but rather
analyze arbitrarily shaped objects. The following Chapters are organized as follows:

• The feasibility of actually achieving rotational coherence of self-aligning colloids awaits
experimental investigations. Until then, we further strengthen the theoretical basis of
this phenomenon by studying in Chapter 2 the effect of hydrodynamic interactions on
orientational alignment schemes. We study the properties and symmetries governing
the hydrodynamic interaction between two identical, arbitrarily shaped objects. We treat
analytically the leading (dipolar) terms of the pair-mobility matrix, affecting the instan-
taneous relative linear and angular velocities of the two objects at large separation. The
time-dependent effects of the hydrodynamic interactions are explicitly demonstrated
through numerically calculated trajectories of model self-aligning objects composed of
four stokeslets. The two key results of Chapter 2 are: (1) The instantaneous hydrody-
namic interaction gives rise to relative translation and rotation between the objects. The
latter linearly degrades the orientational alignment by an external time-dependent drive.
(2) The separation between pairs of self-aligning objects typically increases with time.

• Motivated by these results, in Chapter 3 we continue to explore the hydrodynamic pair-
interaction, focusing on its effect on relative translation rather than relative rotation. We
expand the theoretical treatment along two separate lines. First, we study the symme-
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tries of the instantaneous interaction in relation to the issue of hydrodynamic pseudopo-
tentials. Secondly, we determine the mechanism which results in the typical repulsion
between two self-aligning objects presented in Chapter 2. We compare this repulsion
with the dynamics of a more symmetric case of uniform spheroids.

• The results of Chapter 2 and Chapter 3 lead us to Chapter 4 in which we study the sed-
imentation of irregular objects. First, based on the effects studied in the previous Chap-
ters, we provide a qualitative scaling argument for how self-aligning objects can either
smooth, or enhance, inhomogeneities in a sedimenting suspension. We then use fluctuat-
ing hydrodynamic to study the steady sedimentation of self-aligning objects. We provide
quantitative predictions for the behavior of this system, focusing on its hyperuniform
structure and screened velocities.

• Finally, in Chapter 5 we propose future theoretical directions motivated by the results
and indicate the experimental significance of their implications.

Several appendices at the end of the Thesis provide technical details, which may be useful
in future studies.
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Chapter 2

Hydrodynamic Interactions between
Two Forced Objects of Arbitrary Shape:
Effect on Alignment1

As discussed in Sec. 1.4.3 above, an irregular, self-aligning object will align itself with an exter-
nal driving force. Many such non-interacting objects can be brought to full orientational align-
ment by a time-dependent drive [46–48]. The motivation of the current Chapter is to explore
the effect of hydrodynamic interaction (HI) between two irregular objects on their correlated
dynamics, in particular, their mutual alignment. However, the results introduced below have
a broader impact on understanding the role of HI in the motion of asymmetric driven colloids
in general.

The theoretical groundwork for treating the HI between arbitrary objects in Stokes flow was
laid by Brenner and O’Neill [53, 128]. The theory was subsequently applied to a pair of objects
of various regular shapes [54–60]. There are key differences between regular objects, such
as uniform spheroids, and the irregular objects studied here. The symmetries of a uniform
spheroid lead to: (a) the absence of a translation-rotation coupling for a single object, and
therefore lack of alignability by an external force; (b) the absence of a 1/R2 contribution to the
relative velocity developed between two such objects at mutual distance R (see below). In this
Chapter we focus on simple, general properties of the pair HI between two arbitrarily shaped
objects at zero Reynolds number, and the resulting effect on their alignment. The study of
translational effects will be presented in the subsequent Chapter 3.

The current Chapter is made of two distinct parts. The first part, Sec. 2.1 together with
Sec. 2.2, treats rigorously the instantaneous HI, i.e., the pair-mobility matrix. We use Brenner’s

1The material presented in this Chapter was published in T. Goldfriend, H. Diamant, and T. A. Witten, Phys.
Fluids 27, 123303 (2015) [127].
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analytical framework [14, 129], specializing to the leading order of the HI in the distance be-
tween the objects (multipole expansion, also known as the method of reflections [32]). The sec-
ond part addresses the time-dependent trajectories of forced objects. This is a multi-variable,
highly non-linear dynamical system exhibiting complex and diverse dynamics. In this second
part we are limited to numerical integration of the objects’ trajectories. First, in Sec. 2.3 we de-
rive the resulting properties of model self-aligning objects composed of four stokeslets. Then,
in Sec. 2.4 we use them to perform numerical time integration for the evolution of randomly
generated object pairs and their alignment.

2.1 Pair-Mobility Matrix: General Considerations

We begin by discussing the general properties and symmetries of the pair-mobility matrix for
two arbitrarily shaped objects.

2.1.1 Structure of the Pair-Mobility Matrix

Consider two arbitrarily shaped rigid objects, a and b, with typical size ℓ, subject to external
forces and torques Fa, Fb and τa, τb in an unbounded, otherwise quiescent fluid of viscosity η.
In the inertia-less regime, the objects respond with linear and angular velocities to the external
forces and torques through a 12 × 12 pair-mobility matrix (see Sec. 1.5),(

Va

Vb

)
=

1
ηℓ

(
Maa Mab

Mba Mbb

)(
Fa

Fb

)
, (2.1)

where we define generalized velocity and generalized force 6-vectors, Vx = (Vx, ℓωx)T and Fx =

(Fx, τx/ℓ)T for x = a, b. We hereafter omit the factor (ηℓ)−1 (i.e., set ηℓ = 1). This, together
with the representation of the generalized forces and velocities, make the pair-mobility M

dimensionless and dependent on the geometry alone. Since V and τ depend on the choice
of object origins, so does the pair-mobility matrix. The transformation between pair-mobility
matrices corresponding to different origins is given in Appendix A.1.

The pair-mobility matrix is a function of the objects’ geometries, their orientations, and the
vector connecting their origins, indicated hereafter by R. (We define the direction of R from
the origin of object b to the origin of object a.) The geometry of object x is denoted by rx.
For example, if the object consists of a discrete set of Nx stokeslets (see Sec. 1.4.4), then rx is a
3Nx-vector specifying the positions of the stokeslets; otherwise, it represents the surface of the
object.

The pair-mobility matrix is positive-definite and symmetric [31–33]. Hence, Mab = (Mba)T,
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and the self-blocks can be written as

Mxx =

(
Axx (Txx)T

Txx Sxx

)
.

As in the analysis of Ref. [34] for isolated objects, the self-mobility matrix contains the fol-
lowing 3 × 3 blocks: the alacrity matrix A (translational response to force); the screw matrix
S (rotational response to torque); and the twist matrix T (translation–rotation coupling). The
twist matrix characterizes the alignability and chiral response of the object (the sense of rota-
tion under a force). In the present Chapter we deal with self-aligning objects, whose individual
T is necessarily non-vanishing; see Sec. 1.4.2. Furthermore, in the case of a pair of objects, the
presence of the other object makes the self-twist matrix, Txx, differ from the single-object one.
As to the off-diagonal blocks of the pair-mobility matrix, the symmetry of M (see Sec. 1.5)
implies the following structure:

Mab =

(
Aab (Tba)T

Tab Sab

)
, Mba =

(
(Aab)T (Tab)T

Tba (Sab)T

)
.

2.1.2 Further Symmetries of the Pair-Mobility Matrix

The discussion in the preceding subsection has been for a general pair of objects, which are
not necessarily identical. In the present subsection, we focus on the case in which the two
objects are identical in shape and orientation, i.e., ra = rb ≡ r. Our goal is to understand what
the instantaneous relative velocities (linear and angular) between the two objects are, when
the objects are subjected to the same external forcing. The restriction to identical objects makes
M invariant under exchange of objects. This additional symmetry is made of two operations:
interchanging the blocks Maa ↔ Mbb and Mab ↔ Mba; and inversion of R. That is,

M(r, R) = EM(r,−R)E−1, (2.2)

where E is a 12 × 12 matrix which interchanges the objects,

E =

(
0 I6×6

I6×6 0

)
, (2.3)

with I6×6 denoting the 6 × 6 identity matrix.

The symmetry to object exchange, when combined with the parity of M (i.e., whether it
remains the same or changes sign) under R-inversion2 has important consequences for the
effect of HI on alignment. If M has a definite parity one can determine what the relative
response of the objects to forcing is — i.e., whether they attain the same or the opposite linear

2Parity does not mean here symmetry under full spatial inversion, as such an operation would turn the chiral
objects into their enantiomers; rather, we mean here symmetry under the inversion of R.
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and angular velocities. If the term is symmetric to inversion, the velocities would be identical,
and if it is antisymmetric, they would be opposite. This is because(

Maa(R) Mab(R)

Mba(R) Mbb(R)

)
= ±

(
Maa(−R) Mab(−R)

Mba(−R) Mbb(−R)

)
= ±

(
Mbb(R) Mba(R)

Mab(R) Maa(R)

)
, (2.4)

where the second equality comes from the response to exchange of objects, Eq. (2.2). Conse-
quently, under identical forcing of the two objects one finds,

Va =
(

Maa + Mab
)

F = ±
(

Mbb + Mba
)

F = ±Vb. (2.5)

Thus, since any M can be decomposed into even and odd terms, we find that only the odd
ones cause relative motions of the two objects.

The pair-mobility as a whole, however, never has a definite parity under R-inversion, i.e.,
it is made of both even and odd terms. This becomes clear when M(r, R) is expanded in small
ℓ/R, i.e., in multipoles. A general discussion of the parity of each multipole term is given in
the next section. For now, let us consider those two leading multipoles which are independent
of the objects’ shape, and therefore always exist. The monopole–monopole interaction (Oseen
tensor in Eq. (1.15)), which is the leading term in Aab making object a translate due to the force
on object b, is symmetric under R-inversion. The part of the monopole–dipole interaction
causing the second object to rotate due to the force on the first, i.e., the leading term in Tab,
is antisymmetric. For example, even the most symmetric pair of objects — two spheres — has
an R-symmetric Aab, leading to zero relative velocity, and an R-antisymmetric Tab, causing
them to rotate with opposite senses under an identical force [32]. Thus, for a general object,
the highest order which maintains M of definite parity is the monopole 1/R Oseen one, which
is even. (The self-blocks are constant up to order 1/R4; see below.)

From this discussion we can immediately conclude that, to leading order in the separation
of two identical, fully aligned objects, their instantaneous hydrodynamic interaction must linearly
degrade the alignment. The leading degrading term comes from Tab, their rotational response
to force, and is of order 1/R2. It is worthwhile to note again that such a rotational response
is present as well for a pair of uniform spheres or spheroids; yet, such regular objects are not
self-aligning to begin with.

The relation between object-exchange symmetry and the symmetry of the linear-velocity
response is intimately related to the issue of hydrodynamic pseudopotentials (Sec. 1.5.1), which
will be discussed in detail in Chapter 3.
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2.2 Far-Field Interaction: Multipole Expansion

There are two characteristic length scales in our problem: the typical size of the objects, ℓ, and
the distance between them, R = |R|. If ℓ ≪ R, we can write the pair-mobility matrix as a
power series in (ℓ/R),

M = M(0) + M(1) + M(2) + . . . ,

where M(n) ∼ (ℓ/R)n. The analysis of this expansion as given below holds for any pair of
objects, whether identical or not. The zeroth order, M(0), is a block diagonal matrix which is
made of the self-mobilities of the two non-interacting objects. (These should be distinguished
from Maa and Mbb, the self-mobilities of the interacting objects.)

The hydrodynamic multipole expansion (also known as the method of reflections) is based
on the Green’s function of Stokes flow, the Oseen tensor in Eq. (1.15). Using the simplified
units of this Chapter (ηℓ = 1), it is given by

Gij(r) =
1

8π

ℓ

r

(
δij +

rirj

r2

)
. (2.6)

This is a symmetric 3 × 3 tensor, invariant under r-inversion. A point force at r0, δ(r − r0)f,
generates a velocity field u(r) = G(r − r0) · f.

We obtain two general results concerning the multipoles of the HI between two arbitrary
objects. The two objects need not be identical3. The proofs are given in Appendix A.2.

1. The leading interaction multipole in the self-blocks of the pair-mobility matrix is n = 4. That is,
any response of one object to forces on itself, owing to the other object, must fall off with distance
R between the objects at least as fast as R−4.

2. The nth multipole has self-blocks of (−1)n parity, and coupling blocks of the opposite, (−1)n+1

parity. Thus, e.g., the leading term in Maa, proportional to R−4, is invariant under R-inversion,
and the R−4 part of Mab changes sign under R-inversion. Likewise for the multipole varying as
R−5, the Maa changes sign under R-inversion while Mab remains invariant.

These statements pertain to the mobility matrix. As to the propulsion matrix (the inverse of
the mobility matrix), the leading correction to the self-block becomes ∼ 1/R2, and the second
statement concerning parity remains intact.

We now consider for a moment two identical objects and specialize to the first and second
multipoles, i.e., the HI up to order 1/R2. The discussion in the preceding and current sections

3In fact, these results are not special to the HI but can be similarly proven for any multipole expansion. As such,
they were most probably derived before.
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implies the following form of the two leading terms in the pair-mobility matrix:

M(1) =

(
0 Mab

(1)

Mab
(1) 0

)
, M(2) =

(
0 Mab

(2)

−Mab
(2) 0

)
. (2.7)

In more detail: there are no first- and second-order corrections to the objects’ self-mobility.
Hence, these two multipoles have definite parities — the first is even, and the second is odd.
Consequently, the first multipole does not cause any relative motion of the two objects, whereas
the second mutipole makes them translate and rotate in opposite linear and angular velocities.

The essential characteristics of the first two multipoles are schematically illustrated in Fig. 2.1.
The first multipole arises directly from the Green’s function,

Mab
(1) =

(
G(R) 0

0 0

)
, (2.8)

where G(R) is the Oseen tensor, given in Eq. (2.6).

In the interaction described by the second multipole one object sees the other as a point,
see Fig. 2.1. Accordingly, this term contains two types of interaction: (1) the response of object
a to the non-uniformity of the flow due to the force monopole at object b (regarded as a point);
(2) the advection of object a (regarded as a point) by the flow due to the force dipole acting at
object b. These two effects are both proportional to ∇G(R) ∼ 1/R2. Each can be written as
a product of a tensor which arises from the medium alone, through derivatives of the Oseen
tensor ∇G(R), and another tensor which depends on the objects’ geometry. The second-order
correction to the velocity of object a is given by the sum of these two effects, each expressed in
terms of a coupling tensor Θ and an object tensor Φ

Va
(2) = Mab

(2) · Fb

Mab
(2) = Φa : Θ(R)− ΘT(R) : Φ̃b, (2.9)

where the double dot notation denotes a contraction over two indices. Eq. (2.9) contains three
tensors of rank 3, denoted by capital Greek letters. The first, Φ, with dimensions 6 × 3 × 3,
gives the generalized velocity of the object in linear response to the velocity gradient of the
flow in which it is embedded. The second, Φ̃, having dimensions 3 × 3 × 6, gives the force
dipole acting on the fluid around the object’s origin in linear response to the generalized force
acting on it. Both Φ and Φ̃ depend on the objects’ geometry alone4. The third tensor, Θ, with
dimensions 3 × 3 × 6, describes the coupling of these object responses through the fluid. It is
given by

Θskj(R) ≡
{

∂sGkj(r)|R j = 1, 2, 3
0 j = 4, 5, 6.

(2.10)

4These tensors are related to the two introduced by Brenner [129]. Brenner’s tensors give the force and torque
exerted on an object in linear response to a flow gradient in which it is embedded. Our Φ is related to these two
via the individual self-mobility matrix.
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Repeating the same procedure for Vb in response to Fa while using the odd parity of Θ, we get

Mba
(2) = ΘT(R) : Φ̃a − Φb : Θ(R). (2.11)

The tensors Φ and Φ̃ are not independent [24]. We now show that Φ = Φ̃T. The symmetry
of M implies that each multipole is also a symmetric matrix. Using Eq. (2.9) and Eq. (2.11), and
equating (Mba

(2))
T = Mab

(2), we get Φ̃a = (Φa)T and Φ̃b = (Φb)T.

To summarize, the matrix M(2) is given by

M(2) =

(
0 Φa : Θ(R)− [Φb : Θ(R)]T

−Φb : Θ(R) + [Φa : Θ(R)]T 0

)
. (2.12)

This results is valid for a general pair of objects. If the two objects are identical, the off-diagonal
blocks have the same form with opposite signs. The additional condition that the entire M

must be symmetrical implies then that each block by itself is antisymmetric.

By separating the tensors Φ and Θ into their symmetric and antisymmetric parts, the
second-order term of the pair-mobility matrix can be simplified further. It should be men-
tioned, in addition, that the Φ tensor depends on the origin selected for the object. These two
technical issues are addressed in Appendix A.3 and Appendix B, respectively. Finally, we note
that the terms in these tensors corresponding to the translational response vanish for spheres
and spheroids. Consequently, two such regular objects develop relative velocity only to orders
1/R3 and above (if at all; see Chapter 3).

2.3 Numerical Analysis for Stokeslet Objects

In the preceding sections we have derived the general properties of the instantaneous HI be-
tween two arbitrarily shaped objects. We now move on to the second part of this Section, ad-
dressing the time evolution of the two objects. This complicated problem is not tractable ana-
lytically, and we resort to numerical integration of specific examples. Because of the complexity
of the problem, and since we are interested in generic properties, we allow ourselves to restrict
the analysis to the simplest, even if unrealistic, objects— stokeslets objects (see Sec. 1.4.4). The
sparseness of these objects makes them free-draining, which may be valid for macromolecules
but not for compact objects.

We treat pairs of identical objects, each made of four stokeslets. To obtain representative
sampling of numerical examples we do not design these objects but create them randomly.
Four points are placed at random distances ranging between 0 and 1 from an arbitrary origin.
The origin is then shifted to the points’ center of mass. The radius ϱ of the stokeslets is taken
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Figure 2.1: Illustration of the two leading orders of the hydrodynamic interaction between
two forced objects. The leading term in the pair-mobility matrix (light blue/dash-dotted arrow
between the objects’ origins), decaying as 1/R, comes from the point-like response of object a
to the local flow caused by the force monopole on object b (blue/thick arrow). The next-order
term, decaying as ℓ/R2, has two contributions: (i) The point-like response of object a to the
local flow caused by the force dipole on object b (red/dashed arrow from the red/thin arrows
at object b to the origin of a). (ii) The response of object a to the local flow gradient caused by the
force monopole on object b (magenta/dotted arrow from the origin of b to the magenta/thin
arrows at object a).
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as 0.01. The resulting configuration is checked to be “sufficiently chiral”, in the sense that the
T-matrix of the individual object is strongly asymmetric, having a single real eigenvalue of
absolute value |λ3| > 0.005, which makes the object self-aligning (see Sec. 1.4.3). Examples of
the stokeslets objects we use are provided in Fig. 2.2.

The way to calculate the mobility of a single stokeslet object has been presented in Sec. 1.4.4.
First, we briefly present in Sec. 2.3.1 the simple extension of this method to pair-mobilities. We
calculate both the pair-mobility and the tensor Φ introduced in Sec. 2.1 and Sec. 2.2. The
latter allows us to more efficiently calculate pair mobilities up to second order in the multipole
expansion. Sec. 2.3.2 describes how we use the pair-mobility to numerically calculate the time
evolution of the pair configuration.

2.3.1 Pair-Mobility and Φ Tensor

As demonstrated in Sec. 1.4.4 the properties of a stokeslets object can be derived self-consistently
from the linear relations which describe the stokeslets’ configuration. This is done without
finding the stokeslets’ strengths explicitly. Below we find the pair-mobility matrix, and the
Φ tensor associated with a single object, given the stokeslet configuration and the size of the
spheres that they represent.

Each of the two objects, x = a, b, consists of Nx stokeslets, fx = (fx
1 , . . . , fx

Nx
), in a known

configuration, rx =
(

rx
1 , . . . , rx

Nx

)
. (We recall the notation, introduced in Sec. 1.8, where an

underlined letter denotes a set of N 3-vectors.) Here rx
n indicates the position 3-vector of the

nth stokeslet in object x with respect to the object’s origin. Each stokeslet is a sphere of radius
ϱ, where ϱ < min(rx

1 , . . . , rx
Nx
). The velocities of the spheres, vx

n, are known from the object’s
linear and angular velocities,

(
va

vb

)
=

(
Ua 0
0 Ub

)(
Va

Vb

)
, with Ux =


I3×3,−r x ×

1 /ℓ
...

I3×3,−r x ×
Nx

/ℓ

 , for x = a, b, (2.13)

where the matrix y× obtained from the vector y is as defined in the Sec. 1.8, (y×)ij = ϵikjyk.
Each stokeslet force is proportional to the relative velocity of the sphere that it represents with
respect to the flow around it as created by the other stokeslets. This gives a linear relation
between the stokeslets and the velocities of the spheres5,(

va

vb

)
=

(
Laa Lab

LabT
Lbb

)(
fa

fb

)
, where (2.14)

5An explicit derivation of this relation is given in Sec. 1.4.4.
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(Lxx
nm)ij =

{
Gij(r x

n − r x
m) if n ̸= m

(6πϱ/ℓ)−1δij if n = m

(Lab
nm)ij = Gij(R + ra

n − rb
m). (2.15)

First we find the pair-mobility matrix as a generalization of the analysis presented in Sec. 1.4.4.
The sum of the stokeslets and the corresponding total torque must be equal to the external gen-
eralized forces applied on the objects. In a matrix form we can write(

Fa

Fb

)
=

(
(Ua)T 0

0 (Ub)T

)(
fa

fb

)
. (2.16)

Using Eq. (2.13) and Eq. (2.14), we have

(
Ua 0
0 Ub

)T

·
(

Laa Lab

LabT
Lbb

)−1

·
(

Ua 0
0 Ub

)
·
(

Va

Vb

)
=

(
Fa

Fb.

)

From this expression we identify the pair-mobility matrix as

M =

(Ua 0
0 Ub

)T

·
(

Laa Lab

LabT
Lbb

)−1

·
(

Ua 0
0 Ub

)−1

. (2.17)

This expression allows to calculate the pair-mobility matrix, with the help of Eq. (2.13) and
Eq. (2.15), based on the stokeslets’ configuration and the Oseen tensor alone.

Next, we derive the Φx tensor of a stokeslets object x. From this tensor we may readily
obtain the second multipole of the pair interaction (cf. Sec. 2.2). The force dipole around the
origin of a forced object is given by Eq. (2.9), (rf)x ≡ (Φx)T · Fx. Similar to the Ux matrix
relating the stokeslets to the total generalized force, Fx = (Ux)T · fx, we define a tensor of
rank 3, Υx, which relates the stokeslet forces to the total force dipole on the object by (rf)x =

(Υx)T · Fx. (Note that no force dipole is applied on the individual stokeslets; being arbitrarily
small they possess only a force monopole.) Specifically, it is made of N blocks of 3 × 3 × 3,
given by (Υn)ijs = rn,sδij, n = 1 . . . N, i, j, s = 1, 2, 3 (i.e., rn,s is the s Cartesian coordinate of
the stokeslet n). Using Eq. (2.13) and Eq. (2.14), we have (rf)a = (Υa)T · (Laa)−1 · Ua · Va.
This implies (Φx)T = (Υx)T · (Lxx)−1 · Ux · Mx

self. Recalling that the matrices Mself and L are
symmetric, we finally get

Φx = Mx
self · (Ux)T · (Lxx)−1 · Υx. (2.18)

It is important to note that in the above derivation we compute M and Φ under the as-
sumption that, for each object, the stokeslet sizes are arbitrarily small compared to the dis-
tances between them, ϱ ≪ ℓ (where ℓ is the object’s radius of gyration). However, in a more
general case one can use the Rotne-Prager-Yamakawa tensor [51, 52], which corrects the Oseen
tensor for force distributions with finite size [49].
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2.3.2 Numerical Time Integration

We present a numerical integration scheme for the dynamics of two stokeslet objects. We
should first define the reference frames used in the scheme. Each rigid object is characterized
by axes which are affixed and rotate with it. We define the body frame such that its z axis
coincides with the object’s alignment axis (the corresponding eigenvector of the T-matrix).
The other two axes are selected arbitrarily. The z axis of the laboratory frame is defined along
the forcing direction. During the evolution we follow the translation and rotation of the body
frame in the laboratory frame.

We represent the orientation of an object by the Euler-Rodrigues 4-parameters [126], (Γ, Ω) ≡
(cos θ

2 , n̂ sin θ
2 ), where n̂ and θ are the axis and angle of rotation. The properties of this repre-

sentation are given in Sec. 1.7.

Since we choose the body frame such that the z-axis is the axis of alignment, the termi-
nal orientation of a self-aligning object under a constant force along the z-axis is (Γ, Ω) =

(cos(ωt+ζ
2 ), ẑ sin(ωt+ζ

2 )), where ζ is a constant phase which depends on the object’s initial ori-
entation at time t = 0.

The state of a pair of objects at time t is described by the position of the origins of the
objects, Ra(t) and Rb(t), and their orientation parameters, (Γa(t), Ωa(t)) and (Γb(t), Ωb(t)).
We time-integrate from the initial state, Ra

0 = (0, 0, 0), Ra
0 − Rb

0 = R0, (Γa
0, Ωa

0) and (Γb
0, Ωb

0),
as follows. Given the positions of the stokeslets at time t, the pair-mobility matrix, M(t), is
calculated as explained in Sec. 2.3.1, either exactly or using the multipole approximation. Then, the
linear and angular velocities of the objects are given by (Va(t), Vb(t))T = M(t) · (Fa(t), Fb(t))T.
From them the origins and orientations of the objects at time t + dt are derived according to

Rx(t + dt) = Rx(t) + Vx(t)dt (2.19)(
Γx(t + dt)
Ωx(t + dt)

)
= exp

[
dt
2

(
0 −ωxT

ωx ωx×

)](
Γx(t)
Ωx(t)

)
(2.20)

for x = a, b. During the evolution we make sure that the small stokeslet spheres do not overlap,
and that the pair-mobility matrix remains positive-definite. In practice we never encountered
such problems when using the exact pair-mobility matrices; when it did happen in the case of
the multipole approximation we stopped the integration.

We define a scalar order parameter which characterizes the degree of mutual alignment of
the two objects,

m ≡
[
(Γa, Ωa) · (Γb, Ωb)

]2
=
(

ΓaΓb + Ωa · Ωb
)2

. (2.21)

As required, the order parameter is invariant under 3-rotation (see property 6 in Sec. 1.7).
When the objects are aligned, (Γa, Ωa) = ±(Γb, Ωb), and m = 1; otherwise 0 ≤ m < 1. In the
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case of partial alignment, m = cos2(∆ζ
2 ), where ∆ζ is the mutual phase difference6.

Another scalar property of the two-object system is the energy dissipation rate. At time t,
the latter is given by

Ėdissipation = Va(t) · Fa(t) + Vb(t) · Fb(t). (2.22)

Since the pair-mobility matrix is positive definite the energy dissipation of the driven pair is
positive at all times (as demanded by the second law of thermodynamics).

2.4 Numerical Results: Effect on Alignment

We present in Fig. 2.3–Fig. 2.8 several examples for the numerically integrated evolution of ob-
ject pairs under various conditions. One can immediately appreciate the diversity of possible
trajectories. To make your way through this richness it is important to make two distinctions
between types of trajectories. The first distinction is between constant forcing (as in sedimen-
tation), which can make the objects only partially aligned without synchronizing their phases
of rotation [34, 43], and a time-dependent forcing protocol, which is known to lock the phase
of an individual object onto that of the force [46, 47]. The main issue examined below is how
the presence of HI affects these two behaviors. The second distinction, therefore, is whether
HIs are included (dashed, dotted and dash-dotted/colored curves) or turned off (solid gray
curves). In the absence of HIs (or when they get weak as the objects move far apart), the time-
dependent aligning force will make the objects fully synchronized, whereas under constant
forcing the objects will generally become unaligned.

The results are presented in a dimensionless form, using units such that η = |ω0| = 1 and
ϱ = 0.01. The distances between the stokeslets of each object are taken randomly between 0
and 1; hence, ϱ ≪ ℓ ∼ 1. The time-dependent forcing protocol is defined according to Ref. [47]:

F = F0 (− sin(ω0t) sin(θ), cos(ω0t) sin(θ),− cos(θ)) ,

where θ = 0.1π, F0 = −|λ3|−1, ω0 = sign(λ3) and λ3 is the real eigenvalue of the single-object
twist matrix. We examine both the trajectories of the separation vector connecting the origins
of the two objects, and the corresponding evolution of the alignment order parameter.

We begin with the case of a time-dependent forcing, Fig. 2.3 and Fig. 2.4. The first ob-
servation, most clearly demonstrated in Fig. 2.4(b), is that HI degrades the alignment of the
two objects, as has been rigorously inferred based on symmetry considerations in Sec. 2.1.2.
Another conclusion, supported by additional examples not shown here, is that most objects,
which start sufficiently far apart, especially if they start fully aligned, tend to repel each other

6If the symmetry of the objects is such that their phase difference is unobservable (e.g., two spheroids rotating
around their major axis), then we set it to zero.



2.4. NUMERICAL RESULTS: EFFECT ON ALIGNMENT 51

(Fig. 2.3). Even if they are not fully aligned, the growing distance and weakening interaction
make them individually more aligned with the forcing, and therefore also mutually synchro-
nized. Thus, the repulsion helps restore the alignment at long times. The increasing separation
occurs in the xy plane, while along the z axis the separation decreases and saturates to a finite
distance, dependent on initial conditions, see Fig. 2.3. The nature of this effective repulsion will
be addressed in Chapter 3, where we discuss in detail the effect of HI on the relative translation
of object pairs.

The repulsion is accompanied by a decrease in dissipation rate (up to small oscillations),
as demonstrated in Fig. 2.7. When the HI is turned off, the dissipation rate reaches a con-
stant value as the two independent objects set into their ultimate aligned state (solid curves in
Fig. 2.7).

The repulsive effect is observed for most examples of our randomly generated pairs of
objects but is not a general law. For instance, when the objects start at a sufficiently small sepa-
ration, some pairs remain “bound” in a limit cycle, oscillating about a certain mean separation
and mean orientational alignment, as demonstrated by the green/dashed curves in Fig. 2.3
and Fig. 2.4.

In Fig. 2.5 and Fig. 2.6 we examine the same properties under constant forcing. The two
effects— degradation in the alignment of a pair which is initially fully aligned, and mutual
repulsion— are observed here as well. Yet, in the absence of a time-dependent aligning force,
as the two objects move apart, alignment is not restored. At long times, and for the common
case of repulsion, we distinguish between two observed behaviors: a) The order parameter
continues to change without saturating to a constant value (e.g., red/dash-dotted curve and
cyan/dotted curve in Fig. 2.6(a) and Fig. 2.6(b), respectively). This non-intuitive result can
be explained as follows. The fact that the interaction becomes weak does not necessarily im-
ply that the accumulation of phase difference stops. If the two distant objects are partially
aligned we have m ≃ cos2(δωzt/2), where δωz is the difference between the objects’ angu-
lar velocity along the alignment axis. Hence, if the decay of δωz with time is slower then t−1

then phase difference will continue to accumulate. This depends on the detailed dynamics
of repulsion which will be addressed in Chapter 3. b) The other option is that m converges
to some value dependent on the initial state, with no particular chosen m (green/dash-dotted
curve in Fig. 2.6(b) and cyan/dash-dotted curve in Fig. 2.6(c)), i.e., the two objects continue
to rotate with a fixed relative orientation. In the examples that we checked there seems to be
a tendency toward ultimate anti-alignment (m = 0). Therefore, we also checked the stability
of anti-alignment in pairs which start from such a state. Fig. 2.6(d) examines the stability of
this configuration for objects initially confined to the xy plane (perpendicular to the force).
Whereas the aligned pair (blue/dotted curve) is unstable, the anti-aligned one (red/dashed
curve) remains stable for the duration of integration. It may well be that this stability survives
for a long but finite time, see e.g., dark red/dotted curve in Fig. 2.6(c). In addition, a separation
of the pair along the z-axis destabilizes an anti-aligned pair as well (examples not shown). Fi-
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Figure 2.2: Two examples of randomly generated self-aligning stokeslet objects, which were
used in the simulations. The objects comprise four stokeslets connected by dragless rods. The
origin of the objects is at point (0,0,0) and the aligning direction is −ẑ. The object on the left
corresponds to the dark red/dotted trajectories in the left panels of Fig. 2.5 and Fig. 2.6, and
the one on the right corresponds to the purple/dashed trajectories in the right panels of Fig. 2.3
and Fig. 2.4.

nally, we note that even if the final phase difference were arbitrary and uniformly distributed,
the value of m would be evenly distributed around 1/2 but non-uniformly, with larger weights
on m = 0, 1. (This follows from the definition of m, see Eq. (2.21).)

Fig. 2.8 compares results obtained using the full pair-mobility matrix of the stokeslet objects
with those obtained from the multipole (dipole) approximation. As expected, the two calcu-
lations agree for objects whose mutual distance increases with time, and disagree for objects
whose trajectories reach close proximity.

2.5 Discussion

Irregular objects display rich dynamics already at the level of a pair of objects, as has been
demonstrated above. In the present Chapter we have focused on the effect of the HI on the
orientational alignment of such object pairs.

The HI, in general, degrades the alignment. We have rigorously proven the instantaneous
linear degradation for fully aligned objects at large mutual distances. In other circumstances,
such as nearby or unaligned objects, the HI may have an opposite effect. The leading degrada-
tion effect in distance is dipolar rather than monopolar; yet, it is significant — a large mutual
distance (compared to the object size) is required to make the degradation negligible. More
quantitatively, the degradation will be significant when the perturbation to the angular veloc-
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Figure 2.3: Trajectories of the separation vector between the object’s origins, R(t), under time-
dependent forcing. The three rows, from top to bottom, correspond, respectively, to the sep-
aration along the z direction, its projection onto the xy plane, and its total magnitude. The
squares in the middle row indicate the state at the end of the simulation. The panels show re-
sults for three different objects indicated by different line styles and colors. The pairs of objects
start from either a random mutual orientation (left column) or their fully aligned state (right
column). The green/dashed trajectory on the right panels was integrated longer than 150 time
units to verify that it continues in a limit cycle.
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Figure 2.4: Alignment order parameter, m(t) (defined in Eq. (2.21)), as a function of time, under
time-dependent forcing, for the examples of Fig. 2.3. (a) Results for random initial orientations,
0 < m(t = 0) < 1 (examples on the left column of Fig. 2.3); the additional solid gray curves
correspond to non-interacting objects. (b) Results for initially fully aligned object pairs, m(t =
0) = 1 (right column in Fig. 2.3).

ity due to HI, δω, becomes comparable to the inverse of the time required to align a single
object. The unperturbed angular velocity is given by ω0 = λ3F. The dimensionless eigenvalue
of the self-twist matrix is generally found to be about an order of magnitude smaller than
the dimensionless self-mobility coefficient [2, 46, 47], i.e., ω0 ∼ 0.1F/(8πℓ2). As presented in
Sec. 2.1.2, δω ∼ TabF ∼ F/(8πℓ2)(ℓ/R)2. The alignment time is typically talign ∼ 10/ω0 (see
Fig. 2.4). Hence, the degree of degradation is talignδω ∼ 102(ℓ/R)2. The conclusion is that the
separation between the objects should be larger than ten times their size to maintain alignment.
In the case of many objects this implies a maximum volume fraction (ℓ/R)3 ∼ 10−3.

At the same time, as shown in Sec. 2.4, for most of our randomly generated pairs of objects,
the HI makes the rotating objects repel each other. As a result, at long times the HI usually
becomes negligible and each of the objects gets aligned again with the time-dependent force.
As will be explained in Chapter 3, this repulsion is related to the mutual rotation of the two
objects which causes them to glide away from each other. In fact, the objects need not be
irregular to exhibit this gliding effect; two forced spheroids which start parallel to one another
will experience the same repulsion [60, 124, 130]. (However, as will be shown in the next
Chapter, the dynamics resulting from the gliding effect is different for self-aligning objects
compared to spheroids.) For the case of a finite number of objects the repulsion will help
restore the alignment as the objects drift apart. It should be kept in mind, however, that the
repulsion is not a general law. We observed it for a few dozens pairs of stokeslet objects. Yet, a
few counter-examples have been also provided in Sec. 2.4.

An interesting counterpart of the effects discussed here is found in the interaction between
a forced object and a nearby wall [32, 131]. The wall can be represented by an image (though
not identical) object forced in the opposite direction [28]. As a result, the object will rotate and,
if it is non-spherical, also glide toward or away from the wall, as was indeed shown for a rod
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Figure 2.5: Trajectories of the separation vector between the objects’ origins, R(t), under con-
stant forcing. The meaning of the various panels are the same as in Fig. 2.3. In all the examples
shown here, the two objects repel each other except for the example which corresponds to the
blue/dashed curve in the left panels. (The repulsive trajectories were actually integrated to
times longer than presented here.)
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Figure 2.6: Orientation order parameter, m(t) (defined in Eq. (2.21)), as a function of time,
under constant forcing, for the examples of Fig. 2.5. (a) Results for random initial orientations,
0 < m(t = 0) < 1 (examples on the left column of Fig. 2.5); the solid gray curves correspond
to non-interacting objects. (b) Results for initially fully aligned object pairs, m(t = 0) = 1
(right column in Fig. 2.3). (c) Results for objects with initial partial alignment, m(t = 0) =
cos2(∆ζ/2), (rotating around the same axis with random initial phases ∆ζ). (d) The stability
of anti-alignment; shown are trajectories of two identical pairs, which start on the xy plane
from the same separation and axes of rotation but with different relative phases. Blue/dotted
and red/dashed curves represent, respectively, a pair which starts aligned (zero relative phase,
m(t = 0) = 1) and one which starts anti-aligned (relative phase of π, m(t = 0) = 0).
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Figure 2.7: Dissipation rate (defined in Eq. (2.22)) as a function of time for object pairs starting
from arbitrary orientations, under time-dependent forcing (a) and constant forcing (b). Dash-
dotted and dotted colored curves correspond to the examples of the same styles/colors in the
preceding figures. Solid curves show the results in the absence of hydrodynamic interactions.
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Figure 2.8: Comparison between the evolution of pair separations, R(t), obtained using the
full pair-mobility matrix (dashed, dotted and dash-dotted colored curves) and its multipole ap-
proximation (solid curves). Each panel presents three examples of pairs under time-dependent
(a) and constant (b) forcing. All pairs start from a fully aligned state. The multipole approxi-
mation includes the monopolar and dipolar terms.
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falling near a wall [131]. Obviously, the interaction of a self-aligning object with a wall will
also degrade the alignment.

This Chapter shows that asymmetry in sedimenting objects leads to a wealth of hydro-
dynamic interaction effects not seen for spheres. This study was undertaken to assess how
interactions disrupt the rotational synchronization of such objects. However, it proves to have
striking effects independent of this alignment. The prevalent repulsion, the occasional entrap-
ment and the intricate quasiperiodic motions shown above are examples. These effects could
have significant impacts on real colloidal dispersions, e.g., in fluidized beds of catalyst objects,
as will be demonstrated in Chapter 4.

The two key results of this Chapter— instantaneous relative motion and typical repulsion
at long-times— lead us to the next Chapter where we show, by further general treatment of the
pair HI, that many of the effects we have found above apply more generally.



Chapter 3

Hydrodynamic Interactions between
Two Forced Objects of Arbitrary Shape:
Relative Translation1

In Chapter 2, we have studied general properties of the hydrodynamic interaction and consid-
ered its effect on orientational dynamics. In the present Chapter we extend this study, focusing
on translational motion of object pairs.

It is well known that in the case of two identical sedimenting spheres, isolated in an un-
bounded fluid, the hydrodynamic interaction at zero Reynolds number does not produce rel-
ative translation (see Sec. 1.5). This rule is readily violated by changing the system’s geome-
try. Previous studies of apparent interactions (pseudopotentials) originating in hydrodynamic
coupling treated specific experimental scenarios [64, 66, 69]. In this Chapter we address two
additional general questions: (i) At zero Reynolds number, what are the geometrical config-
urations for which relative translation between two objects necessarily vanishes? (ii) In cases
where it does not vanish, what are the consequences for the long-time trajectories of the two
objects? Looking for properties of general applicability, we consider arbitrarily shaped objects
and do not restrict ourselves to a specific geometry.

Here we extend the analysis of Chapter 2 along two separate directions: (a) In Sec. 3.1
we continue to study the instantaneous response of object pairs, i.e., the rigorous properties
of the pair-mobility matrix. We provide examples for configurations with spatial inversion
symmetry, where the relative translation vanishes, as well as simple geometries, for which this
symmetry is broken. (b) In Sec. 3.2 we return to examine in more detail the repulsive trend
in the far-field time evolution of self-aligning object pairs, providing an intuitive explanation

1The material presented in this Chapter was published in T. Goldfriend, H. Diamant, and T. A. Witten, Phys.
Rev. E. 93, 042609 (2016) [132].
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of the phenomenon. We further compare it to the time evolution of two non-alignable objects
(uniform prolate spheroids), and point out the qualitative difference between the two cases.

3.1 Instantaneous Response: Symmetrical Pair Configurations

In this Chapter we focus on the translational dynamics of two forced objects (without external
torques), which is captured by a 6 × 6 sub-matrix of the pair-mobility in Eq. (2.1), indicated
hereafter by A, (

Va

Vb

)
=

(
Aaa Aab

Aba Abb

)(
Fa

Fb

)
. (3.1)

The properties of the full pair-mobility matrix in Eq. (2.1) imply that A is positive definite and
symmetric [31–33]. Next, we discuss additional symmetries of the matrix A.

As a first step, we consider the transformation of the pair-mobility matrix under various
operations— spatial proper and improper rotations (rotations combined with reflections), and
exchange of objects. We note that the positions of the objects’ origins, i.e., the external forc-
ing points, are an essential part of the system geometry. In this section we will restrict our
treatment to cases where the forcing point is at the geometric centroid of the object, that is, the
center of mass if the object has a uniform mass density. Consider the transformation between
two pair-mobility matrices which differ by a rigid rotation. Given the rotation matrix R be-
tween a given configuration and the rotated one, the blocks in A, being all tensors, transform
accordingly: Aaa → RAaaRT, Aab → RAabRT and Abb → RAbbRT. The same law applies to
the transformation between systems which differ by a rigid improper rotation with improper
rotation matrix R̄. We note here that the twist matrices T, the blocks in Eq. (2.1) which relate
forces to angular velocities, are pseudo-tensors; thus, their transformation under improper ro-
tation includes a change of sign, Taa → −R̄TaaR̄T. Since the pair-mobility matrix inherently
refers to two distinguishable objects, a and b, we should also consider its transformation under
interchanging the objects’ labeling, a ↔ b. This transformation corresponds to interchanging
the blocks Aaa ↔ Abb and Aab ↔ Aba; or, in matrix form,

A → EAE−1, (3.2)

where E is the 6 × 6 matrix

E =

(
0 I3×3

I3×3 0

)
. (3.3)

(in analogy to Eq. (2.3).)

As mentioned above, at zero Reynolds number, sedimentation of two identical rigid spheres
in an unbounded fluid does not induce relative motion of the two spheres. In contrast, we
showed in Chapter 2 that two identical, arbitrarily shaped objects in an unbounded fluid, un-
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der the same forcing, may attract or repel each other. In addition, using the symmetry of such a
system under exchange of objects, we found the leading (dipolar) order of this effective interac-
tion at large mutual separation. We now examine the HI for several symmetric configurations.
In this part of the Chapter we focus on what symmetry has to tell us, and do not yet anticipate
when its consequences are useful. To demonstrate the resulting principles, therefore, we allow
ourselves to examine specially designed configurations. Examples for the usefulness of these
principles will be given later on.

3.1.1 Two Enantiomers in an Unbounded Fluid

As the first example, we examine a system possessing inversion symmetry. The spatial in-
version of the Stokes equations under reversing time has been shown to imply fundamental
consequences concerning the dynamics of rigid objects. For example, it was used previously
to deduce generic properties of shear flow response, in the cases of a single spheroid [133] and
an enantiomeric non-interacting pair [17]. The fact that the instantaneous response, under the
same forcing, of pair-configurations with spatial inversion symmetry does not induce relative
translation may have already been given elsewhere; yet, we are not aware of works which
give a rigorous derivation of it. Accordingly, we review this basic result below from matrix
transformations and time-reversibility points of view.

Consider a system of two enantiomers in an unbounded fluid as depicted in the left panel of
Fig. 3.1. We choose the mutual orientation of the objects such that one object is the mirror image
of the other; hence, the system’s geometry is invariant under spatial inversion, r → −r. This
symmetry implies that the pair-mobility matrix is invariant under two consecutive operations
(see Fig. 3.1): spatial inversion followed by exchange of objects’ labels, or, in matrix form,
A = E(−I6×6)A(−I6×6)E−1, where E has been defined in Eq. (3.3). This last equality yields
Aaa = Abb = Aself and Aab = Aba = Acoupling, i.e.,

Enantiomeric pair: A =

(
Aself Acoupling

Acoupling Aself

)
, (3.4)

which applies in fact for any inversion-symmetric situation. This form of the pair-mobility
matrix implies that, under the same force F, the two objects will develop identical velocities,
Va = Vb = (Aself + Acoupling) · F. Thus: the instantaneous response under the same forcing of
a pair, whose configuration possesses an inversion symmetry, does not include relative trans-
lation. As noted above, a system of two sedimenting spheres is a particular example of this
general result.

The vanishing relative motion in a system which is invariant under spatial inversion can
be understood alternatively by the following argument. Assume by negation that two enan-
tiomers in an unbounded fluid develop a relative velocity under the same forcing. Without loss
of generality, let us take the case when the two objects get closer together; see configuration
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(a) in the right panel of Fig. 3.1. The mirror configuration of the system (r → −r), depicted in
configuration (b), implies that the two also get closer when reversing the forces. On the other
hand, Stokes equations are invariant under inversion of time and forces; hence, reversing the
forces in configuration (a) should make the objects get further apart, as depicted in configura-
tion (c). Since (b) and (c) represent the same system, we reach a contradiction, and deduce that
the relative velocity between the two enantiomers must vanish.

To summarize, it is inversion symmetry that governs the vanishing relative velocity be-
tween two forced objects at zero Reynolds number; hence, whenever this symmetry is broken
one should expect relative translation.

An important remark bears mentioning here. The instantaneous rotational response of the
enantiomeric pair corresponds to two opposite rotations, i.e., non-vanishing relative angular ve-
locity. (See Chapter 2.) With time, the opposite rotations will break the inversion symmetry,
unless there are additional symmetries, for example, when the objects’ shapes are isotropic, as
in the case of two spheres. While the example of two enantiomers whose mutual symmetry
is only instantaneous may seem artificial, the principle that it demonstrates is useful. Driv-
ing forces will sometimes bring bodies close to a symmetric situation, and then one will find
especially simple motions that call for explanation. In particular, two irregular objects can
be aligned by the driving [34, 46, 47] (e.g., the self-aligning objects) and then we should be
interested in the question of whether they keep their distance or drift apart. Moreover, not
only a pair of spheres will preserve inversion symmetry over time. Another example is two
spheroids, or indeed a pair of any bodies of revolution with fore-aft symmetry, whose axes
are aligned on a plane perpendicular to the force; see Fig. 3.2(a). Without any calculation, we
can assert that such two objects will maintain their relative position over time. The additional
symmetry of the system imposes relative rotation only about the axes of symmetry (y-axis in
Fig. 3.2(a)), which does not break the inversion symmetry. Another example will be given in
the Discussion of this Chapter.

3.1.2 Configurations with One Reflection Plane and Exchange Symmetry

We now turn to examples where the symmetry is broken by the confining boundaries. The first
system consists of two spheres, placed on a plane parallel to a wall; see Fig. 3.2(b). This system
was used in Ref. [64] to interpret the attraction between two like-charged spheres near a simi-
larly charged wall, as was observed in optical-tweezers experiments [65]. The geometry of the
system is invariant under two successive operations: reflection about the symmetry plane of
the two spheres and interchanging the objects. We denote by ∥ and ⊥ the directions parallel
and perpendicular, respectively, to the mirror plane, i.e., perpendicular and parallel, respec-
tively, to the wall itself. The reflection leaves vectors parallel to the mirror plane unchanged
but reverses vectors normal to that plane. Using the transformation laws introduced above, we
find that the blocks of A, which relate forces perpendicular to the wall and objects’ velocities
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~r → −~r

a ↔ b

(a) (b)

(c)

~F

~V

Figure 3.1: Schematic description of the arguments presented in Sec. 3.1.1 for the vanishing
instantaneous relative motion between two forced enantiomers. The left panel describes how
the mirror symmetry of the system is expressed in terms of spatial inversion combined with
interchanging the objects. The right panel demonstrates the arguments based on the symmetry
of the Stokes equations under inversion of time and forces, where gray (thin) and green (thick)
arrows indicate forces and velocities respectively. Configuration (b) is the spatial inversion
of configuration (a) whereas configuration (c) is the response of configuration (a) under the
opposite forcing.

parallel to the wall, must satisfy Aaa
⊥∥ = −Abb

⊥∥ and Aab
⊥∥ = −Aba

⊥∥. These restrictions imply
that, under forcing toward or away from the wall (e.g., as the spheres are electrostatically re-
pelled from the wall [65]), the objects respond in opposite directions in the plane parallel to the
wall, Va

⊥ = (Aaa
⊥∥ + Aab

⊥∥)F∥ = −Vb
⊥. Note that the symmetry of the system alone does not tell

us whether the objects repel or attract under a given forcing direction. The analysis in Ref. [64]
showed that forcing away from the wall results in an apparent attraction between the pair, in
agreement with the experiment. This can also be deduced from the right panel of Fig. 1.1 that
shows the flow lines generated by a stokeslet near a wall. It should be stressed that, unlike
specific calculations as in Ref. [64], our symmetry principle is neither restricted to spheres, nor
to the limit of small objects, nor to the limit of large separations.

The complete form of the pair-mobility matrix as a result of the geometrical restrictions in
this system is given in Appendix A.4, Eq. (A.4), along with the explicit expressions for point
objects. Another interesting conclusion, arising solely from the system’s symmetry, is that,
since Aaa

⊥∥ = −Abb
⊥∥ and Aab

⊥∥ = −Aba
⊥∥, forcing the spheres parallel to the wall will result in

one sphere approaching the wall and the other moving away from it.

As a second example, let us consider the system addressed in Ref. [66] — two spheres
forced to move along a ring; see Fig. 3.2(c). The corresponding pair-mobility matrix can be
written in polar coordinates (ρ, θ). The system is invariant under two successive operations:
inversion of the θ coordinate, θ → −θ, and interchanging the objects. Hence, this system is
similar to the previous one in the sense that it is symmetric under objects exchange by inversion
of one coordinate. This leads to Aaa

ρθ = −Abb
ρθ and Aab

ρθ = −Aba
ρθ . Consequently, under the same
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(a) (b) (c)

Figure 3.2: The three systems discussed in Sec. 3.1.1 and Sec. 3.1.2: (a) Two identical axisym-
metric objects, with fore-aft symmetry, where the vector connecting their origins is perpendic-
ular to their symmetry axes. (b) A pair of spheres near a wall. The spatial separation between
the spheres is represented by the vector R which connects their origins. (c) A pair of spheres
driven along a ring. The angular separation is indicated by ∆θ.

forcing along the tangential direction, the spheres respond with opposite velocities along the
radial direction. Sokolov et al. used a holographic optical vortex trap to study this system and
observed the radial symmetry breaking experimentally [66]. In addition, they found that this
effect, combined with a confining radial potential, results in overall attraction along the ring
as the system evolves in time. Once again, the symmetry argument derived here is far more
general than the specific limit studied theoretically in Ref. [66].

We note that the results obtained above, regarding configurations with one reflection plane
of symmetry, should also be derivable using time-reversal arguments, as was done in the case
of an enantiomeric pair.

3.2 Far-Field Dynamics of two Forced Objects in Unbounded Fluid

In the preceding section we considered the instantaneous response of a pair of objects given the
symmetries of their configuration. The analysis of this linear problem, derived from symmetry
arguments, is useful to determine the stability of a given state of the system. However, it might
be inapplicable to the time-dependent trajectories, since a configuration symmetry at a given
time can be broken by subsequent motion. A well known example is the sedimentation in
an unbounded fluid of two prolate spheroids, which start with their major axes parallel to
the force [57, 59, 124]. The initial inversion symmetry about the plane perpendicular to the
force, which, according to the discussion in Sec. 3.1, precludes any relative translation, soon
breaks due to the rotation of each spheroid, and relative velocity appears (see a more detailed
analysis below). In general, since the instantaneous response depends on configuration, the
time-dependent trajectories of a driven pair is a non-linear, multi-variable problem. We are
compelled, therefore, to implement numerical integration for specific examples, and try to
identify general trends. In this section we consider the time evolution of two objects under the
same constant driving. In particular, we provide further insight into the results reported in
Chapter 2 concerning the combined effects of rotational and translational interactions.
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3.2.1 Dynamics of an Isolated Object

Before describing the time evolution of object pairs, it is essential to introduce the different
types of objects that we consider hereafter and mention their dynamics, under a unidirectional
force, at the single-object level, following the discussion in Sec. 1.4. In the absence of external
torque, the linear and angular velocities of an object are given, respectively, by A(0) · F and
T(0) · F, where A(0) and T(0) are 3 × 3 blocks of the object’s self-mobility matrix. These blocks
depend on the shape of the object, its orientation, and the position of the forcing point.

We consider three types of objects: (a) Uniform prolate spheroid — a spheroid whose forcing
point is located at its geometric centroid, as in the case of spheroids with a uniform mass
density; see left panel of Fig. 1.2. This is a regular object (i.e., whose T(0) = 0) which does
not rotate under force, regardless of its orientation. The translation direction of a uniform
spheroid is in the plane spanned by its major axis and the forcing direction [32]. (b) Self-
aligning prolate spheroid — a prolate spheroid whose forcing point is displaced from the centroid
along its major principal axis, e.g., spheroids with a non-uniform mass density. These objects
have an antisymmetric T(0) matrix, that is, the only real eigenvalue of the self-twist matrix,
λ3, is zero. For any initial orientation, a self-aligning spheroid rotates toward a state where
its major axis, and therefore its translation direction, is aligned with the external force. We
use type (b) as a simple example, which can be treated analytically, for self-aligning objects.
(c) Self-aligning object of irregular shape — an object whose T(0) matrix has only one real, non-
zero eigenvalue. These objects reach an ultimate alignment with the force direction, together
with a uniform right- or left-handed rotation about it [34, 46, 47]. As in Chapter 2 we use the
particularly simple construction of stokeslet objects that are constructed randomly, and thus
we avoid objects of pre-designed shapes.

3.2.2 Far-Field Equations

As in the preceding parts, let us assume that there are no external torques on the objects, such
that we can choose their origins as their forcing points. We consider the case in which the
objects are subjected to the same forcing F. The mutual separation between the objects a and b
is designated with the vector R, whose direction is defined from the origin of a to the origin of
b. While time-integrating the equations it is essential to take into account the coupling between
translation and rotation. Thus, we must work with the complete pair-mobility matrix, Eq. (2.1),
which gives

Ṙ = Va − Vb =
(

Aaa + Aab − Abb − Aba
)
· F (3.5)

ωa =
(

Taa + Tab
)
· F (3.6)

ωb =
(

Tbb + Tba
)
· F. (3.7)
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A major simplification, from both the analytical and the numerical points of view, is to
consider pairs with separation much larger than the typical size of the individual object ℓ,
and study the corresponding far-field interaction. In this case we can utilize the general form
of the pair-mobility matrix up to second order in ℓ/R, which has been derived in Chapter 2.
Following Eq. (2.12), the equations governing the objects’ mutual separation and their rotations
read

Ṙ =
[
(Aa

(0) − Ab
(0)) + (Πa + Πb) : ∇G(R)−∇G(R)T : (Πa + Πb)T

]
· F (3.8)

ωa =

[
Ta

(0) + (Ψa − 1
2

ϵ) : ∇G(R)

]
· F (3.9)

ωb =

[
Tb

(0) − (Ψb − 1
2

ϵ) : ∇G(R)

]
· F, (3.10)

where A(0), T(0) and Π, Ψ are single-object-dependent tensors of rank 2 and 3, respectively,
which depend on the individual object’s shape and orientation, ϵ is the Levi-Civita tensor, and
the : sign denotes contraction over two indices. Here we separate the tensor Φ introduced
in Chapter 2 into its translational part, Π, and rotational part, Ψ − 1

2 ϵ, each with dimensions
3 × 3 × 3. Such separation can be inferred by the analysis in Appendix B. The tensors A(0)

and T(0) are the zeroth order blocks, which give the linear and angular velocities of a single
object when it is subjected to external force. The tensors Π and Ψ correspond to the linear- and
angular-velocity responses to a flow gradient at the object’s origin. When these tensors are
coupled with ∇G they construct second-order terms of the pair-mobility matrix, describing
the direct HI between the objects. The term which is proportional to ϵ is also a part of the
second-order term, giving the rotation of one object with the vorticity generated by forcing the
other.

3.2.3 Transversal Repulsion under Constant Forcing

In Chapter 2 we examined the effect of HIs on the orientational evolution of two identical, self-
aligning objects. Using numerical integration we followed the time-dependent trajectories of
pairs of stokeslet objects under two types of driving— a constant force and a rotating one. We
noticed that in most (though not all) of the studied examples the two identical, self-aligning
objects effectively repelled each other when subjected to the same driving (see Fig. 2.5 and solid
red curve in Fig. 3.4(a)). (Counter-examples, such as limit-cycle trajectories, were observed as
well.) The increasing separation is transversal— taking place within the plane perpendicular
to the average force direction. Below we explain the nature of this repulsion, focusing on the
simpler case of constant forcing.
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Two Self-Aligning objects

Let us consider the time evolution of the following system, depicted in Fig. 3.3: two identi-
cal self-aligning spheroids, positioned initially along the x-axis, and subjected to a constant
force along the (−ẑ) direction. Self-aligning spheroids are achieved by separating the center
of forcing from their centroids, e.g., through a nonuniform mass density under gravity. The
configuration has an inversion symmetry about the yz-plane. It does not have an inversion
symmetry about the xy-plane unless the spheroids are aligned along ẑ. Thus, according to
Sec. 3.1, unless aligned, they are expected to have an instantaneous relative velocity. We de-
note by θ the angle between the force and the major axis of each spheroid; ℓ indicates the length
of the major axis, and h is the displacement of the forcing point from the centroid. See Fig. 3.3
(left panel).

For given h and θ, the individual-object’s tensors which appear in Eq. (3.8)–Eq. (3.10) can
be found from the known tensors for h = 0 and θ = 0 (e.g. Ref. [32]) by a change of origin
and rotation transformation. An explicit derivation of these tensors is given in Appendix D.1.
According to Sec. 3.2.1, in the absence of interactions and θ ̸= 0, two uniform prolate spheroids
will maintain their relative tilt and glide away from or toward each other with a constant
velocity, whereas two self-aligning ones will do the same but with velocity decreasing in time
as they get aligned with the force.

In order to examine the effect of HIs we take the initial condition θ(t = 0) = 0, for which
relative translation vanishes in their absence. Using the calculated individual-object’s tensors
for self-aligning spheroids, the equations of motion for the pair in the far-field regime R ≫ ℓ

and θ ≪ 1, Eq. (3.8)–Eq. (3.10), are then reduced to the following simple form (recall that we
set ηℓ = 1):

Ṙ =

[
βθ + ζ

(
ℓ

R

)2
]

F
8π

(3.11)

ℓθ̇ =

[
−αθ +

(
ℓ

R

)2
]

F
8π

, (3.12)

where the dimensionless parameters β, ζ and α (derivable from the single-object tensors) de-
pend on the spheroid’s aspect ratio and h/ℓ. More details on the derivation of the above
equations are given in Appendix D.2. Using the conventions of Fig. 3.3, β > 0 and α ≥ 0;
hence, positive θ implies increasing separation and decreasing tilt. Differentiating Eq. (3.11),
and substituting θ̇ from Eq. (3.12), we obtain the equation for the separation alone,

ẍ = −(α + 2ζx−3)
F

8πℓ
ẋ + (β + αζ)x−2

(
F

8πℓ

)2

, (3.13)

where we have set x ≡ R/ℓ.
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Let us go back for a moment to Eq. (3.11) and Eq. (3.12). The translational dynamics is
dictated by (i ) opposite mutual glide of one object away from the other (first term on the right
hand side of Eq. (3.11)), and (ii ) direct HI which decays as R−2 (second term). (We neglect the
higher-order correction of the interaction ∼ θR−2.) The evolution of the tilt angle θ is governed
by two competitive effects— the vorticity which increases it (second term on the right-hand
side of Eq. (3.12)) and the tendency of the individual spheroid to align with the force (first
term). Note that the second term in Eq. (3.12) has the object-independent coefficient of 1. The
fact that the effect of direct HI on the angular velocities is independent of the object’s shape
is specific to configurations in which R ⊥ F, regardless the object’s geometry2. The effect of
additional separation along the force direction is discussed at the end of this section.

The dotted blue curves in Fig. 3.4 show an example of a numerical solution of Eq. (3.11)–
Eq. (3.12). Initially θ increases linearly due to the vorticity term in Eq. (3.12). After a typical
time of ∼ (αF/8πℓ)−1 this increase is suppressed by the alignability of each object, and at
t → ∞, the separation increases as t1/3 while θ decreases to 0 according to a t−2/3 law. These
asymptotic laws can easily be inferred analytically from Eq. (3.13). The growth in mutual
separation is a combination of a gliding term (β) and an interaction term (ζ > 0). We note,
however, that the t1/3 law arises from the alignability alone, whereas the direct interaction can
only quantitatively affect the dynamics. As seen from Eq. (3.13) in the limit of large x, the
equivalent system in classical mechanics is the damped equation ẍ = −Bẋ + Ax−2. At long
times, t ≫ B−1, acceleration is negligible and we are left with the equation ẋ = (A/B)x−2

for the velocity. This equation yields the terminal x ∼ t1/3 law of the dotted blue curve in
Fig. 3.4(a).

Next, we consider the repulsive time-dependent trajectories in the more general case of
two self-aligning objects of irregular shape. We emphasize that this general case is expected to
show a richer behavior; this has been illustrated in Sec. 2.4 of Chapter 2 for stokeslets objects,
where, for example, attractive-like behavior was observed as well. The repulsive trend occurs
in the majority (∼ 80%) of our several dozens examples comprising randomly constructed 4-
stokeslets objects. In addition, in the far-field limit, it is independent of the initial separation
along the force direction, as well as the initial mutual orientation. Here, we illustrate how the
theoretical result derived for self-aligning spheroids is evident also in the effective repulsion
between two self-aligning objects of arbitrary shape.

As already emphasized in Chapter 1 and Chapter 2, self-aligning objects of irregular shape
exhibit complex dynamics already on the single-object level, as they acquire ultimate rota-
tion about their eigen-direction. For example, their terminal translation direction is not neces-
sarily constant and might rotate about the forcing direction. Here we consider two identical
arbitrarily shaped objects, in which the pair configuration has no spatial symmetry. We fol-

2The object-dependent tensor Ψ, which appears in Eq. (3.9) and Eq. (3.10), characterizes the response to a
spatially symmetric flow gradient only (see Appendix B). When R ⊥ F, the flow gradients created by the force
monopole on each object, ±∇G(R) · F, are antisymmetric. Thus, the object-dependent terms vanish, and the angu-
lar velocities are solely affected by the vorticity ∼ R̂ × F/R2.
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low a slightly different numerical approach than the one utilized in Chapter 2 (see Sec. 2.3.2).
The coordinate space describing the pair includes the mutual separation R and the orienta-
tion variables of each object, where we represent the latter with Euler-Rodriguez 4-parameters
(Sec. 1.7). The resulting equation of motion for this coordinate space is a set of coupled non-
linear, first-order ODEs, which can be solved with conventional techniques; see Appendix D.2
for details of the integration scheme. The objects are initially separated along the x-axis and
aligned with the force (which, as before, is along the negative z-axis). These specific initial
conditions are used to emphasize the comparison with the pair of spheroids. As opposed to
the spheroid pair, where the eigen-directions rotate only about the y-axis and the separation
unit-vector R̂ is fixed to its initial direction x̂, here the former and the latter undergo a complex,
3D rotational motion.

We follow the dynamics of each object’s eigen-direction, which is affixed to the body frame
and denoted by −Ẑ. For each object we define a tilt angle cos θ(t) ≡ Ẑ(t) · ẑ, and an azimuthal
correlation with the separation vector cos ϕ(t) ≡ −Ẑ⊥(t) · R̂⊥(t). A scheme of the configura-
tion with the relevant variables is depicted in Fig. 3.3 (right panel). The two objects can effec-
tively glide away from each other, in resemblance to the case of two self-aligning spheroids,
if the eigen-directions are tilted away from the separation direction, that is, cos ϕ a(t) = 1 and
cos ϕb(t) = −1; see inset in the right panel of Fig. 3.3. The solid red curves in Fig. 3.4, which
correspond to a representative example, consisting of two identical randomly generated ob-
jects, demonstrate that such resemblance between the two cases does exist. In particular, the
solid red curve in Fig. 3.4(b) shows that θ(t) of object a follows the same trend as the dotted
blue curve which represents the simple example of self-aligning spheroids. The tilt angle of
object b, which is not shown, has a similar behavior. The inset in Fig. 3.4(a) shows the oppo-
site correlations between Ẑa, Ẑb and R. The gliding effect results in an effective repulsion3,
R(t) ∝ t1/3, as can be seen in Fig. 3.4a.

The example of an arbitrarily shaped, self-aligning pair, presented in Fig. 3.4, is a represen-
tative of a half-dozen other examples not shown here. More examples are given in Fig. 2.5—
all the repulsive trajectories in that figure follow the R(t) ∼ t1/3 law. These randomly gen-
erated examples correspond to initial conditions, which involve also longitudinal separation
and different mutual orientations. The variance in the measured exponents is within a small
numerical error, of order 5%. The analytically predicted power law was found to hold for all
pairs of objects which drifted far apart in the simulations (80% of the examples). This implies
that the 1/3 exponent for the asymptotic repulsion is most probably general for the class of
self-aligning objects.

3The direct interaction term in Eq. (3.8)— proportional to Π and decaying as R−2— can also contribute to the
t1/3 trend.
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Figure 3.3: Left panel: system of two self-aligning, prolate spheroids. The tilt angle θ is between
the force and the major axis of the object, and h indicates the shifted position of the forcing
point. Right panel: system of two identical self-aligning objects made of 4 stokeslets. In the
absence of interaction the eigen-direction of each object (−Ẑ) would eventually align with
the force which is along the (−ẑ) axis (not drawn), and rotate about it with constant angular
velocity. The HI tilts the objects by angles θa and θb, while keeping a correlation between the
transversal direction of the eigen-directions and the separation vector. This effect results in
repulsion between the objects while they continuously rotate in the xy−plane. Here we show
a snapshot of this terminal evolution. The main figure shows the projection of the system (the
objects and their eigen-directions) onto the xz-plane, whereas the inset shows the xy−plane
projection, together with the separation vector R.
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Figure 3.4: Representative trajectories for systems of two uniform spheroids (dash-dotted
green curves), a pair of self-aligning spheroids (dotted blue curves), and two self-aligning
stokeslets objects (solid red curves), together with the asymptotic behaviors at short and long
times (gray dashed lines). The results are presented in dimensionless units by setting the pa-
rameters of length and time to ℓ = 1 and (αF/8πℓ)−1 = 0.1, and the additional parameters to
the values detailed in Appendix D.2. The distance between the objects, R(t), as a function of
time is shown in panel (a), exhibiting the effective repulsion between the two objects. The in-
set demonstrates the correlation between the eigen-directions Ẑa, Ẑb, and the separation vector
in the case of self-aligning irregular objects. Panel (b) shows the evolution of the tilt angle θ,
defined in Fig. 3.3 (the solid red curve corresponds to only one of the objects).
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Two Uniform Prolate Spheroids

A pair of uniform spheroids exhibits quite different behavior from that of two self-aligning
objects. An individual uniform spheroid (h = 0) does not rotate under forcing, and does
not translate in response to a flow gradient, i.e., the T(0) matrices and Π tensors in Eq. (3.8)–
Eq. (3.10) vanish4. Hence, in the far field dynamics of two uniform spheroids the alignability
and direct interaction are absent, i.e., α = ζ = 0 in Eq. (3.11) and Eq. (3.12). The resulting
picture, arising from Eq. (3.11) and Eq. (3.12), is that θ increases linearly with time until sat-
urating to a constant value, which depends on R(t = 0), and the objects move away from
each other with a constant terminal velocity5; see also dash-dotted green curves in Fig. 3.4.
Hence, the role of HIs in this case is solely the generation of opposite tilts between the objects,
which, as a result, move in opposite directions. In this case, Eq. (3.13) becomes equivalent to
the one-dimensional problem from classical mechanics of two particles with a central repulsive
potential, ẍ = Ax−2, and the initial conditions x(0) = x0 and ẋ(0) = 0. The qualitative behav-

ior is apparent from the corresponding velocity equation ẋ =
√

2A(x−1
0 − x−1). The positive

velocity increases x, which in turn increases ẋ toward a constant value, whereby x continues
to grow linearly with time.

The two power laws — R(t) ∼ t1/3, derived theoretically for self-aligning spheroids and
demonstrated numerically for irregular objects, and R(t) ∼ t, derived in the symmetric case of
two uniform spheroids — are universal. Thus, the repulsive dynamics of pairs of symmetric
objects and self-aligning objects are superficially similar, in that both arise from opposite tilts
of the two objects. However, the mechanisms of the two repulsions differ qualitatively. The
additional tendency of the latter objects to align with the force leads to a decrease in the rela-
tive velocity, as reflected by a weaker power law for the increase of separation with time. In
addition, the terminal relative velocity in the case of two uniform spheroids is sensitive to the
initial separation, as well as to the initial tilts. By contrast,the self-aligning pair has a stable
asymptotic velocity independent of the initial state of alignment (assuming that R(t = 0) ≫ ℓ

such that the far-field equations, Eq. (3.8)–Eq. (3.10), are valid).

Effect of Longitudinal Separation

Up until now we have examined the simple case of constant force with initial separation per-
pendicular to its direction. As explained below, a small additional separation along the direc-
tion of the force should not alter qualitatively the transversal repulsion.

4In Appendix B we have shown that ΠT gives the force-dipole at the object’s origin, induced by external forcing.
The geometry of a uniform spheroid is invariant under inversion symmetry, thus, the corresponding Π tensor must
vanish.

5This behavior occurs in the limit of far-field dynamics. When the initial separation is small, the assumption
θ ≪ 1 is not valid, or a periodic motion might appear; see Refs. [59, 60, 124].
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The evolution of the longitudinal separation differs from the transversal one. The two com-
ponents governing the far-field transversal dynamics — mutual relative orientation between
the objects (the opposite tilt) and the direct interaction which decays as R−2 — are weaker, or
even absent, in the longitudinal dynamics. First, the direct interaction, originating from the
off-diagonal blocks of the pair-mobility A, vanishes due to the constraint that A is a symmet-
ric matrix [31–33]. The components relating one object’s linear velocity along the ẑ direction
with forcing on the other, satisfy Aab

zz = Aba
zz , which implies Ṙz = (Aab

zz − Aba
zz)(−F) = 0.

Hence, relative longitudinal dynamics is solely dictated by relative orientation between the
objects, which in the far-field regime corresponds to the difference between the (unperturbed)
self-responses of each object.

When Rz ≪ R⊥ we can approximate the objects’ orientations by two opposite tilts of their
eigen-directions. If the object’s shape is invariant under rotations about the eigen-direction,
e.g., self-aligning spheroid, such relative orientation cannot yield relative velocity along the
z-axis. In the case of arbitrarily shaped, self-aligning objects, we expect that any asymmetry
about the eigen-direction approximately averages out by the rotation of each object. Thus, the
effect of opposite tilts on the relative translation along the direction of the force is weaker than
that on the transversal one. Indeed, the examples in Fig. 2.5 have shown that the longitudinal
separation evolves slowly in time and seems to saturate at long times.

3.3 Discussion

This Chapter has been devoted to the relative motion between two equally forced objects.
The first part (Sec. 3.1) has established the basic geometry dependence of the effective inter-
action. We have proven that invariance under spatial inversion precludes any instantaneous
relative translation. In the second part (Sec. 3.2), we have treated the effect of hydrodynamic
interactions on time-dependent trajectories. We have demonstrated how the characteristic
R⊥(t) ∼ t1/3 repulsion between two self-aligning objects differs qualitatively from the coun-
terpart, asymptotic R⊥(t) ∼ t behavior, which corresponds to two uniform spheroids. The
preferred alignment of the individual objects reduces the relative tilt as they get further apart,
thus decreasing their relative translation compared to the constantly tilted spheroids. This case
highlights the sharp contrast between motion conditioned by current configuration and time-
integrated motion. Two initially aligned spheroids do not have instantaneous relative velocity,
while two self-aligning objects do (due to the direct interaction, ∼ R−2, term). Yet, the orienta-
tional interaction between the spheroids makes them oppositely tilt and achieve with time an
asymptotic translational velocity which exceeds that of the self-aligning objects.

We have applied our general symmetry criterion to systems with confining boundaries,
which break inversion symmetry. This geometrical consideration, without any further detail,
accounts for the apparent interactions originated in hydrodynamic coupling, which were ob-
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served in optical-tweezers experiments involving two confined configurations [65, 66]. Previ-
ous works [64, 66] examined these apparent interactions for two point-like objects. Our treat-
ment shows that the existence of the effect can be inferred by symmetry. It is present, therefore,
in more general situations, such as non-spherical objects (e.g., Fig. 3.2(a)) and arbitrary sepa-
rations, including objects in close proximity.

The symmetry arguments, which we have applied in the first part of this Chapter, can be
found useful in the examination of orientational dynamics. In a system with spatial inversion
symmetry, object a has the same translational response as object b, and an opposite rotational
response. Hence, when the objects are subjected to opposite forces, e.g., in the presence of
a central force of interaction between them, they must rotate in the same sense, and spatial
inversion symmetry will be maintained at all times. This means that, in the dynamics of an
enantiomorphic pair under opposite drive, relative orientations, possessing a spatial inversion
symmetry, are fixed points in the orientational space, preserving a constant phase difference.

Finally, the distinction between irregular objects and regular ones, on the level of a pair
of objects, should be significant, in particular, in driven suspensions with many-body interac-
tions. For example, sedimentation of spheres involves only three-body effective interactions,
whereas a suspension of sedimenting irregular objects will include effective pair-interactions.
In the next Chapter we show how the effects demonstrated in this Chapter— the interplay
between alignability and gliding— control concentration and velocity correlations in a driven
suspension of self-aligning objects.
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Chapter 4

Screening, Hyperuniformity, and
Instability in the Sedimentation of
Irregular Objects1

The details of the fundamental dynamical process of sedimentation are still under debate
(see Sec. 1.6.1). The long-range hydrodynamic correlations among settling objects lead to
chaotic many-body dynamics, exhibiting strong fluctuations and large-scale dynamic struc-
tures even for athermal (non-Brownian) objects with negligible inertia [71, 75, 76, 135]. The
non-equilibrium nature originating in the external (gravitational) drive, together with the long-
ranged, many-body hydrodynamic interactions, make the analysis of this ubiquitous phe-
nomenon challenging.

Earlier theories of steady collective sedimentation have considered symmetric objects, such
as spheres (see Refs. [63, 78] and references therein), spheroids [95, 96], rod-like objects [97–
103], and permeable spheres [104]. In various scenarios, including applications involving flu-
idized beds, the suspensions contain objects of asymmetric shapes. In this Chapter we address
the sedimentation of a large class of irregular objects which are self-aligning (see Sec. 1.4.3).

4.1 Scaling Argument

We begin with a qualitative description of the effects studied here. Consider a suspension of
objects sedimenting in a viscous fluid of viscosity η under force F in the −z direction. The
mean concentration is c0. Let us imagine a sinusoidal variation about c0, c(x), in the transverse

1The material presented in this Chapter was published in T. Goldfriend, H. Diamant, and T. A. Witten, Phys.
Rev. Lett. 118, 158005 (2017) [134].

75
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x direction, creating vertical slabs of heavier and lighter weights. This creates a fluid velocity
variation, u(x). To find the amplitude of this variation we balance the change in gravitational
force with the change in viscous drag (per unit area of the slab), cλF ∼ ηu/λ, resulting in
u ∼ cλ2F/η. This indefinite increase of u with λ is a manifestation of the Caflisch-Luke prob-
lem mentioned in Sec. 1.6.1 — the seeming divergence of velocity fluctuations with system size.
The relative velocity of the slabs creates a vorticity ωflow of order u/λ ∼ cλF/η. For spheres,
this vorticity merely rotates the objects. Self-aligning objects, by contrast, are tilted away from
their aligned state. Their misalignment, proportional to ωflow, makes them glide in the x di-
rection with velocity V⊥ ∼ γℓcλF/η, where ℓ is the size of the object and γ a proportionality
coefficient. (The tilt-and-glide effect was discussed in detail in Chapter 3.) The time derivative
of concentration, arising from the gradient of flux, reads ċ ∼ −c0V⊥/λ = −(γℓc0F/η)c. Now,
if the coefficient γ is positive, the response suppresses the inhomogeneity, whereas if it is neg-
ative the inhomogeneity is enhanced. This is a mechanism of either screening or instability. In
addition, the independence of the last relation on λ implies (for γ > 0) a non-diffusive fast re-
laxation over large length scales. As shown below, this leads to a hyperuniform dynamic struc-
ture. By equating the diffusive and non-diffusive relaxation rates of a slab, Dλ−2 = γℓc0F/η,
where D is the hydrodynamic diffusion coefficient, we find a typical wavelength above which
hyperuniformity sets in, ξ = [γℓc0F/(ηD)]−1/2. Note that the mechanism just described does
not work for concentration variations in the z direction2.

4.2 Quantitative Model

To study these effects in more detail we use the framework of fluctuating hydrodynamics—
Eq. (1.44) presented in Sec. 1.6.1. Similar continuum approaches were used for spheres by
Levine et al. (referred to hereafter as LRFB) [88], and by Mucha et al. [94]. We consider an
athermal inertia-less suspension. The system depends on the following parameters: the grav-
itational force on a single object, F; solvent viscosity η; characteristic size of the objects ℓ; and
mean concentration of objects c0. In addition, a self-aligning object has an alignability pa-
rameter α, giving the slowest relaxation rate of a mis-aligned orientation toward alignment3,
t−1
align = αF/(ηℓ2). This parameter is derivable from the object’s shape and mass distribution

alone.

The stochastic response of the suspension is characterized by a phenomenological diffu-
sion coefficient D, measurable experimentally [75], and fluctuating object fluxes with variance
2c0N. The parameters D and N, which originate in the complex many-body interactions ex-
cited by the force F at each object, are in general anisotropic [75, 88, 136]. Yet, unlike LRFB, the
effects discussed below do not depend crucially on this anisotropy; we therefore neglect it for
the sake of simplicity.

2The situation for symmetric, non-aligning objects, such as spheroids, is more complicated since the unper-
turbed object does not have a well-defined orientation with the force [95].

3α = max{α1, α2}, where α1,2 were introduced in Sec. 1.4.3.
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In addition, we employ the following three assumptions: (1) the suspension is dilute, hav-
ing volume fraction φ ≪ 1, such that direct interactions between the objects are negligible,
and the hydrodynamic interaction is well described by its two leading multipoles. (2) The
suspension is non-Brownian, i.e., the thermal Péclet number Fℓ/(kBT) ≫ 1, where kBT is the
thermal energy. However, there is no restriction on the sedimentation Péclet number, defined as
Pe ≡ F/(ηD). (3) We assume strong alignability, i.e., that the rate of alignment t−1

align is much
faster than the interaction-induced vorticity, ωflow ∼ 1/(ηl2), where l ∼ ℓφ−1/3 is the typical
distance between objects. The resulting criterion, α ≫ φ2/3, improves with dilution.

The advection-diffusion equation for the fluctuations of object concentration about c0, c(r, t),
reads

∂tc +∇ · ((c + c0)V) = D∇2c +∇ · f, (4.1)

where V is the objects’ velocity fluctuation field about the mean settling velocity. The veloc-
ity fluctuation of the fluid surrounding the objects, u(r, t), is described by an incompressible,
overdamped Stokes flow, with force monopoles originating from concentration fluctuations4,

ui(r, t) =
∫

d3r′Gij(r − r′)c(r′, t)Fj(r′) + O(ℓ) = −F
∫

d3r′Giz(r − r′)c(r′, t) + O(ℓ). (4.2)

A point-like object (ℓ → 0) is merely advected by the flow, i.e., V = u. However, for
nonzero ℓ the two velocities do not coincide. To leading order in ℓ they are bound to satisfy a
relation of the form,

Vi = ui + ℓΦikj∂juk + O(ℓ2). (4.3)

The constant tensor Φ depends on the objects’ orientations and shapes, and is assumed to be
independent of c5. It is not exactly the Φ tensor appearing in Chapter 2, but rather an effective
response which also accounts for the tilt-and-glide effect introduced in Chapter 3 and men-
tioned in the scaling argument above. The difference between V and u, and the fact that the
effective response Φ is anisotropic, lead to a new advective term in Eq. (4.1), which corresponds
to an object flux with non-zero divergence, ∂iVi = ℓΦikj∂i∂juk + O(ℓ2) ̸= 0. The second term
in Eq. (4.3) is at the core of the present theory; the existence of asymmetry in Φikj, demanded
phenomenologically for self-aligning objects, entails the effects described below. (For spheres
the second term in Eq. (4.3) vanishes, and the higher-order terms are divergence-less.) The
anisotropic response has two contributions: one from a direct translational response to shear
flow, and the other due to the object’s gliding response; see more details in Appendix E.

We proceed by substituting Eq. (4.2) and Eq. (4.3) into Eq. (4.1) and Fourier-transforming

4Although a dipolar term (see Sec. 2.2) of order ℓ should be included in Eq. (4.2) to have a consistent expansion
to first order in ℓ, this divergenceless term has no effect on the results.

5The mean-field assumption of constant Φ is valid provided that the motion of the isolated self-aligning object
under external force and flow gradient can be characterized by axisymmetric hydrodynamic tensors.
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the resulting equation ((r, t) → (q, ν)). This leads to

− iνc̃(q, ν) +
c0ℓF

η

(
γ

q2
⊥

q2 + γ̄
q4
⊥

q4

)
c̃(q, ν) + iF

∫
qiG̃i3(q′)c̃(q − q′, ν − ν′)c̃(q′, ν′)d3q′dν′

= −Dq2c̃(q, ν)− iq · f̃(q, ν), (4.4)

where we used the fact that q′iG̃ij(q′) = 0 (incompressibility of Stokes flow). We denote by ⊥
the horizontal components (x, y) of a vector. The coefficients γ and γ̄ are effective response
parameters resulting from the response tensor Φ (specifically, γ = Φzzz − Φz⊥⊥ − Φ⊥⊥z, γ̄ =

Φ⊥⊥z + Φ⊥z⊥ + Φz⊥⊥ − Φzzz). The second term in Eq. (4.4) corresponds to linear screening,
which is nonzero for any wavevector q ∦ ẑ. This term makes a simple perturbation theory
in small concentration fluctuations valid, allowing us to neglect the third, nonlinear term that
underlies the LRFB model (see discussion in Sec. 1.6.1). In addition, to facilitate the analysis,
we omit the term proportional to γ̄, which does not affect the following calculations. We thus
have

− iνc̃(q, ν) + γ
c0ℓF

η

q2
⊥

q2 c̃(q, ν) = −Dq2c̃(q, ν)− iq · f̃(q, ν). (4.5)

By equating the diffusive and screening terms in Eq. (4.5), we obtain the characteristic length
that we qualitatively inferred in Sec. 4.1,

ξ =

(
γc0ℓF

ηD

)−1/2

= ℓγ−1/2φ−1/2Pe−1/2. (4.6)

4.2.1 Results

We now summarize the main results, which are readily obtained from Eq. (4.2)–Eq. (4.5) (see
Appendix F for detailed analysis).

We begin with the expressions for the concentration and velocity correlation functions at
steady state (ν → 0):

S(q) = ⟨c̃(q, 0)c̃(−q, 0)⟩ = N
D

q2

q2 + ξ−2(q⊥/q)2 , (4.7)

⟨Ṽi(q, 0)Ṽj(−q, 0)⟩ = NF2

D
G̃iz(q)G̃jz(−q)q2

q2 + ξ−2(q⊥/q)2 , (4.8)

where S(q) is the static structure factor of the suspension. Fig. 4.1(a) shows S(q) along different
directions of q. The structure factor decays to zero at small q, as q2, in all directions except ẑ,
where it is a constant at small q.

Next, the velocity point-correlation functions are obtained by inverting back to real space
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and taking the limit r → 0,

⟨V2
z (0)⟩ = 6⟨V2

⊥(0)⟩ =
3
64

φ
N
D

ξ

ℓ

(
F
ηℓ

)2

=
3
64

N
D

(
D
ℓ

)2

γ−1/2φ1/2Pe3/2. (4.9)

Finally, we give the asymptotic expressions at large distances (r ≫ ξ) for the two-point
correlations in real space. For the concentration correlations we get

Dξ3

c0N
⟨c(0)c(rẑ)⟩ = 12

π

ξ5

r5 ,
Dξ3

c0N
⟨c(0)c(rr̂⊥)⟩ =

Γ2(5/4)
2
√

2π2

ξ5/2

r5/2 , (4.10)

where Γ is the Gamma function. The weaker decay ∼ r−5/2 applies strictly within the (x, y)
plane. For the velocity correlations we get

C⊥⊥(rẑ) =
8ξ3

πr3 , C⊥⊥(rr̂⊥) =
ξ

πr
, (4.11)

Czz(rẑ) =
4ξ

πr
, Czz(rr̂⊥) =

2ξ

πr
, (4.12)

where Cij(r) ≡ ⟨Vi(0)Vj(r)⟩/⟨V2(0)⟩. Despite the emergence of the characteristic length ξ,
the concentration and velocity correlations remain long-ranged, decaying algebraically with
distance. In Fig. 4.1(b) we present the spatial velocity correlations at steady state along with
their asymptotic power laws.
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Figure 4.1: (a) Static structure factor of the suspension S(q) (Eq. (4.7) with N = D) for different
directions of the wavevector q, as a function of the wavevector magnitude normalized with the
characteristic length ξ. The blue dotted curves and the lower black solid curve, which corre-
spond, respectively, to several directions of q ∦ ẑ and to q ⊥ ẑ, decay to zero at small q as ∼ q2.
In the case of q ∥ ẑ (upper black soild line) the structure factor is constant. (b) The decay with
distance r of the normalized two-point velocity correlations, Cij(r) ≡ ⟨Vi(0)Vj(r)⟩/⟨V2(0)⟩,
together with their asymptotic behavior (Eq. (4.11) and Eq. (4.12)). Here The diagonal zz and
⊥⊥ components are presented for two specific directions of r.
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Figure 4.2: Illustration of the mechanism regulating concentration fluctuations. A concentra-
tion fluctuation makes a force fluctuation δF (green solid arrow), which in turn creates a flow
fluctuation (flow lines). (a) Spherical objects respond isotropically to this flow, with velocities
(magenta dashed arrows) along the direction of the flow lines; thus, there is no net flux of ob-
jects into the small volume element around the fluctuation. (b) Self-aligning spheroids have an
anisotropic response, leading in this example to a total outflux of objects. The resulting flow of
objects has a nonzero divergence, which reduces the concentration fluctuations.

4.3 Discussion

Let us now discuss the consequences of these results. The velocity auto-correlation of an object
is given, up to corrections of O(ℓ/ξ), by the point-correlation of Eq. (4.9). From this expression
we immediately see how the finite ξ regularizes the velocity auto-correlations, thus removing
the Caflisch-Luke problem [82] for the irregular objects considered here. Indeed, in the limit
γ → 0 (no self-alignment) the auto-correlation diverges, requiring a different regularization
mechanism [88, 94]. Fig. 4.2 illustrates another view of the physical mechanism behind the
regularization6. A concentration fluctuation within a small volume of the suspension creates
a flow, which advects objects in and out of the region. Spherical objects respond to the flow
isotropically, leading to mutual cancellation of the influx and outflux (Fig. 4.2(a)). The dipolar,
non-divergenceless flow of irregular objects, as described by Eq. (4.3), perturbs this balance,
compensating for the deficiency/surplus of objects in the region (Fig. 4.2(b)).

In all of the above we have implicitly assumed that the effective response parameter γ is
positive, leading to a positive ξ2. However, γ may be of either sign, as we now show for
self-aligning spheroids. These objects, already introduced in Chapter 3, are spheroids whose
center of mass is displaced from their centroid. See inset of Fig. 4.3 and detailed calculation in
Appendix E. The response parameter resulting from this calculation, shown in Fig. 4.3, reveals
a region of negative γ as a function of the spheroid’s aspect ratio κ and the off-center position

6Although this figure seems similar to the one drawn in Ref. [95] for symmetric, rod-like spheroids (which are
not self-aligning), the scenarios are different. Whereas the rods are aligned by the flow lines, the ones depicted in
Fig. 4.2(b) self-align with the force and are only perturbed by the flow lines.
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Figure 4.3: Effective response parameter γ describing suppressed fluctuations (γ > 0) and
instability (γ < 0), as predicted for sedimentation of self-aligning spheroids (inset). The re-
sponse of the spheroid is calculated as a function of its geometry, characterized by the aspect
ratio κ, and the displacement of the forcing point (red dot) from the centroid, given by χ. Pro-
late self-aligning spheroids (κ > 1) cause suppression, whereas oblate ones (κ < 1) undergo
instability. For spheres (κ = 1) our suppression/enhancement mechanism disappears (γ = 0).

of the forcing point7 χ. As γ → 0+, the characteristic length ξ becomes indefinitely large. As
is clear from the mechanism described above (Fig. 4.2), a negative γ implies de-regularization,
i.e., instability in the sedimentation of such objects, with unstable structures of size ∼

√
−ξ2.

The instability clearly calls for additional theoretical and experimental study.

As described by Eq. (4.7) and Fig. 4.1(a) (in the case of positive γ), for any wavevector q ∦ ẑ
the structure factor decays to zero for small wavevectors as S(q) ∼ q2. This implies hyperuni-
formity of the fluctuating suspension [108, 137] in any direction but ẑ. (See the discussion on
hyperuniformity in Sec. 1.6.2.) Calculating the fluctuation δN in the number of objects within
a spherical subvolume of radius R, we find δN2 ∼ R3(R/ξ)−1, i.e., a variance that grows as
the surface area rather than the volume [137]. The hyperuniformity is also manifest in the
long-range concentration correlations in the transverse direction, as given in Eq. (4.10). In the
ẑ direction S(q) is constant for small q, implying normal Poissonian fluctuations. The angu-
lar dependence of the suppression has been qualitatively explained in Sec. 4.1. For q ̸= qz and
q < ξ−1 the vorticity-tilt effect (with rate Dξ−2) dominates diffusion (with the slower rate Dq2),
while for q = qz this effect is absent. Several systems exhibiting hyperuniformity have been
recently studied [108, 110–112]. Our system is different in several essential aspects: (1) it is
dynamic, corresponding to continually changing configurations rather than a static absorbing
state, (2) it does not require tuning of a control parameter to a critical value, (3) rather than
eliminating collisions, it suppresses both positive and negative concentration fluctuations8.

It has been assumed for simplicity that all the objects are identical, but the qualitative con-
clusions apply in more general scenarios. The key requirement is that the system contains
self-aligning objects, possessing the dipolar anisotropic response treated above. Not all the

7In Chapter 3 we use a different representation for this off-center position; see Appendix C.
8The one-component plasma [63, 137] is another example of hyperuniformity brought about by long-ranged

pair-interactions (electrostatic interactions in this case), falling off as 1/r.
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objects in the suspension need to be self-aligning, and the self-aligning ones do not need to be
identical. In any of these scenarios they will tilt and glide in response to the nonuniform flow,
thus producing the suppression or instability mechanisms discussed here.

We now compare our screening mechanisms with the ones suggested for the sedimen-
tation of spheres (see discussion in Sec. 1.6.1). Those theories also yielded suppression of
fluctuations, but out of different physics. (Indeed, hyperuniformity was found in numerical
simulations [91] and experiments [90] of sedimenting spheres.) In the theory of Ref. [88] the
effects result self-consistently from the nonlinear coupling between concentration and veloc-
ity fluctuations, giving ξLRFB ∼ ℓφ−1/3Pe−2/3. The mechanism of Ref. [94] relies on a steady
concentration gradient (stratification), yielding ξstrat ∼ ℓφ−1/4Pe−1/4. Which of these is the
actual screening mechanism for spheres remains an open question. If the LRFB mechanism
is the one that operates for spheres, then, for asymmetric objects, our linear mechanism with
ξ = ℓγ−1/2 φ−1/2Pe−1/2 should replace the nonlinear one; the linear glide solution is perturba-
tively stable against the nonlinear term at steady state, as explained in Appendix G. If stratifi-
cation is the active mechanism for spheres, then screening will be caused by a combination of
both stratification and asymmetry. Another distinctive feature of the asymmetry mechanism is
that it remains in place as the system approaches detailed balance (D = N), whereas the LRFB
screening disappears [88]. Thus, we expect the present mechanism to hold for arbitrarily small
sedimentation Péclet number (while keeping the thermal Pe large).



Chapter 5

Summary and Outlook

Establishing the role of hydrodynamic interactions in a driven suspension of asymmetric col-
loids is the central achievement of this Thesis. The results highlight the qualitative difference
between driving symmetric objects and asymmetric ones in the inertia-less regime. The theo-
retical results in Chapters 2–4 set the ground for further related theoretical studies and experi-
mental investigations, as will be outlined below.

5.1 Pair Hydrodynamic Interactions

5.1.1 Summary

Chapter 2 and Chapter 3 have aimed to provide a comprehensive description of the transla-
tional and orientational hydrodynamic interactions between two forced objects, focusing on
the generic features of these interactions. The study can be divided into two aspects (not di-
rectly related to the partition into the two chapters): the first deals with the instantaneous
response of a given pair configuration, whereas the second addresses the time-dependent tra-
jectories of object pairs.

In the first aspect, we have derived a formalism to predict from the system’s symmetry
alone whether the hydrodynamic interactions create relative motion (orientational or transla-
tional) between the objects. Where relative motion is present, we have analyzed its multipole
expansion. In particular, based on the multipole expansion in ℓ/R of the pair-mobility in the
case of two arbitrarily shaped objects having typical size ℓ, and separated by a distance R,
we have shown that HI linearly degrades orientational alignment between self-aligning ob-
jects. The leading order of the interaction is dipolar, ∼ R−2, and can be written as a product
of medium-dependent and object-dependent responses (see Eq. (2.12)). In addition, we have

83
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shown how symmetry-based arguments can be useful in examining the instantaneous transla-
tional response of a pair. We have proven that spatial inversion symmetry dictates the vanish-
ing of relative translation. In addition, we have managed to include under the same framework
of geometrical considerations: (i) the previous theoretical studies of experiments in which ap-
parent interactions were observed, e.g., radial separation between two spheres forced to move
along a ring [66]; (ii) new predictions of apparent interactions, e.g., the separation between two
spheres sedimenting one above the other parallel to a wall.

While our symmetry-based results for the instantaneous interaction are rigorous, in the
second aspect of the study we could provide only qualitative general trends concerning the
time-dependent relative motion. We have focused particularly on irregular, self-aligning ob-
jects, and on the asymptotic dynamics at long times. By carrying out numerical simulations
to study the evolution of pair trajectories (translational and rotational), we have found that
self-aligning objects typically repel each other, and thus, retain their alignment at long times as
the ∼ R−2 HI gets weaker. The temporal asymptotic evolution follows the law R(t) ∼ t1/3. A
quantitative explanation of this behavior has been given by treating analytically a simpler case
of self-aligning spheroids. The typical t1/3 separation between self-aligning objects is qualita-
tively different from the R(t) ∼ t law characterizing the case of uniform prolate spheroids.

The symmetry-based results concerning the relative translation of a pair (Sec. 3.1) remain
intact even if the objects are at close proximity (see Sec. 3.3). However, the two analytical
results which rely on the far-field approximation— the instantaneous degradation of orienta-
tional alignment (Sec. 2.2) and the typical repulsive trend between two self-aligning objects
(Sec. 3.2.3)— may change qualitatively when the distance between the objects is comparable
to their size. In addition to the higher order terms of the pair-mobility matrix that contribute
to the dynamics at small separations, there are hydrodynamic, near-field repulsive interac-
tions, i.e., lubrication effects, which dominate at close proximity [1]. It is difficult to anticipate
whether and when the near-field dynamics would differ qualitatively from the one in the far-
field regime. In particular, the typical repulsion between object pairs, caused by a mutual
tilt-and-glide effect, might be irrelevant when the objects start at small initial separation— al-
though lubrication effects are repulsive (thus, pushing the objects toward larger separation,
where the far-field result becomes more relevant), higher multipoles of the pair hydrody-
namic interaction can change the picture. For example, the separation between two uniform
spheroids, which start at close proximity, exhibits a periodic trajectory [124].

5.1.2 Experimental Significance

The initial motivation for this Thesis was to explore the feasibility of achieving orientational or-
der of asymmetric colloids by a time-dependent forcing protocol, as was suggested by Refs. [34,
46–48]. Our results imply that such an orientationally ordered system of steerable colloids is
restricted to dilute suspensions, as hydrodynamic interactions degrade alignment. In particu-
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lar, we have estimated an upper bound of φ ∼ 10−3, above which HIs have a significant effect
on the orientational dynamics in a suspension. The usage of other driving mechanisms such
as electrophoresis, that do not include net external force on the objects, and therefore involve
weaker HI, is thus preferable.

The results have an impact on other, simpler, colloidal systems. The general theory pre-
sented in Chapter 3 can be used to obtain simple qualitative predictions, which are readily
testable in experiment. A particularly simple example is the sedimentation of two identical
spheres, positioned one above the other parallel to a vertical planar wall. This configuration
will result in one sphere instantaneously approaching the wall, while the other being repelled
from the wall. Another example is a modification of the experiment presented in Ref. [66]. Two
identical spheres placed in a ring and forced in the radial direction will develop relative trans-
lation in the tangential direction. Clearly, similar symmetry-based predictions can be readily
made for other configurations. We note that the general symmetry criterion concerns only the
existence or absence of interaction. To determine the sign of the interaction, whether it is repul-
sive or attractive, one needs additional information such as the Green’s function of the given
hydrodynamic problem.

Another result, which can be verified in a simple experimental setup, is the asymptotic
power-law time dependence of the separation between two self-aligning objects. For the par-
ticular system comprising a pair of self-aligning (non-uniform) prolate spheroids we have
shown analytically a t1/3 law (Sec. 3.2). In the case of two, arbitrarily shaped self-aligning
objects, where repulsion is not a general law, we have reported several examples with a simi-
lar trend. These examples, which are represented by the red curve in Fig. 3.4, are not sensitive
to initial conditions. For spheroids, the effect of opposite tilts on the mutual repulsion is cap-
tured by the positive glide parameter β in Eq. (3.11). The sign of β is dictated by the elongated
shape of the individual spheroid. (An oblate spheroid has a negative β, see Appendix E.).
Therefore, good candidates for arbitrarily shaped, repulsive pairs may be elongated objects,
whose properties, when averaged over rotations about the eigen-direction, resemble those of
self-aligning spheroids. A suggestion for an experiment includes tracking the sedimentation
of two micron-sized, self-aligning objects in a viscous fluid, where optical traps can be used to
place the objects at a fixed initial separation, perpendicular to gravity. The effect should not
depend on the initial orientations of the objects, as their alignability guarantees that after a
short transient they will be close to their aligned state.

5.1.3 Future Theoretical Directions

The tools that we have developed to treat hydrodynamic interactions— multipole expansion
and symmetry considerations— can be generalized to examine other driving mechanisms. One
example is electrophoresis, the transport of charged colloids in electrolyte as a response to ex-
ternal electric field. Electrophoretic motion is force-free, as the driven object is effectively neu-
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trally charged due to the cloud of counter-ions surrounding it. While previous works studied
the response of specific pair configurations, it will be useful to lay a framework of multipole
expansion, similar to the one in Sec. 2.2, to study the coupled electrophoretic motion of two
arbitrarily shaped objects. Symmetry considerations, similar to those we have employed for
not-force-free objects, might be useful to understand pair electrophoretic response. The motion
of two identical spheres, or spheroids, with the same constant surface charged distribution do
not induce relative translation [138–140] (moreover, the interaction in this case completely van-
ishes, viz, the presence of one object does not affect the individual response of the other). This
surprising and general result calls for symmetry-based explanation. There is a previous study
in this spirit, given in Ref. [141], concerning the motion of single object. It indicated what ge-
ometrical properties of the individual object can yield complex motion such as rotation under
unidirectional external electric field.

Another future direction is to study the hydrodynamic interaction between asymmetric
objects possessing a magnetic dipole, which are driven by a rotating magnetic field. On a sin-
gle object level, such objects align, rotate and translate according to the external rotating field,
and their dynamics can be easily controlled via the frequency of the field [2]. Therefore, these
objects acquire orientational alignment with the direction of the field’s rotation axis, similar to
the self-aligning objects studied in this Thesis. The ideas and methods developed in Chapter 2
and Chapter 3 can be generalized to the case in which a total torque is acting on each object.
For example, since a torque is a pseudo-vector, one can show by symmetry arguments that
the hydrodynamic interaction can induce a relative linear velocity between an enantiomorphic
pair subjected to the same torque. In addition, the second order (dipolar) term of the pair-
mobility matrix, given in Eq. (A.2), produces a translation of one object due to a torque on
the other. However, this term does not induce rotation. Therefore, in the presence of external
torque alone, the tilt-and-glide effect and degradation (or enhancement) of orientational align-
ment will be weaker than in the case of self-aligning objects. A system of asymmetric objects
actuated by a rotating magnetic field is an example of steerable colloids which can be realized
in experiments [2]. Studying the effects of hydrodynamic interactions in such systems is an
interesting direction of research that can be based on the results obtained in this Thesis.

The typical effective repulsion between pairs of self-aligning, arbitrarily shaped stokeslets
objects, which were reported in Chapter 2, is not a general law; Attractive trajectories and
bound states have been observed as well. This fact brings to mind two directions to extend
the study of pair HI. First, what is the mechanism dictating attraction? It can be an oppo-
site tilt-and-glide effect. Indeed, we know of objects with such property (for example, oblate
self-aligning spheroids, whose response causes an unstable sedimenting suspension, as can be
inferred from Fig. 4.3) . If this is the case, then one should answer the question what is the rela-
tion between the self-aligning character and the gliding response, as our randomly generated
4-stokeslets objects usually exhibit positive tilt-and-glide response.

A second interesting direction concerns the bound state trajectories, as the one shown by
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the blue dashed curve on Fig. 2.5e . Bound states were observed earlier in the case of symmetric
objects [124]. Here a further study should examine the following issues: (i) the basin of attrac-
tion of bound states, (ii) whether such states are restricted only to close proximity or can occur
also in the far-field regime, and (iii) the relation between the object’s shape and the existence
of a bound state. These general points can be explored by considering the far-field mobility
derived in Sec. 2.2, and by further numerical investigation of stokeslets object dynamics. In
addition, one may treat also the case of two non-identical objects.

Finally, we mention one of our symmetry-based conclusion— an enantiomorphic pair un-
der opposite drive should maintain their relative orientation in space (see Sec. 3.3). This in-
teresting prediction might have impact on colloidal systems in which there is a central force
between the suspended objects. In particular, the effect can be related to colloidal synchroniza-
tion or lock-and-key mechanisms, and thus, it clearly calls for further theoretical and numerical
investigation.

5.2 Sedimentation

5.2.1 Summary

In Chapter 4 we have studied the overdamped sedimentation of non-Brownian objects of
irregular shape using fluctuating hydrodynamics. We have found that the anisotropic cou-
pling between the external drive, hydrodynamic interactions, and objects’ orientations, di-
rectly suppresses concentration and velocity fluctuations. This allows the suspension to avoid
the anomalous fluctuations predicted for suspensions of symmetric spheroids. The suppres-
sion of concentration fluctuations leads to a correlated, hyperuniform structure. For certain
object shapes, the anisotropic response may act in the opposite direction, destabilizing uni-
form sedimentation.

5.2.2 Experimental Significance

The findings presented above for asymmetric dispersions can be checked experimentally, e.g.,
using light scattering or video microscopy. Our results highlight the different physics under-
lying the sedimentation of irregular objects as compared to spheroidal ones. This includes a
distinctive, direct, screening mechanism, a different length scale ξ beyond which hyperuni-
formity sets in, and unstable dynamics for certain object shapes. These results may offer new
means of controlling the stability of driven suspensions such as fluidized beds.



88 CHAPTER 5. SUMMARY AND OUTLOOK

5.2.3 Future Theoretical Directions

The study on the sedimentation of self-aligning objects can be extended further in several
aspects. The model we have utilized in Sec. 4.2 is general, treating arbitrarily shaped self-
aligning objects whose alignability is captured by the shape-dependent response tensor Φ. We
have developed methods (Sec. 2.3 and Appendix E) to explicitly determine this response for
specific shapes. One can use this analysis to provide quantitative estimates of the strength of
the stabilization mechanism for simple object’s shape, and examine how geometry controls
homogenization (γ < 0) or instability (γ > 0) of the suspension.

We have shown that the behavior of a driven, many-body system of self-aligning objects is
qualitatively different from the one of spheres, which shows screening, and uniform spheroids,
which exhibit instability. Therefore, it is natural to ask what is the interplay between the align-
ment mechanism that we have studied, and the ones which govern the behavior of suspensions
of regular objects. As the fundamental details of each system, spheres or spheroids, are still not
fully understood (or under debate) [78], a unified theory for sedimentation is far from reach.
Yet, one can relate the known models of each regular class to that of the self-aligning class.

Spheres: our mechanism dominates at sufficiently small volume fractions, large distance
scales, and no stratified suspension (i.e., without vertical concentration gradient). The fluctu-
ating hydrodynamics model we have employed is a standard model to study sedimentation of
spheres. One can use this framework to study the interplay between our tilt-and-glide effect
and the screening mechanism induced by stratification [94], or three-body interactions [63].

Spheroids: the essential ingredient of the instability in sedimentation of spheroids [78, 95]
resembles the alignment mechanism— gradients of fluid flow affect the probability of orienta-
tions, which is otherwise isotropic. The resulting anisotropic distribution of orientations gives
rise, through gliding response, to divergence-less objects’ fluxes; see Figure 1 in Ref. [95]. The
predictions for the γ parameter of self-aligning spheroids (Fig. 4.3) are not applicable to de-
scribe this scenario, since the calculation relies on the assumption of slightly tilted spheroids.
We have quantified this by the inequality α ≫ φ2/3 in Eq. (E.6). One way to interpolate be-
tween the two effects is to calculate an effective Φ(φ) tensor that captures the response of both
self-aligning spheroids and uniform ones. For a dilute system, with strong alignability, our cal-
culation of Φ is valid; for high concentration and weak alignability, the value of Φ should give
the divergence-less flows of objects according to the Koch and Shaqfeh theory [95]. A gen-
eralized theory, for self-aligning objects and non-alignable ones, will allow to draw a phase
diagram of screened and unstable phases, which will depend on the volume fraction φ, and
the suspended objects geometry, given by the parameters κ and χ (Fig. 4.3).
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Appendix A

Pair-Mobility: Further Details

The pair-mobility matrix has been at the core of the analysis in Chapter 2 and Chapter 3. In
this Appendix we provide more details (especially technical ones) of this quantity.

A.1 Change of Object’s Origin

Here we derive the transformation of the pair-mobility matrix under change of objects’ origins.
Consider a new choice of origins given by R′,a = Ra + ha and R′,b = Rb + hb, and denote the
objects’ properties with respect to the new origins with ′. Following Ref. [34], the transforma-
tions for the generalized velocities and forces can be written as V′,x = [I6×6 − (Bx)T]Vx and
F′,x = [I6×6 + Bx]Fx for x = a, b, where

Ba =

(
0 0

−ha× 0

)
and Bb =

(
0 0

−hb× 0

)
.

Using [I6×6 + Bx]−1 = [I6×6 − Bx] we have(
M′,aa M′,ab

M′,ba M′,bb

)
=

(
[I6×6 − (Ba)T] 0

0 [I6×6 − (Bb)T]

)(
Maa Mab

Mba Mbb

)(
[I6×6 − Ba] 0

0 [I6×6 − Bb]

)
.

(A.1)

A.2 Proof of General Properties of Interaction Multipoles

Here we prove the two general results presented in Sec. 2.2 concerning the interaction multi-
poles.
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Multipole expansions are constructed by repeated projections (“reflections”), between the
two objects, of the Green’s function and its derivatives. The self-blocks of the mobility matrix
result from even projections, and the coupling blocks from odd projections. In our case G, the
Oseen tensor, has even parity and scales as 1/R.

The Green’s function G itself appears only once in the expansion, in the first (1/R) multi-
pole. This is because the force monopoles acting on the objects are prescribed. This monopolar
(odd) interaction appears only in the coupling blocks. The leading multipole appearing in the
self-blocks is constructed by projecting the induced force dipole on object 2 (proportional to
∇G) back onto object 1 (by another ∇G). Thus, this leading multipole is of 4th order, pro-
portional to 1/R4. This proves the first result in Sec. 2.2. Its particular manifestation for two
spheres is well known [32].

Now, consider the nth multipole, proportional to 1/Rn. Assume that it contains k G’s and
n − k derivatives. Its parity is (−1)n−k. As explained above, for self-blocks k is even, and for
coupling blocks it is odd. Hence, the parity of the nth multipole is (−1)n in the self-blocks and
(−1)n+1 in the coupling blocks. This proves the second result.

A.3 General Form of the 2nd-Order Multipole of the Pair-Mobility

The basic properties of the 2nd-order multipole of the pair-mobility matrix, M(2), have been
studied in Sec. 2.2. Here we provide the general form of the coupling block in this multipole
term, Mab

(2), and point out the number of its independent components. This is done by decom-
posing the tensors Φ and Θ into their symmetric and anti-symmetric parts; see Appendix B
below. Without loss of generality we choose the separation vector between the two objects to
be along the x axis, R̂ = x̂. For two not necessarily identical objects the matrix Mab

(2) has the
form

Mab
(2) =

(
ℓ

R

)2



Aa
xx − Ab

xx −Ab
yx −Ab

zx

Aa
yx 0 0

Aa
zx 0 0


−Tb

xx −Tb
yx −Tb

zx

0 0 1
0 −1 0


Ta

xx 0 0
Ta

yx 0 1
Ta

zx −1 0

 0


, (A.2)
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where the Ax
ij and Tx

ij are functions of R and the shape and orientation of object x, (x = a, b).
For two identical (in shape and orientation) objects we have

Mab
(2) =

(
ℓ

R

)2



 0 −Ayx −Azx

Ayx 0 0
Azx 0 0


−Txx −Tyx −Tzx

0 0 1
0 −1 0


Txx 0 0

Tyx 0 1
Tzx −1 0

 0


. (A.3)

A.4 Pair-Mobility Matrix of two Spheres Near a Wall

In Sec. 3.1.2 we have analyzed, based on symmetry considerations, a system comprising two
spheres near a wall. While the symmetry arguments indicate a relative translation between the
spheres, it does not tell us whether the objects repel or attract under a given forcing direction.
Here we provide more detail regarding the pair-mobility matrix of that system. We write down
the blocks structure of the corresponding A (derivable from symmetry alone), and provide an
explicit expressions for the case of point-like objects.

A schematic description of the system is given in Fig. 3.2b. Without loss of generality we
assume that the spheres are located along the x-axis, where R = xx̂ points from the origin
of sphere a to the origin of sphere b, and the wall is placed parallel to them at height z = h.
The spheres’ radii are denoted by ϱ. Hereafter we consider the projection of A onto the xz-
plane. The properties of the y-axis components can be deduced from the additional symmetry
of reflection about the xz-plane, which was not included in our analysis above. According to
the discussion in Sec. 3.1.2 the pair-mobility matrix of this system has the following form:

A =


Aself

xx Aself
xz Acoupling

xx Acoupling
xz

Aself
zx Aself

zz Acoupling
zx Acoupling

zz

Acoupling
xx −Acoupling

xz Aself
xx −Aself

xz

−Acoupling
zx Acoupling

zz −Aself
zx Aself

zz

 . (A.4)

The number of independent components can be reduced further by using the fact that A is
symmetric. This property is not related to the system geometry, which is the issue of Sec. 3.1.2,
but rather results from Onsager relations or conservation of angular momentum in the sys-
tem [31–33]. The symmetry of A connects between the xz and zx components: Aself

xz = Aself
zx

and Acoupling
xz = −Acoupling

zx . Finally, we get

A =


Aself

xx Aself
xz Acoupling

xx Acoupling
xz

Aself
xz Aself

zz −Acoupling
xz Acoupling

zz

Acoupling
xx −Acoupling

xz Aself
xx −Aself

xz

Acoupling
xz Acoupling

zz −Aself
xz Aself

zz

 . (A.5)
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In the case of point-like objects, i.e., spheres with infinitely small radius, the blocks can be
calculated explicitly. The self blocks are given by the self-mobility of a single sphere near a
plane wall (first-order in ϱ/h) [32]

Aself =
1

6πηϱ

(
1 − 9

16
ϱ
h 0

0 1 − 9
8

ϱ
h

)
.

The coupling blocks, which correspond to the direct HI between the spheres, are given by the
Green function of the Stokes equation with a no-slip, plane wall boundary (Eq. (1.17))

Acoupling =

 2x2(4h2+x2)5/2−2(12h4+4h2x2+x4)|x|3
(4h2+x2)5/2|x|3 − 12h3x

(4h2+x2)5/2

12h3x
(4h2+x2)5/2

(4h2+x2)5/2−48h4|x|−10h2|x|3−|x|5
(4h2+x2)5/2|x|

 .

The component A
coupling
xz = −12h3x/(4h2 + x2)5/2 is the one which was used in Ref. [64] to

explain the effective attraction between two like-charged spheres near a similarly charged wall.



Appendix B

Properties of the Tensor Φ

Below we provide a more detailed discussion regarding the rank-3 tensor Φ introduced in
Sec. 2.2 of Chapter 2 (the averaged Φ tensor, presented in Chapter 4, will be discussed in
Appendix E). We consider its symmetries and its dependence on the choice of origin. We
separate Φ into a translational part— linear velocity response to a flow gradient, denoted by
Φtran, and a rotational part— angular velocity response to a flow gradient, denoted by Φrot.
We show that Φtran is symmetric with respect to its last two indices while Φrot has also an
antisymmetric part which is the Levi-Civita tensor. In addition, we show that Φtran depends
on the choice of the object’s origin whereas Φrot does not, and derive the transformation of the
former under change of origins.

In order to prove the symmetry properties of Φ we consider its transpose tensor ΦT = Φ̃
which gives the force dipole around the object when subjected to external forcing, (rf) = Φ̃ ·
F = Φ̃tran · F + Φ̃rot · τ. We write the force dipole as a sum of symmetric and anti-symmetric
terms, 1

2

[
(rf) + (rf)T + ϵ · τ

]
= Φ̃tran · F + Φ̃rot · τ, where ϵ is the Levi-Civita tensor. The last

equality implies that (Φ̃tran)ski is symmetric with respect to s and k and that the anti-symmetric
part of (Φ̃rot)ski is 1

2 ϵski.

Following this analysis, in Chapter 3, we use the notation

Φtran = Π, (B.1)

Φrot = Ψ − 1
2

ϵ. (B.2)

Next we consider the transformation of Φ under change of origins. Let us assume that
an object is given in a constant, arbitrary shear flow u(r) = S · r, where S is not necessarily
a symmetric matrix. The object’s linear velocities measured about R and R′ = R + h are
V = S · R + Φtran : S and V′ = S · (R + h) + Φ′

tran : S respectively. The tensor Φrot does not
depend on the choice of origin since the angular velocity of the object is independent of that
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choice, ω = Φrot : S = Φ′
rot : S. Using the relation V′ = V − h × ω we find

Φ′
tran : S = (Φtran − h× · Φrot) : S − S · h.

In general, with analogy to Eq. (A.1), we can write

Φ′ = [I6×6 − (B)T] · Φ + ∆, (B.3)

where1

B =

(
0 0

−h× 0

)
and ∆iks =

{
−δikhs , i = 1 . . . 3
0 , i = 4 . . . 6

.

1This corrects a typo in Appendix C of Ref. [127].



Appendix C

Self-Aligning Spheroids

In Chapter 3 and Chapter 4 we have used self-aligning spheroids as a simple example of self-
aligning objects. In each chapter we use a slightly different scaling and notation which serve
the clarity of the respective analysis. Here we provide a general treatment concerning hydro-
dynamic tensors of self-aligning spheroids. Then, in Appendix D.1 and Appendix E.2 we relate
these to the specific analysis of Chapter 3 and Chapter 4 respectively.

We consider a spheroid whose principal axes are (κ−1 p, κ−1 p, p), as depicted in the inset of
Fig. 4.3. The spheroid is subjected to an external force at a point which is displaced along the
symmetry axis by a distance χp from the center. The axisymmetric shape allows us to represent
the spheroid’s orientation solely by its eigendirection, n̂, which is directed from the center to
the forcing point. Below we consider the following hydrodynamic tensors: the self-mobility
matrix M, Eq. (1.23); the translational and rotational response tensors to flow gradient, which
are characterized by the tensors of rank 3, Π and Ψ, respectively (see Appendix B).

We begin with the hydrodynamic response tensors of a uniform spheroid, i.e., whose forc-
ing point is at its center (χ = 0). These tensors, which will be indicated by the superscript c,
can be found explicitly in the literature, Mc and Πc can be found in Ref. [129], and Ψ is given
in Ref. [133] (in Appendix B we show that Ψ is independent of the choice of origin, thus, we
avoid its indication). In particular, the tensors are of the form:

Ac
ij(n̂) =

1
6πηp

[
Ac
⊥(κ)δij +

(
Ac
∥(κ)− Ac

⊥(κ)
)

n̂in̂j

]
, (C.1)

Sij(n̂) =
1

8πηp3

[
S⊥(κ)δij +

(
S∥(κ)− S⊥(κ)

)
n̂in̂j

]
, (C.2)

Tc
ij(n̂) = 0, (C.3)

Πc
ij(n̂) = 0, (C.4)

Ψijk = −ψ(κ)

2
(
ϵijmn̂mn̂k + ϵikmn̂mn̂j

)
. (C.5)
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(The tensor S, giving the angular velocity as a response to an external torque, is independent
of the choice of origin.)

Now, the properties of self-aligning spheroids (χ ̸= 0), A, T and Π, can be derived by
change of origin transformation; see Eq. (1.24) for transformations which correspond to the
tensors of rank 2, and Eq. (B.3) for transformations concerning the tensors of rank 3. Using
these transformations we find that: the tensor A keeps its form,

Aij(n̂) =
1

6πηp
[
A⊥(κ, χ)δij +

(
A∥(κ, χ)− A⊥(κ, χ)

)
n̂in̂j

]
; (C.6)

the twist matrix is antisymmetric,

Tij(n̂) =
χS⊥(κ)

8πηp2 ϵikjn̂k; (C.7)

and the tensor Π is nonzero

Πijk(n̂) = −pχ
(
ϵiml n̂mΨl jk(κ) + δijn̂k

)
. (C.8)

Finally, we point out the self-aligning character that is captured by the twist matrix T, see
Sec. 1.4.3. The twist matrix of a self-aligning spheroid has one real eigenvalue which is zero,
where the corresponding eigendirection is n̂. In addition, the rate of alignment is given by
χS⊥(κ)/(8πηp2). The case of a uniform spheroid, i.e., χ = 0, is lack of alignability.



Appendix D

Far-Field Dynamics of Object Pairs

In Sec. 3.2 we have studied the far-field trajectories of object pairs. In this Appendix we elabo-
rate on the equations governing these trajectories in the case of spheroids, and on the numerical
scheme that we have used to study the case of stokeslets objects.

D.1 Spheroid Parameters

Here we provide more details on the derivation of Eq. (3.11)-Eq. (3.12), together with indicating
the specific parameters used for Fig. 3.4. Eq. (3.8)-Eq. (3.10) contain the single-object-dependent
tensors, and the derivatives of the Oseen tensor, Gij(R) = 1/(8πR)(δij + RiRj/R2). The object-
dependent tensors of self-aligning spheroids are given in Appendix C. There, we consider a
spheroid whose principal axes are (κ−1 p, κ−1 p, p), and whose forcing point is displaced along
the symmetry axis by a distance χp from the center. The system studied in Chapter 3, which is
depicted in the left panel of Fig. 3.3, is characterized by a different representation where ℓ = 2p
and h = χp.

The parameters β, ζ and α in Eq. (3.11)-Eq. (3.12) can be found by inserting the object-
dependent tensors of a tilted, self-aligning spheroid into Eq. (3.8)-Eq. (3.10). The tilted tensors
are given by evaluating the tensors in Appendix C with the orientation n̂ = (θ, 0,−1). In
particular, one finds that α and ζ change linearly with h. The trajectories presented in Fig. 3.4
correspond to spheroids with aspect ratio of 4. The dash-dotted green and dotted blue curves,
respectively, are solutions to Eq. (3.11)–Eq. (3.12) with h = 0 (which gives β ≈ 1, α, ζ = 0) and
h ≈ 0.31 ( β ≈ 0.6, α ≈ 1.25, ζ ≈ 0.95).
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D.2 Integration Scheme for Objects of Irregular Shape

Here we introduce the integration scheme used in Chapter 3 for the far-field dynamics of two
irregular objects. This scheme is different from the one in Chapter 2 (outlined in Sec. 2.3.2) in
several aspects: (i) It is restricted only to far-field dynamics, as only the first two multipoles
of the pair-mobility matrix are considered; (ii) Instead of explicit integration, we solve a set
of coupled non-linear, first-order ODEs using a Matlab routine. This method is more efficient
as the hydrodynamic responses of each object are found only once, for a given orientation,
instead of at any time step. On the other hand, it is less stable, as the ODE solver does not
ensure normalization of the 4-vectors representing orientations. However, this latter stability
issue has negligible effects on the repulsive trajectories studied in Chapter 3, unless at very
long times.

The dynamics of a symmetric system comprising two spheroids (Fig. 3.3) can be described
by the reduced equations, Eq. (3.11)-Eq. (3.12), for one angle θ(t) and one-dimensional separa-
tion x(t). However, in the general case of two irregular objects we are compelled to integrate
the full far-field equations, Eq. (3.8)-Eq. (3.10). Below we describe the details of the integration
scheme.

The coordinate space includes the separation vector R and orientational parameters for
each object, these are represented by Euler-Rodriguez 4-parameters (or unit quaternions), (Γa, Ωa)

and (Γb, Ωb). The tensorial properties of a given object, such as the matrix A or the tensor of
rank 3 Π, are calculated only once, in a reference frame affixed to the object. These properties
can be derived explicitly for stokeslets objects (Sec. 2.3.1) or self-aligning spheroids Sec. D.1.

Knowing the properties in the body frame, e.g., A(b) or Π(b), one can use a rotation trans-
formation to calculate them in any orientation (Γ, Ω):

Aij(Γ, Ω) = Ril(Γ, Ω)A(b),lmRT
mj(Γ, Ω),

Πijk(Γ, Ω) = Rim(Γ, Ω)Π(b),mlsR
T
lj(Γ, Ω)RT

sk(Γ, Ω),

where
Rij(Γ, Ω) = (1 − 2Ω2)δij + 2ΓϵikjΩk + 2ΩiΩj

is the rotation matrix which is a polynomial in the orientational parameters.

Finally, the equations for the evolution of
(
R, Γa, Ωa, Γb, Ωb) can be written using Eq. (3.8),

and Eq. (3.9)–Eq. (3.10) together with the linear relation between angular velocity and time
derivative of the orientation parameters (see Sec. 1.7)(

Γ̇
Ω̇

)
=

1
2

(
0 −ωT

ω ω×

)(
Γ
Ω

)
. (D.1)



Appendix E

The Averaged Response Tensor Φ

Below we explain the emergence of an effective, averaged response tensor Φ for self-aligning
objects. This response tensor is at the core of the theory presented in Chapter 4. (This averaged
tensor is not identical to the hydrodynamic tensor Φ discussed in Chapter 2 and Appendix B).

The anisotropic response of self-aligning objects to a weak external flow is captured by the
effective hydrodynamic tensor Φ in Eq. (4.3). This tensor can be derived from the motion of
an isolated object in Stokes flow. Specifically, one should consider the motion of a single rigid
object subjected to external force F, and embedded in external flow gradient E. This response
encapsulates the two effects that contribute to the far-field dynamics studied in Sec. 3.2.3—
gliding response and direct pair HI (in the case of self-aligning spheroids, these two effect
are represented by the parameters β and ζ in Eq. (3.11).) . Below, we summarize the main
equations from which Φ can be extracted for general self-aligning objects. In addition, we
specialize to a simple example of self-aligning spheroids, for which we derive Φ explicitly.

E.1 Instantaneous Response under External Force and Flow

First, we write down the general equations governing the aforementioned hydrodynamic prob-
lem. The object is subjected to an external force F = −ẑF, and placed in an external flow
u(r) = rT · E, where r is measured from the forcing point, i.e., the point about which the ex-
ternal torque vanishes. We indicate the object’s orientation by a set of parameters Q, e.g., Q
can refer to three Euler angles or a unit quaternion as has been done throughout this Thesis.
Following Chapter 3, the instantaneous linear and angular velocities of the object, V and ω,
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are given as a linear response to the external fields [24],

Vi = − 1
6πηℓ

Ai3(Q)F + ℓΠijk(Q)Ekj, (E.1)

Ωi = − 1
8πηℓ2 Ti3(Q)F +

(
Ψijk(Q)− 1

2
ϵijk

)
Ekj, (E.2)

The velocity V in Eq. (E.1) refers to the velocity of the forcing point. Eq. (E.2) is a nonlinear
equation for the object’s orientation (the relation between ∂tQ and ω is given Appendix D.2 for
the case of a unit quaternion representation). The translational motion, described by Eq. (E.1),
varies in time as the object rotates.

If E = 0, the object’s eigendirection n̂ is aligned with the forcing direction and the object
rotates about n̂ with a constant rate ω0 = λ3F. The ultimate rotation leads to a helical transla-
tional motion (dictated by Eq. (E.1)), where on average, the object translates in the direction of
the force. The case of a weak external flow gradient results in tilted dynamics, as was shown
in the context of pair-hydrodynamic interaction in Chapter 3. The presence of external flow
affects the translational motion directly through the tensor Π, and indirectly due to the ori-
entational motion modified by the tensor Ψ − 1/2ϵ. When (Ψ + 1/2)E ≪ t−1

align, the aligning
behavior and helical trajectory, corresponding to the case of E = 0, are perturbed. In partic-
ular, the object preforms a tilted helical motion, where the averaged eigendirection n̄ and the
averaged linear velocity V̄, both have components perpendicular to the direction of the force;
see Fig. 3.4. This perturbed motion can be analyzed by solving Eq. (E.1) and Eq. (E.2), where
Π and Ψ are constants obtained by averaging over the rotations in the (unperturbed) aligned
state. Essentially, the tilted helical dynamics can be characterized as a linear response, i.e.,
n̄i = (ηℓ2/F)ΣiksEsk and V̄i = ℓΦiksEsk, where Σ and Φ depend solely on the tensors A, T,
Π and Ψ. The red curves in Fig. 3.4 illustrate such an averaged linear response in the case of
self-aligning sparse objects.

E.2 Self-Aligning Spheroids

Let us now specialize to the case of self-aligning spheroids, which can be treated analytically.
We consider a spheroid whose principal axes are (κ−1 p, κ−1 p, p), as depicted in the inset of
Fig. 4.3. The spheroid is subjected to an external force at a point which is displaced along the
symmetry axis by a distance χp from the center, and embedded in an external flow gradient
E, which is measured about the forcing point. The spheroids orientation is represented by its
eigendirection, n̂, which is directed from the center to the forcing point (indicated by a red
dot in Fig. 4.3). The hydrodynamic tensors in Eq. (E.1) and Eq. (E.2) refer to the case where
the object’s origin is the forcing point. For self-aligning spheroids, these tensors are given
as a linear transformation from the tensors that correspond to choosing the origin to be the
spheroid’s center, as given in Appendix C.



E.2. SELF-ALIGNING SPHEROIDS 103

The linear velocity of the forcing point is given by

Vi = −FAc
iz(n̂) + χp (ω × n̂)i − χpn̂kEki, (E.3)

where Ac is given in Eq. (C.1). The spheroid’s orientational dynamics is given by

ωi = − αF
ηp2 ϵil3n̂l +

(
Ψijk(n̂)−

1
2

ϵijk

)
Ekj, (E.4)

where we use the twist matrix given in Eq. (C.7), and α = χS⊥(κ)/(8π) is the alignability
parameter. Eq. (E.4) leads to the nonlinear equation for the dynamics of eigendirection n̂,

∂tn̂i = ϵiksωkn̂s. (E.5)

If E = 0, then the eigendirection and the translational velocity will be ultimately directed
along the −ẑ axis,

n̂0 = −ẑ; ω0 = 0; V0
i = − F

6πηp
Ac
∥(κ)δi3.

This is the self-aligning motion of the isolated object. In the case of weak external flow, i.e.,

ηp2ψE ≪ αF, (E.6)

the dynamics reaches a state where n̂ is slightly tilted from the forcing direction, n̂ = −ẑ +

n⊥. The asymptotic solution can be found by setting ω = 0 in Eq. (E.4) and approximating
Ψiks(n̂) = Ψiks(−ẑ), which gives

ϵil3n⊥
l =

ηp2

αF

(
Ψijk(−ẑ)− 1

2
ϵijk

)
Ekj, (E.7)

or

n⊥
i =

ηp2

αF
ϵi3m

(
Ψmjk(−ẑ)− 1

2
ϵmjk

)
Ekj. (E.8)

Next, let us consider the perturbed translational velocity in Eq. (E.3). Up to linear order in
E we have

Vi − V0
i =

F
6πηp

(
Ac
∥(κ)− Ac

⊥(κ)
)

n⊥
i + χpẑkEki. (E.9)

Finally, substituting in Eq. (E.9) the final orientation given in Eq. (E.8), we find

Vi − V0
i =

pβ

α
ϵi3m

(
Ψmjk(−ẑ)− 1

2
ϵmjk

)
Ekj + χpẑkEki + O(E2), (E.10)

where β =
(

Ac
∥(κ)− Ac

⊥(κ)
)

/(6π) is the gliding parameter of the object. To summarize,

Vi − V0
i = ℓΦijkEkj + O(E2) with

Φijk =
p
ℓ

χδijδ3k +
p
ℓ

β

α
ϵi3m

(
Ψmjk(−ẑ)− 1

2
ϵmjk

)
, (E.11)
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where we take the typical linear size of the spheroid as ℓ = κ−2/3 p, since in the definition of ξ

in Eq. (4.6) we assume the relation c0ℓ3 ∼ φ.

Here we report the following asymptotic values for an extremely oblate spheroid (κ ≪ 1),
a sphere (κ = 1), and an extremely prolate spheroid (κ ≫ 1):

α(κ, χ) ≡ χS⊥(κ)/(8π) =


3χκ3

32 , κ ≪ 1
χ

8π , κ = 1
3χ ln(κ)

8π , κ ≫ 1

, (E.12)

β(κ) ≡
Ac
∥(κ)− Ac

⊥(κ)

6π
=


− κ

32 , κ ≪ 1
0 , κ = 1
ln(κ)

8π , κ ≫ 1

, (E.13)

γ(κ, χ) ≡ Φzzz − Φz⊥⊥ − Φ⊥⊥z =


− κ2/3

3χ , κ ≪ 1

0 , κ = 1
κ2/3

3χ , κ ≫ 1

. (E.14)

For extremely oblate or prolate spheroids, in the limit of χ → 0 one finds that |γ| → ∞;
however, in this limit α → 0 and the assumption of weak external flow gradient in Eq. (E.6)
breaks; see discussion on this issue in Sec. 5.2.



Appendix F

Real Space Correlations in the
Sedimentation of Irregular Objects

Below we summarize the detailed calculations yielding the real space correlations that are
given in Sec. 4.2.1.

F.1 Total and Direct Density-Density Correlation Functions

The density-density correlations are the inverse Fourier transform of the suspension’s static
structure factor:

⟨c(0)c(r)⟩ = c0

∫ d3q
(2π)3 S(q)e−iq·r =

Nc0

D

∫ d3q
(2π)3

q2e−iq·r

q2 + ξ−2(q⊥/q)2 .

We rescale r → ξR and define the rescaled total correlation function

h(R) ≡ Dξ3

Nc0
⟨c(0)c(R)⟩ =

∫ d3q
(2π)3

q2e−iq·R

q2 + (q⊥/q)2 . (F.1)

We start with correlations along the direction of gravity

h(Rẑ) =
∫ dq⊥dqz

(2π)2
(q2

z + q2
⊥)

2q⊥e−iqzR

(q2
z + q2

⊥)
2 + q2

⊥
. (F.2)

Noticing that ∫ q⊥e−iqzR

(q2
z + q2

⊥)
2 + q2

⊥
dqz = −πIm

 e−
√

q2
⊥+iq⊥R√

q2
⊥ + iq⊥

 , (F.3)
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we find

h(Rẑ) = −Im
(∫ dq⊥

4π

[
(q2

⊥ + iq⊥)3/2 − 2q2
⊥

√
q2
⊥ + iq⊥ + q4

⊥(q
2
⊥ + iq⊥)−1/2

]
e−
√

q2
⊥+iq⊥R

)
.

(F.4)
In the limit R → ∞, the first term is dominant over the others, which gives

lim
R→∞

h(Rẑ) = −Im
(∫

(iq⊥)3/2e−
√

iq⊥R dq⊥
4π

)
=

12
πR5 . (F.5)

Next, consider correlations in the direction perpendicular to gravity

h(R⊥) =
∫ dqzdq⊥dϕ

(2π)3
(q2

z + q2
⊥)

2q⊥e−iq⊥R cos(ϕ)

(q2
z + q2

⊥)
2 + q2

⊥
=
∫ dq⊥dqz

(2π)2
(q2

z + q2
⊥)

2q⊥
(q2

z + q2
⊥)

2 + q2
⊥

J0(q⊥R), (F.6)

where J0 is the Bessel function of the first kind. In order to preform the following calculation
we use the relations:

q⊥
(q2

z + q2
⊥)

2 + q2
⊥

= Re
(

1
q⊥ − i f−(qz)

− 1
q⊥ + i f+(qz)

)
1

f+(qz) + f−(qz)
, (F.7)

with f±(qz) =

√
1+4q2

z±1
2 , and

Re
(∫

J0(q⊥R)
dq⊥

q⊥ − ib

)
= K0(bR), (F.8)

where K0 is the modified Bessel function of the second kind. Integration over q⊥ in Eq. (F.6)
reads

h(R⊥) = M1 + M2 + M3,

where

M1 =
∫ dqz

(2π)2
q4

z
f+(qz) + f−(qz)

[K0( f−(qz)R)− K0( f+(qz)R)], (F.9)

M2 = −
∫ dqz

(2π)2
2q2

z
f+(qz) + f−(qz)

[
f 2
−(qz)K0( f−(qz)R)− f 2

+(qz)K0( f+(qz)R)
]
, (F.10)

M3 =
∫ dqz

(2π)2
1

f+(qz) + f−(qz)

[
f 4
−(qz)K0( f−(qz)R)− f 4

+(qz)K0( f+(qz)R)
]
. (F.11)

In the limit of R → ∞, the first term dictates the leading order behavior

lim
R→∞

h(R⊥) =
∫ dqz

(2π)2 q4
zK0(q2

z R) =
Γ2(5/4)

2
√

2π2R5/2
.

Finally, we calculate the direct correlation function, d(R), that can be written explicitly, and
not in an integral form, as opposed to the total correlation function given above. The two
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functions are related through the Ornstein-Zernike equation, which implies [108]

d̃(q) =
S(q)− 1
c0S(q)

.

In the case of N = D we have

d̃(q) = −
ξ−2q2

⊥
c0q4 ,

and returning back to real space we get

d(r) = − 1
c0ξ2

∫ d3q
(2π)3

q2
⊥e−iq·r

q4 = − 1
8πc0ξ2r

(
1 +

r2
z

r2

)
. (F.12)

F.2 Velocity Correlations

Let us now calculate the velocity two-point correlation function

⟨Vi(0)Vj(R)⟩ = NF2ξ

D

∫ dq3

(2π3)

G̃iz(q)G̃jz(−q)q2e−iq·R

q2 + (q⊥/q)2 . (F.13)

Separating to the cases of correlations along- and perpendicular to the direction of gravity we
get the following expressions:

⟨Vz(0)Vz(R)⟩ = NF2ξ

D

∫ d3q
(2π)3

q2
⊥

q4
q2
⊥e−iq·R

q4 + q2
⊥

, (F.14)

⟨V⊥(0)V⊥(R)⟩ =
⟨Vx(0)Vx(R)⟩+ ⟨Vy(0)Vy(R)⟩

2
=

NF2ξ

2D

∫ d3q
(2π)3

q2
z

q4
q2
⊥e−iq·R

q4 + q2
⊥

. (F.15)

Note that
1
q4

q2
⊥

q4 + q2
⊥

=
1
q4 − 1

q4 + q2
⊥

,

thus, the integrals become

⟨Vz(0)Vz(R)⟩ = NF2ξ

D

(∫ d3q
(2π)3

q2
⊥

q4 e−iq·R −
∫ d3q

(2π)3
q2
⊥

q4 + q2
⊥

e−iq·R
)

, (F.16)

⟨V⊥(0)V⊥(R)⟩ = NF2ξ

2D

(∫ d3q
(2π)3

q2
z

q4 e−iq·R −
∫ d3q

(2π)3
q2

z

q4 + q2
⊥

e−iq·R
)

. (F.17)

The first integral in the two expressions above can be solved explicitly

∫ d3q
(2π)3

q2
⊥

q4 e−iq·R =
1

8πR

(
1 +

R2
z

R2

)
, (F.18)
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1
2

∫ d3q
(2π)3

q2
z

q4 e−iq·R =
1

16πR
R2
⊥

R2 . (F.19)

Finally, the velocity correlations along the longitudinal and perpendicular directions can be
found similarly to the integrals calculated above:

D⟨Vz(0)Vz(Rẑ)⟩
NF2ξ

=
1

4πR
+ πIm

∫ dq⊥
(2π)2

q2
⊥e−

√
q2
⊥+iq⊥R√

q2
⊥ + iq⊥

 (F.20)

D⟨V⊥(0)V⊥(Rẑ)⟩
NF2ξ

= −π

2
Im
(∫ dq⊥

(2π)2

√
q2
⊥ + iq⊥e−

√
q2
⊥+iq⊥R

)
(F.21)

D⟨Vz(0)Vz(R⊥)⟩
NF2ξ

=
1

8πR
+
∫ dqz

(2π)2
f 2
−(qz)K0( f−(qz)R)− f 2

+(qz)K0( f+(qz)R)
f+(qz) + f−(qz)

(F.22)

D⟨V⊥(0)V⊥(R⊥)⟩
NF2ξ

=
1

16πR
− 1

2

∫ dqz

(2π)2
q2

z (K0( f−(qz)R)− K0( f+(qz)R))
f−(qz) + f+(qz)

(F.23)



Appendix G

Validity of the Linear Theory in
Chapter 4

This Appendix addresses the range of validity of the linear model for the sedimentation of
self-aligning objects, which has been presented in Chapter 4. The original fluctuating hydro-
dynamics model, Eq. (4.4), contains an advective term which is linear in c, and a nonlinear one,
∼ c2, which underlies the LRFB model. The ratio between the two terms reads

anisotropic linear term
LRFB nonlinear term

=
ℓγG̃(q)Fq−1c̃c0

G̃(q)Fqc̃c̃
= γφ(ℓq)−2 1

c̃
. (G.1)

The concentration fluctuations appearing in Eq. (G.1) can be related to the static structure factor

c̃ ∼
√

S =
√

N/D

√
1

1 + (ξq)−2 →
qξ≪1

√
N/Dqξ. (G.2)

The ratio in Eq. (G.1) is then proportional to (qξ)−3, and thus, much larger than 1 as q →
0. Therefore, the linear term in Eq. (4.4) dominates the nonlinear one in both limits of small
concentration fluctuations and small q. In these limits, the linear theory described by Eq. (4.5)
is valid.
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תודות

מעובה חומר של המחקר תחום את לי שהכיר על דימנט חיים לפרופ' להודות רוצה אני ובראשונה, בראש

תהיותך את עימי שחלקת על תודה חיים, האחרונות. השנים וחצי בארבע שלו והליווי ההנחיה ועל רך,

הנכונות הפיסיקליות השאלות שאילת כיצד אותי לימדת ההשראה. מעוררי רעיונתך ואת הסקרניות

לעבור העת הגיעה מתי לרמוז לחילופין, או נוספים לכיוונים חלון לפתיחת פשוטה תוצאה להביא יכולה

עצמאי. למחקר בדרכי שלך המסורה וההנחיה לך האופיינית נחמדותך על תודה לך חב אני הבא. לאתגר

מאירי ודיונים פורה פעולה שיתוף על וויטן א. תומאס לפרופ' להודות האפשרות על מזל בר חש אני

העמוק המחשבה מקו מושפע ולהיות לעקוב המיוחדת האפשרות לי שהייתה על תודה אסיר אני עיניים.

טום. של והיצירתי

מועילות. והצעות מפרים דיונים על וחן יוליה עוז, ועמיתיי לחבריי להודות גם ברצוני

חשוב אך ולבסוף, והתמיכה. שלהם העידוד על וניר, רועי אמיר, ולאחיי ודֹֹב, אֹֹרנה להוריי מודה אני

הרבים הפסימיסטיים הרגעים במהלך הדרך, כל לאורך שם היית את נטע– ,love of my life לאשתי, מכל,

את להשלים יכול לא אני לבסוף, המסע. לאורך שפיותי על שומרת הנדירים, האופטימיים ברגעים וגם שלי

פרספקטיבה לי והעניקה שבועות כמה לפני לחיי שנכנסה רעות, בתי את להזכיר מבלי התודות רשימת

החיים. על חדשה
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ישנה א-סימטריים אובייקטים זוג של בתנועתם הייחודיים לאפקטים כי מראים אנו השלישי בחלק

אובייקטים המכיל שוקע תרחיף עבור חיצוני. כוח תחת קולואידים של הרב-גופית הדינמיקה על השפעה

האובייקטים מנטיית המושרית לזרימה, האובייקטים של הלא-איזוטרופית התגובה מתיישרים-עצמאית,

התרחיף. ובמהירות בצפיפות פלוקטואציות מקטין ישיר שבאופן כמנגנון פועלת הכובד, כוח עם להתיישר

סימטריים. ספרואידים עם תרחיפים של האנומליות מהפלוקטואציות להימנע לתרחיף מאפשר זה מנגנון

כיצד (�uctuating hydrodynamics) משקל לשיווי מחוץ סטטיסטי במודל שימוש ידי על מראים, אנו

מסויימים, מקרים עבור טווח. ארוכות קורלציות עם היפר-אחיד מבנה יוצר אי-הומוגניות של הדיכוי

הומוגני. שוקע תרחיף של יציבות לחוסר ומובילה ההפוך בכיוון פועלת הלא-איזוטרופית התגובה

והן הדו-גופית ברמה הן איכותיים– הבדלים על ברור באופן מצביעים זו תזה של הממצאים כן, על

סימטרית צורה בעלי חלקיקים של תרחיפים של חיצוני כוח תחת הדינמיקה בין הקולקטיבית– ברמה

א-סימטריים. אובייקטים המכילים כאלה לבין
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תקציר

בגודלם) מיקרון ננומטר-10 10) מזוסקופיים מחלקיקים המורכבות מערכות הינם (קולואידים) תרחיפים

בתרחיף אובייקטים הרבה, או זוג, של הדינמיקה על קודמים מחקרים צמיג. מולקולרי בנוזל המפוזרים

במקרה מקיפה בחינה ספרואידים. או כדורים כדוגמת סימטריים בחלקיקים התמקדו חיצוני כוח תחת

בין הצימוד כיצד הדגימו עבורה הבודד האובייקט ברמת לאחרונה הוצגה א-סימטריים קולואידים של

אני זו בתזה מבוקרת. הסעה של חדש סוג להניב יכול החיצוני והכוח סיבובית תנועה קווית, תנועה

בעלי אובייקטים בין הידרודינמיות) (אינטראקציות הנוזל זרימת ע"י המושרות האינטראקציות את בוחן

התנועה ועל קולואידים יישור על שלהן ההשלכות את ובודק חיצוני, כוח בהשפעת הנעים כלשהי צורה

וא-סימטריים. בראוניים לא תרחיפים של הקולקטיבית

בעלי אובייקטיים שני בין ההידרודינמית האינטראקציה את חוקרים אנו העבודה של הראשון בחלק

המאפיינים את חוקרים אנו מתאפס. ריינולדס מספר שבו בגבול צמיג, בנוזל המוסעים כלשהי צורה

שני של המיידית התגובה את המתארת הדו-גופית, המוביליות מטריצת של והסימטריות הכלליים

המשפיע האינטראציה, של ודיפולרי) (מונופולרי המוביל הסדר את אנליטית מנתחים אנחנו האובייקטים.

פרטני, באופן מתמקדים, אנו גדולים. במרחקים האובייקטים של והסיבובית הקווית המהירות על

המתיישרים א-סימטרית צורה בעלי אובייקטים של גדולה קבוצה "המתיישרים-עצמאית"– באובייקטים

מוכיחים אנחנו בזמן. המשתנה כוח פרוטוקול עם לסינכרון ניתנים ואף קבוע, בכיוון חיצוני כוח עם

אובייקטים שני בין ההדדי היישור את לינארי באופן מחלישה המיידית ההידרודינמית שהאינטראקציה

חישוב ע"י מפורש באופן מודגמות זמן לאורך ההידרודינמית האינטראקציה של השפעותיה זה. מסוג

כוח. נקודות ארבע של אוסף בעזרת הממודלים המתיישרים-עצמאית, אובייקטים של הדינמיקה של נומרי

והקווית, הסיבובית האינטראקציה בין הקשר כי מוצאים אנו האובייקטים, יישור על להשפעה בנוסף

כוח פרוטוקול בהפעלת מכך, כתוצאה האובייקטים. שני בין לדחייה הזמן עם מוביל המקרים, ברוב

ככל נחלשת אובייקטים, שני בין ההדדי היישור את המקטינה הדו-גופית, האינטראקציה בזמן, משתנה

כנו. על מושב המסונכרן והמצב מזה זה מתרחקים שהאובייקטים

עם האפקטיבית והדחייה לכוח מיידית כתגובה המתקבלת היחסית הקווית התנועה אלו– תוצאות

האינטראקציה של ההשלכות את במפורט לבחון העבודה של השני בחלקה אותנו מובילים הזמן–

שני של שבמקרה היא, ידועה עובדה מוסעים. קולואידים שני בין היחסית הטרנסלציה על ההידרודינמית

באופן מדגימים, אנו יחסית. קווית תנועה מייצרת לא האינטרקציה אינסופי בנוזל השוקעים זהים כדורים

לדוגמה, להיפוך- מרחבית סימטריה ישנה כאשר מתאפסת זו אפקטיבית שאינטראקציה יותר, כללי

הסימטריה ששבירת מראים אנו השני. של אחד ראי בתמונת המוצבים אננטיומרים זוג של במקרה

במערכות בניסויים שנצפתה כדורים בין היחסית התנועה את מסבירה המערכת מגבולות כתוצאה להיפוך

בקונפיגורציות אפקטיביות לאינטראקציות תחזיות גם מספק סימטריה של זה כללי עקרון מתוחמות.

אובייקטים זוג בין בזמן המתפתחת היחסית התנועה את לעומק בוחנים אנו בנוסף, . אחרות מתוחמות

באופן שונה אובייקטים של זו קבוצה עבור הטיפוסית הדחייה כיצד מראים אנו המתיישרים-עצמאית.

עבור האובייקטים, שני בין ההדדי המרחק ספרואידים. שני של יותר הסימטרי למקרה בהשוואה איכותי

הזמן. עם האסימפטוטית ההתפתחות עבור שונה חזקה לחוק מתאים הללו, מהמקרים אחד כל
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שלי: והסבתות הסבים של לזכרם מוקדש

דקל. ודבורה אליהו גולדפריינד, אירנה והדסה שמואל

אלתרמן) נתן הפילים", ("אל הַשָּׁמַיִם. פִּילֵי בֵּין לְטַיֵל פָּשׁוּט, קַיִץ בִּמְעִיל כֵּן, עַל לִי אֵצֵא —
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של בהדרכתו נעשתה זו עבודה

דימנט חיים פרופסור

אביב תל אוניברסיטת לכימיה, הספר בית
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ואסטרונומיה לפיסיקה הספר בית

לפילוסופיה" "דוקטור התואר קבלת לשם חיבור

חיצוני כוח תחת תרחיפים של דינמיקה

ידי על אביב תל אוניברסיטת של לסנאט הוגש

גולדפריינד תומר

דימנט חיים פרופ' מנחה:
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