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Abstract

The study of pattern formation in general, and patterns on thin elastic sheets in particular, is

at present an active field of research. A thin elastic sheet is a 3D solid material whose thickness

is much smaller compared with its other dimensions. Due to this unique geometric property

thin sheets are highly deformable and exhibit numerous morphological structures under external

loads or confinement. This thesis aims to advance the theory of thin elastic sheets through the

following three projects.

The first project deals with a laterally confined thin elastic sheet that is lying on a liquid

substrate. Upon small confinement this system displays regular undulations, called wrinkles,

characterized by a spatially extended energy distribution and a well-defined wavelength λ. As

the confinement increases, the deformation energy is progressively localized into a single narrow

fold. An exact solution for the deformation of an infinite sheet was previously found, indi-

cating that wrinkles in an infinite sheet are unstable against localization for arbitrarily small

confinement. We present an extension of the theory to sheets of finite length L, accounting

for the experimentally observed wrinkle-to-fold transition. We derive an exact solution for the

strong periodic deformation in the wrinkled state, and an approximate solution for the localized,

folded state. We find that a second-order transition between these two states occurs at a critical

confinement ∆F = λ2/L.

In the second project we study the analogy between thin filaments (also equivalent to thin

sheets that deform uniaxially) and the motion of rigid bodies. Kirchhoff’s kinetic analogy relates

the deformation of an incompressible elastic rod to the classical dynamics of rigid body rotation.

We advance the analogy further to extensible filaments and find that this is equivalent to the

introduction of relativistic effects into the dynamical system. The extended analogy reveals

a surprising symmetry in the deformations of extensible elastica. In addition, we use known

results for the buckling of extensible elastica to derive the explicit solution for the motion of a

relativistic nonlinear pendulum. We discuss cases where the extended Kirchhoff analogy may

be useful for the study of other soft matter systems.

The third project is on the subject of incompatible thin sheets — sheets that include residual

stresses even in the absence of external forces. The existing theory of incompatible elastic sheets

uses the deviation of the surface metric from a prescribed reference metric to define the strain

tensor. For a class of simple axisymmetric problems we present and examine an alternative

formulation, defining the strain based on deviations of distances (rather than distances squared)

from their rest values. While the two formulations converge in the limit of small slopes and in

the limit of an incompressible sheet, for other cases they are found not to be equivalent. The

alternative formulation offers several features which are absent in the existing theory. (a) In

the case of planar deformations of flat incompatible sheets, it yields linear, exactly solvable,

equations of equilibrium. (b) When reduced to uniaxial (one-dimensional) deformations, it

coincides with the theory of extensible elastica; in particular, for a uniaxially bent sheet it yields

an unstrained cylindrical configuration. (c) It gives a simple criterion determining whether
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a strain-free configuration (isometric immersion) of an incompatible sheet is at mechanical

equilibrium with respect to normal forces. For a reference metric of constant positive Gaussian

curvature, a spherical cap is found to satisfy this criterion except in an arbitrarily narrow

boundary layer.

Overall, the results of this thesis make another step towards a complete, non-linear, elastic

theory that is able to describe arbitrarily large deformations of thin elastic sheets far away from

their relaxed state.
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Chapter 1

Introduction

1.1 Background

Pattern formation refers to macroscopic and mesoscopic ordered structures that spontaneously

emerge out of a uniform environment as an instability or symmetry breaking [1–3]. Numerous

phenomena in nature are gathered under this master field. Examples are plentiful, e.g., large

scale structures in the universe, solidification of snowflakes out of vapor, creation of sand ripples

or fluid vortices in thermal convection. Almost every industrial manufacturing process involves

at one stage or another some version of pattern formation [2]. Since designing a material to

have a certain shape and functionality has always been of great importance, many studies on

pattern formation concentrated on elasticity phenomena.

1.1.1 Elastic bodies

The theory of elasticity was founded as a tool for describing the behavior of a macroscopic

three-dimensional (3D) solid material under applied external forces.

In a nutshell, the mathematical formulation of elasticity aims to describe how the relaxed

configuration, r0, is deformed into r = r0 + u, under the application of external loads, fext.

The vector u is called the displacement vector and determining its components is the main goal

of the elastic theory. For this purpose two tensors are defined: (i) The strain tensor, εij(u)

(where i, j = 1, 2, 3), which measures the extension of line elements with respect to their rest
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CHAPTER 1. INTRODUCTION 2

values, and (ii) the stress tensor, σij , which measures the internal forces within the deformed

configuration. The elastic energy of a given configuration is the work done to displace the 3D

body from its rest state,

E3D =

∫
V
σijεijdV, (1.1)

where V is the total volume of the undeformed configuration. Expressing the stresses as a func-

tion of the strains, the so-called constitutive stress-strain relations, one can minimize the elastic

energy under the given constraints and solve the equilibrium equations to obtain the deformed

configuration. An important limit of this formalism is the framework of linear elasticity. If the

strains, εij , are small we may assume that the stress-strain relations are linear, σij = Aijklεkl,

such that Eq. (1.1) becomes quadratic in ε,

small strains: E3D =

∫
V
AijklεijεkldV. (1.2)

In the last few decades there has been a renewed interest in elasticity theory as nano-scale

structures were considered either for engineering or for fundamental science [4]. Although the

theory was developed to fit a macroscopic continuous material of the size that we see with a

naked eye, it turns out to reasonably describe more delicate structures such as DNA rings [5]

and carbon nanotubes [6]. In addition, patterns appearing on the surface of soft materials and

biological tissues, such as wrinkles on human skin [7], sulcus in the human brain [8], or curvature

excitations of red blood cells [9], were described to great accuracy by elastic theories. These

observations resulted in the expansion of elasticity into the high bendability regime [10–12] —

phenomena in which thin elastic bodies are free to undergo large deflections far away from their

initial state.

1.1.2 Thin sheets

A large group of these highly bendable materials lies in the category of thin elastic sheets. A

thin elastic sheet is a solid material whose thickness is small compared with its other dimensions,

for instance office paper, curtains, T-shirt fabric and leaves, see Fig. 1.1.

The theoretical framework of thin sheet elasticity has its roots in the standard linear elastic-

ity in three-dimensions, Eq. (1.2), where on top of the small strains approximation another set of

assumptions are used that effectively reduce the problem’s dimensionality. These assumptions

are known as the Kirchhoff-Love hypotheses and are formulated as follows [15, p. 65]: “straight

2



CHAPTER 1. INTRODUCTION 3

Figure 1.1: Different morphologies of thin elastic sheets. (a) Packing of a flat thin sheet in a

hollow cylinder results in a conical deformation [13]. (b) Wrinkles on a human skin due to lateral

compression [7]. (c) Wrinkles on the edge of flower petals. (d) Crumpled sheet of aluminized

Mylar [14]. (e) Wrinkles in a polyethylene sheet under a uniaxial tensile strain [7].

transverse fibers of the sheet which were normal to the middle surface before the deformation

remain straight and normal to the deformed middle surface and do not undergo any stretching

or compression”. Physically, these assumptions neglect the stress-strain relations along the thin

direction, such that the thickness remains unchanged (see [15] for further discussion). The main

benefit from these hypotheses is that a 3D thin sheet can be modeled by the deformation of its

two-dimensional (2D) mid-surface, and similarly, a slender filament can be represented by its

one-dimensional (1D) mid-axis.

Mathematically, a deformed 3D body that satisfies the Kirchhoff-Love assumptions is given

by,

f?(x1, x2, x3) = f(x1, x2) + x3n̂(x1, x2), (1.3)

where f?(x1, x2, x3) is the position vector of the 3D configuration, f(x1, x2) is the position vector

of the mid-surface, (x1, x2) are the two in-plane coordinates, x3 is the coordinate along the thin

direction and n̂ is a unit vector normal to the mid-surface. Since the dependence on x3 is

explicit, given the mid-surface, f(x1, x2), the entire 3D body can be constructed (see Fig. 1.2).

The limits of validity of these assumptions were extensively investigated in Refs. [15–18]. It can

be shown that these assumptions are expected to hold as long as t/Rmin � 1, where Rmin is

the minimum radius of curvature on the surface and t is the thickness.

Intuitively, as a material becomes thinner, its ability to oppose bending is dramatically

reduced. Quantitatively, using the Kirchhoff-Love hypotheses, the elastic energy, Eq. (1.2), can

3



CHAPTER 1. INTRODUCTION 4

Figure 1.2: Deformation of a plate under the Kirchhoff-Love assumptions. An initially stress-

free and flat plate with thickness t in panel (a) is deformed into the configuration presented in

panel (b). Since straight lines (“fibers”) normal to the mid-surface remain straight and normal

after deformation and the thickness remains unchanged, the 3D configuration is fully determined

by the position of the mid-surface.

be integrated over the thin dimension of the 3D body to give the following expansion,

E2D ' Es + Eb = Y

∫
A
esdA+B

∫
A
ebdA, (1.4)

where Es and Eb account respectively for the energies associated with the in-plane and out-

of-plane deformations and the integration is over the undeformed area of the sheet. Since

the bending term, Eb, is proportional to the bending rigidity given by B ∝ Et3, where E is

the Young’s modulus, and the stretching contribution, Es, is proportional to the compression

modulus, Y ∝ Et, the relative energetic cost for bending is greatly reduced with decreasing

thickness [19, p.50].

The rest of this Introduction is divided into three sections. In the first, Sec. 1.2, we introduce

the elastic theory of 1D extensible filaments (the so-called extensible elastica). This theory

holds as well for 2D sheets that deform uniaxially along a single direction (with zero Gaussian

curvature1). We then utilize this theory for two applications: (i) formulating the problem of

floating elastica - a thin sheet that overlies a fluid substrate and uniaxially compressed from the

boundaries, and (ii) demonstrating the analogy between thin planar filaments and a dynamic

problem. The second section in this Introduction, Sec. 1.3, presents the general theory for

thin sheets in two dimensions, accounting for arbitrary deformations along the two in-plane

directions on the surface. We then specialize this formulation to two cases: (i) the small slope

approximation (also known as the Föpple-von Kármán model), and (ii) the elastic theory of

incompatible thin sheets. Finally, in Sec. 1.4, we present te outline of this thesis.

1The Gaussian curvature at a point on a surface is the product of its two principal curvatures at that point

[20].
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CHAPTER 1. INTRODUCTION 5

1.2 Uniaxial deformations of thin sheets

1.2.1 The theory of extensible elastica

The mathematical theory of thin filaments (or uniaxially deformed sheets) which are inexten-

sible along their mid-axis was first derived by Euler [21]. By minimizing the square curvature

functional Euler obtained the general equation for the deflection of an elastic rod (the so-called

elastica) [21, 22]. Since then, thin inextensible filaments have been extensively investigated, for

example, in the context of structural engineering [22, 23], and biological tissues [24–27]. Less

attention was given in the literature to extensible filaments (the so-called model of extensible

elastica) due to the seemingly insignificant effect of extensibility in the limit of small thickness.

Nevertheless, as extensible elastica will be important for Chapters 3 and 4, we review here the

relevant literature and briefly derive its main equations.

Consider a straight, stress-free, filament of relaxed length L and relaxed arclength parameter,

s. A planar deformation away from the relaxed state is parametrized by two fields, the angle

φ(s) (see Fig. 1.3a) and the strain γ(s) = dŝ/ds, where ŝ is the arclength parameter in the

deformed configuration. In addition, we define the co-moving orthonormal coordinate system

{t̂(s), n̂(s)}, tangent and normal to the filament at a position s.

Following Fig. 1.3b and balancing the forces and moments that are applied on an infinitesimal

segment of the filament, we immediately obtain the conditions for mechanical equilibrium,

0 =
dσss
ds
− γκσns, (1.5a)

0 =
dσsn
ds

+ γκσss − γF, (1.5b)

0 =
dMss

ds
+ γσsn, (1.5c)

where F (s) is an external force per unit length in the normal direction (not drawn in Fig. 1.3b)

and κ = dφ/dŝ is the curvature. Since Eqs. (1.5) form a system of three equations for five

unknowns {σss, σsn,Mss, γ, κ}, some constitutive relations that relate the stress and torque to

the actual configuration are required to have a closure. In the framework of extensible elastica

these constitutive relations are given by [22, 28–34],

σss(s) = Y εss, (1.6a)

Mss(s) = Bφss, (1.6b)

5



CHAPTER 1. INTRODUCTION 6

Figure 1.3: Balance of forces on finite and infinitesimal segment of the sheet. (a) Force and

torque balance on a finite segment of the filament. It is straightforward to verify from this

schematic drawing that that balance gives Eqs. (1.8). (b) Illustration of force balance on an

infinitesimal segment of the filament, dŝ. Balance of forces in the tangential direction, t̂(ŝ), is

given by, −σss(ŝ) + σss(ŝ+ dŝ)̂t(ŝ+ dŝ) · t̂(ŝ) + σsn(ŝ+ dŝ)n̂(ŝ+ dŝ) · t̂(ŝ) = 0. Expanding this

equation to leading order in the differential dŝ we obtain dσss/dŝ − κσsn = 0. Transforming

back to ds yields Eq. (1.5a). Similarly, force balance in the normal direction and balance of

bending moments gives Eqs. (1.5b) and (1.5c).

where εss = γ−1 and φss = dφ/ds are the the 1D strain “tensor” and bending-strain [30, p. 98].

In summary, Eqs. (1.5) and the constitutive relations, Eqs. (1.6), form a closed system of five

equations for five unknowns.

The extensible elastica model, Eqs. (1.5), reduces to Euler’s elastica in the limit of inex-

tensibilty, γ = 1 (implying ŝ = s). In this limit the first constitutive relation, Eq. (1.6a), is

redundant and the second one, Eq. (1.6b), reduces to Mss = Bφ̇, where φ̇ = dφ/ds = κ is

the curvature. Substituting this relation in Eqs. (1.5c) and (1.5a) we obtain the normal stress,

σsn = −Bφ̈, and the in-plane stress, σss = −(B/2)φ̇2 − pt, where pt is the external force at the

boundary in the tangent direction. Substituting the latter relations in Eq. (1.5b) gives,

B
...
φ +B(φ̇2/2 + pt)φ̇+ F = 0. (1.7)

This equation coincides with Euler’s elastica [22]. It expresses balance of normal forces on

infinitesimal segment of an inextensible filament.

In special cases, where the external forces act only on the filament edges, F (s) = 0, Eqs. (1.5)

become integrable and the equations of extensible elastica take a somewhat simpler form (in-

cluding derivatives of lower order). Once integrated, these equations describe balance of forces

and torques on a finite (rather then infinitesimal) segment of the filament, as illustrated in

6



CHAPTER 1. INTRODUCTION 7

Fig. 1.3a. These equations read,

0 = σss + px cosφ+ py sinφ, (1.8a)

0 = σsn − px sinφ+ py cosφ, (1.8b)

0 = Mss + pxy − pyx, (1.8c)

dx/ds = γ cosφ, (1.8d)

dy/ds = γ sinφ, (1.8e)

where px and py are the components of the external force in the horizontal and vertical directions

(see Fig. 1.3a). Equations (1.6) and (1.8) form a closure; we now have a system of seven

equations for seven unknowns {σss, σsn,Mss, γ, κ, x, y}.

Lastly, the energy functional of the filament is given by,

E1D = Es + Eb +Wext =
1

2

∫ L

0
(σssεss +Mssφss) ds+Wext

=

∫ L

0

[
B

2

(
dφ

ds

)2

+
Y

2
(γ − 1)2

]
ds+Wext, (1.9)

where Wext is the work of the external forces and in the second line we have used the constitutive

relations, Eq. (1.6). We note that this functional is derived in Chapter 3 as the continuum limit

of a jointly connected chain of elastic rods, and as discussed there it has the key property of

keeping bending and stretching contributions independent.

As noted in Ref. [28], the extensible elastica problem was first derived by Pflüger [35]. Exact

solutions to this model in terms of elliptic integrals can be found in Ref. [36]. Based on a virtual-

work procedure, the extensible elastica equations were also derived in Refs. [28, 30, 34] for an

arbitrary beam cross-section. In Ref. [28] a complete linear stability analysis was performed for

the case of an extensible filament under hinged boundary conditions. Several nontrivial effects

were noted in this study, and here we mention three of them: (i) The critical buckling load

depends on the slenderness of the beam, Y L2/B, where L is the total relaxed length. (ii) The

buckling instability has a finite number of unstable modes when extensibility corrections are

taken into account. This is in contrast to the infinite number of modes in the inextensible case.

(iii) The critical flat-to-buckle bifurcation becomes subcritical at slenderness values of order

one, unlike the supercritical bifurcation in the inextensible case. Humber extended the work

in [28] to include clamped-clamped and clamped-hinged boundary conditions. Lately, exact

solutions of this model in terms of Jacobi elliptic functions were given in Ref. [37]. In Ref. [38]

an extension of this model was used to develop an amplitude equation that accounts for the

7



CHAPTER 1. INTRODUCTION 8

dynamics of twisted rods. This analysis was found useful in describing the evolution of climbing

plants and the self-assembly of bacterial filaments.

1.2.2 Fluid supported sheet

In this section we utilize the formulation derived above to study the behavior of a thin sheet that

is lying on a fluid substrate. Experimentally controlled systems that not just have a certain

pattern but also exhibit transitions between several patterns are of special interest. Recent

studies have shown that thin elastic sheets that lie on a liquid or an elastic foundation exhibit

such a behavior. These systems are known by the name of “floating elastica” [39–48].

Much attention was paid to a special experimental configuration in which the floating sheet

is uniaxially compressed from the boundaries. This configuration allows one-dimensional treat-

ment and a relatively simple experimental setup. For example, an experimental study by Poci-

vavsek et al [39] placed a polyester thin film on a water substrate and applied a compression

force, P , from the boundaries (also equivalent to a controlled boundary displacement, ∆). The

results show two critical transitions as a function of pressure or displacement. The first is from

a flat state to a state of uniform sinusoidal undulations, termed “wrinkles” [7], and the second

transition is from the extended wrinkles to a localized pattern termed “fold” [41], see Fig. 1.4.

Theoretically, the system was modeled by an energy functional that includes three terms:

the bending energy, Eb, and two external forces - the hydrostatic pressure of the underlying

liquid and the uniaxial compressive force, P . Following the formulation in the previous section,

Eq. (1.9), and neglecting extensibility effects (setting γ = 1), the energy functional of the

floating sheet was given by,

E =
B

2

∫ L

0
φ̇2ds+Wext =

B

2

∫ L

0
φ̇2ds+

ρg

2

∫ L

0
h2 cosφds− P∆, (1.10)

where h is the sheet height (dh/ds = sinφ), ρ is the fluid density and g is the gravitational

acceleration. In addition we have denoted φ̇ = dφ/ds. Applying dimensional analysis to this

energy immediately reveals, in good agreement with experiments, the main features of the

wrinkled state — the characteristic wavelength and the amplitude of the wrinkles are found to

be λ ∼ (B/(ρg))1/4 and A ∼ λ
√

∆/L.

A more careful theoretical analysis is required in the folded state. In [49] it was shown using a

variational Ansatz that the localized fold is energetically preferable over the extended wrinkles

8



CHAPTER 1. INTRODUCTION 9

starting from a critical displacement, ∆W ∝ 1/L. To simplify the mathematical framework

later studies took the sheet length to infinity (L → ∞). Utilizing this assumption and using

a multiple-scale approach, it was proven in Ref. [40] that the minimizing profile close to the

transition coincides with the Ansatz of Ref. [49].

Figure 1.4: Three pictures from experiment placing a thin sheet on a fluid substrate [39, 43].

Increasing the boundary displacement transforms the system from a state of extended wrinkles

(a) to a localized fold (c). Profile (b) is obtained close to the localization onset. The green

curves that mimic the sheet configuration is the exact solution given in Eq. (1.12).

Subsequently, in Ref. [41] an exact solution was derived for this problem. In this study the

energy functional, Eq. (1.10), was minimized to yield the following equilibrium equation2,

B
...
φ +B(φ̇2/2 + P )φ̇+ ρgh = 0, (1.11)

Then, by linking this equation to a known mathematical hierarchy of dynamical equations, its

solution was related to the solution of a physical pendulum, a lower member of the hierarchy.

The solution to Eq. (1.11) is a breather Sine-Gordon wave which is given by,

φ(s) = 4 tan−1

[
κ sin(ks)

k cosh (κs)

]
, (1.12)

where k, κ are respectively the wrinkles wavenumber and profile decay parameter. Equa-

tion (1.12) is the solution for a symmetric fold as shown in Fig. 1.4; other exact solutions

exist too [41]. Further study [44] exposed the additional symmetry underlying the integra-

bility of this problem. It also allowed to obtain an analytic expression for the sheet’s height

configuration, which is found to be in a remarkable agreement with experiment (see Fig. 1.4)

[43].

In Chapter 2 of this thesis we present an extension of the floating-elastica theory [41] to sheets

of finite length L, accounting for the experimentally observed wrinkle-to-fold transition. We

2Alternatively it can be derived from Eq. (1.7) by setting F = ρgh. This force accounts for the hydrostatic

pressure of the fluid.

9



CHAPTER 1. INTRODUCTION 10

derive an exact solution for the periodic deformation in the wrinkled state, and an approximate

solution for the localized, folded state. We find that a second-order transition between these

two states occurs at a critical displacement, ∆F = λ2/L.

1.2.3 Elastic-kinetic analogies

In this section the elastic formulation that we have derived in Sec. 1.2.1 is utilized to study

the analogy between thin filaments and the motion of rigid bodies. In some cases problems

with no a priori link to elasticity turn out to be mathematically connected to it by the same

formulation of the energy functional or equations of motion. For example, a ball constrained

to roll without slip while sandwiched between two plates [50], turns out to follow the curves of

the Euler elastica. Laplace connected the elastica to capillarity, identifying that the profile of a

fluid surface between two vertical planes satisfies its equilibrium equation [51].

Another example is known by the name of Kirchhoff’s kinetic analogy. Kirchhoff showed

that the equations of motion of a 3D rigid body, fixed at a point and free to rotate under the

influence of an external torque, are mathematically equivalent to the equilibrium equations of

a spatial inextensible elastic filament that is confined by external forces on its edges [22, 52].

When the filament is further confined to a plane its equilibrium equation becomes equivalent

to the equation of motion of a physical pendulum.

The latter lower-dimensional analogy can directly be shown from the formulation in Sec. 1.2.1.

Setting γ = 1 in Eqs. (1.6) and (1.8), the equilibrium equation in the normal direction reduces

to,

B
d2φ

ds2
+ p sin(φ+ φ0) = 0, (1.13)

where p =
√
p2
x + p2

y and φ0 = sin−1(py/p). By a constant shift of the angle, φ → φ+ φ0, it is

readily seen that Eq. (1.13) is mathematically equivalent to the equation of motion of a physical

pendulum.

This equivalence led Love [22, p. 402] to sort the curves of elastica into three different groups,

in equivalence with the different trajectories of the pendulum: (i) Inflexional curves (inflexions

are points of vanishing curvature) are analogous to an oscillating pendulum. (ii) Noninflexional

curves are analogous to a revolving pendulum. (iii) An aperiodic curve is analogous to a

pendulum that starts its motion at the unstable vertical point and ends up (after infinite time)

10



CHAPTER 1. INTRODUCTION 11

at the same position.

Figure 1.5: The analogy between a planar elastic filament and pendulum dynamics. The energy

functional of an elastic filament confined by the force P (or displacement ∆), is a sum of the

bending energy plus the external work, while the action of the pendulum is an integral over the

Lagrangian, L. Thus, within this analogy the energy is analogous to the action, arclength is

analogous to time and the bending moment and the external force are respectively analogous

to the moment of inertia and the external torque. The pendulum vs. elastica lines are taken

from Ref. [53].

Although the two problems, elastica and pendulum, share an equivalent mathematical struc-

ture, and therefore have the same set of solutions, they also bear significant differences. One

example that manifests this discrepancy is the buckling instability of a straight rod under uni-

axial compression (Euler buckling). A straight rod that is subjected to a uniaxial load, P ,

buckles when the load exceeds a critical threshold, P ≥ Pcr. Since a straight rod corresponds

to a pendulum at rest and P is analogous to g (see Fig. 1.5), we are led to the wrong conclusion

that for g ≥ gcr a stationary pendulum will start swinging. The reason for this difference is

that in elasticity we are given boundary conditions, whereas in the dynamic problem we are

provided with initial conditions. The boundary conditions determine the periodicity which is

independent of the external loads. Varying the force while keeping the periodicity fixed is the

mechanism that leads to the buckling instability. By contrast, in the dynamic problem the

initial conditions do not fix the period of motion.

Nevertheless, the kinetic analogue of the buckling instability can be viewed, to leading

order, in the context of parametric resonance. A pendulum at rest whose pivot is subject

to periodic oscillations with a finite frequency but vanishingly small amplitude, loses stability

when its natural frequency becomes comparable to that of the oscillating pivot. Thus, at a

11
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certain effective perpendicular acceleration, g ≥ gcr, the parametrically driven pendulum indeed

becomes unstable, mimicking the buckling of an elastic rod for P ≥ Pcr.

In all the examples given above the elastic body was assumed inextensible. In Chapter 3

we relax the inextensibility assumption in Kirchhoff’s analogy and show that these corrections

are mathematically equivalent to relativistic effects. We then utilize this analogy to derive an

exact solution to the problem of a relativistic physical pendulum.

1.3 The elastic theory of two-dimensional thin sheets

The elastic theory of thin sheets in two dimensions is by far more complicated than the one-

dimensional theory of uniaxially deformed sheets (Sec. 1.2.1). The scalars of stress (σss), bending

moment (Mss), strain (εss) and bending-strain (φss) now become tensorial entities to account

for the two in-plane directions on the sheet, α, β = 1, 2. Thus, we have: (i) σαβ - the stress

tensor, (ii) Mαβ - the torque tensor (stress couple), (iii) εαβ - the strain tensor, and (iv) φαβ -

the bending strain tensor3.

Two equivalent approaches are used in the literature to derive the elastic theory of thin

sheets. In the first approach the energy functional of the 3D body is reduced to 2D by direct

integration over the thin dimension (dimensional reduction process, as in the Kirchhoff-Love

scheme described in Sec. 1.1.2). Minimization of the resulting 2D energy with respect to spatial

configurations of the sheet yields the equilibrium equations. In the second approach the elastic

body is considered as a 2D surface from the very beginning. Balancing the forces and torques

on that surface and introducing their relations to the actual configuration (the constitutive rela-

tions) yield the equilibrium equations. In the following derivation we take the second approach,

similar to our derivation in Sec. 1.2.1. The first approach will be further discussed in Chapter 4.

To derive the force and torque balance equations on an infinitesimal segment of the 2D

surface [15, 18] we first define the co-moving coordinate system, {t̂1, t̂2, n̂}. Given the position

vector from the origin to the mid-surface, f(x1, x2), the two in-plane vectors are given by

t̂α = ∂αf/|∂αf | (α = 1, 2) and n̂, the unit normal to these vectors. Second, we consider an

infinitesimal patch of the surface whose borders lie along lines of constant coordinates and sum

to zero the forces and torques that are applied on its edges. This gives the following equations

3The tensor φαβ is related in the literature to the curvature tensor [54].

12
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of equilibrium [15],

0 = ∂1F1 + ∂2F2 + |∂1r× ∂2r|P, (1.14a)

0 = ∂1M1 + ∂2M2 − ∂1r× F1 − ∂2r× F2, (1.14b)

where Fα and Mα are force and torque vectors per undeformed unit length along lines of

coordinates, xα. In addition, an external body force per unit area in the normal direction is

assumed, P = P n̂. Lastly, we resolve the components of Fα and Mα along the triad basis,

Fα = σ1αt̂1 + σ2αt̂2 + σ3αn̂, (1.15a)

Mα = n̂×
(
M1αt̂1 +M2αt̂2

)
. (1.15b)

Equations (1.14) form a system of five differential equations (three from balance of forces

and two from balance of torques) for eleven unknowns (five stresses, three torques and three

unknowns that are related to the spatial configuration). Thus, to close the system we must derive

constitutive relations between the force and torque components and the actual deformation (the

components of the vector f(x1, x2)).

Since these constitutive relations are material-dependent they can, in general, take many

different forms, σαβ = σαβ(εαβ, φαβ) andMαβ = Mαβ(εαβ, φαβ). It is also important to note that

unlike the 1D case, Eqs. (1.6), we are no longer privileged to keep the bending and stretching

deformations independent since the sheet may include Gaussian curvature. This curvature

inevitably couples in-plane strains to out-of-plane deformations [20]. Thus, the in-plane stresses

are expected to be functions of the out-of-plane strains and vice-versa. In the next subsection

we will introduce the constitutive relations of 2D sheets in the special case of the small slope

approximation.

Regardless of the constitutive laws, the total elastic energy that is stored in the sheet, i.e.,

the one required to deform the sheet from its rest state, is necessarily generalized from Eq. (1.9)

to be,

E2D = Es + Eb =
1

2

∫
A

[σαβεαβ +Mαβφαβ] dx1dx2 +Wext, (1.16)

where the first two terms are respectively the stretching and bending contributions and the last

term is, again, the work of the external forces.

13
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1.3.1 The Föpple-von Kármán model

The first systematic model that describes large deflections of thin sheets was derived by A. Föppl

[55] and T. von-Kármán [56] and is called either the FvK model or the small slope approxi-

mation. Many experimentally observed patterns on thin sheets have been explained based on

this model. However, before we review them let us derive its governing equations directly from

Eqs. (1.14).

Specializing our derivations to Cartesian coordinates, {x1, x2} → {x, y}, and to the Monge

representation, the deformed configuration is given by,

r(x, y) = r0(x, y) + u(x, y) = [x+ ux(x, y)]x̂ + [y + uy(x, y)]ŷ + ζ(x, y)ẑ, (1.17a)

where r0 = (x, y, 0) is the position vector to the flat undeformed surface, and u(x, y) is the

displacement vector. Assuming that ζ � ux, uy and keeping only leading orders in these

displacements, the linear extension of line elements (in-plane strains) and curvatures (out-of-

plane “bending-strains”) are given by,

εαβ =
1

2
(∂αuβ + ∂βuα + ∂αζ∂βζ) , (1.18a)

φαβ = ∂αβζ. (1.18b)

Furthermore, specializing to homogenous and isotropic materials and assuming linear stress-

strain constitutive relations,

σαβ = Y [(1− ν)εαβ + νεγγδαβ] , (1.19a)

Mαβ = B [(1− ν)φαβ + νφγγδαβ] , (1.19b)

it can be shown that the force and torque balance equations, Eqs. (1.14), reduce to,

∂ασαβ = 0, (1.20a)

B(∂xx + ∂yy)
2ζ − σαβφαβ = P. (1.20b)

These equations along with the constitutive relations, Eqs. (1.19) and (1.18), form a system of

three equations for the three unknown components of the displacement, ux, uy and ζ. Lastly,

following Eq. (1.16) the elastic energy that is stored in the deformed surface is given by [19,

p. 52],

EFvK =
Y

2

∫
A

[
(trε)2 + 2(1− ν)detε

]
dxdy +

B

2

∫
A

[
(trφ)2 + 2(1− ν)detφ

]
dxdy. (1.21)
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Many patterns have been explained based on these equations. Here are several examples. In

Ref. [57] the FvK equations were used to determine the stability of a straight delamination blis-

ter, namely, predicting the critical buckling force and the corresponding emergent wavelength.

Numerical analysis, based on the FvK functional, reveals to a remarkable accuracy the patterns

of fingerprints [58]. Thin elastic bodies undergoing growth, morphogenesis, were shown to obey

a generalized FvK model [59]. In Ref. [60] the FvK equations were used to study the dynamics

of cracks in thin sheets. In this work a criterion for the path selection of the propagating crack

was invoked and compared with experimental results. In Ref. [54] ridge singularities were ana-

lyzed based on the FvK model. Scaling laws for the radius of curvature with the thickness were

obtained. In Ref. [61] the onset of a ruck in a rug was shown to be an effect of finite stretching

energy in the FvK limit.

The FvK equations are qualified as well to describe the post-buckling behavior of ultra-

thin sheets far from the threshold of instability. Such a theoretical description was presented

by Davidovitch et al. for the Lamé configuration [11, 12]. In this problem a thin annulus is

differentially stretched by radial forces from the inner and outer radii, see Fig. 1.6a. Based on

the FvK equations two dimensionless parameters are defined: one is the bendability which is

inversely proportional to the bending modulus, and the other is the confinement which depends

on the ratio between the inner and outer tensile loads. For a given bendability and at a

critical confinement wrinkles appear around the inner radius. These wrinkles grow vertically

and radially towards the outer radius with increasing confinement.

In these studies it was shown that a näıve perturbative expansion of the height function

about the flat configuration (near-threshold analysis) becomes invalid in the limit of vanishing

thickness. A singular perturbation method (far-from-threshold analysis) that assumes vanishing

hoop stresses (σθθ = 0) above the flat-to-wrinkles transition was used to fit the theory to the

experimental observations. For example, this assumption leads to experimentally consistent

scaling laws for the number of wrinkles with the thickness. This approach has been successfully

used to explain other experimentally observed patterns, e.g., in a sheet on a drop (Fig. 1.6c)

[62] and in point indentation of a pressurized shell (Fig. 1.6b) [63, 64].

In Ref. [65] a flat elastic ribbon, subjected to a twist, η, and tension, T , was experimentally

investigated. Under different combinations of the two control parameters, six different mor-

phologies were observed, see Fig. 1.7. A theoretical study that followed this experiment used an

extension of the FvK model to patterns that cannot be described by the Monge representation
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Figure 1.6: (a) Laḿe configuration [11]. Thin annulus, radially stretched from the boundaries,

reveals wrinkles close to the inner radius. (b) Point loading of an internally pressurized elastic

shell presents a wrinkling instability [63]. (c) Placing a flat sheet on a spherical liquid drop

creates wrinkles [62].

to analyze the transitions between the different patterns [66]. Another study that used this

extension was introduced in [67] to describe the creation of a singular stress point which is

related to the phenomenon of crumpled paper [14].

Figure 1.7: Different resulting morphologies of ribbons that are subjected to twist and stretching

[65, 66]. These patterns are named as follows: (a) helicoid, (b,c) longitudinal wrinkled helicoid,

(d) creased helicoid, (e) formation of loops and self-contact zones, (f) cylindrical wrapping, (g)

transverse buckling, and (h) twist and transverse wrinkling. (i) Phase diagram on a twist-tension

plane.

1.3.2 The elastic theory of thin incompatible sheets

Thin elastic sheets that include internal residual stresses even in the absence of external forces

are named incompatible sheets. To mathematically explain the notion of incompatibility we
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recall that in differential geometry a surface is characterized by its first (aαβ) and second (bαβ)

fundamental forms [20],

aαβ = ∂αf · ∂βf , (1.22a)

bαβ = ∂αβf · n̂, (1.22b)

where f(x1, x2) as in Sec. 1.1.2 and 1.3 is the position vector defining the spatial configuration of

the surface. While the first fundamental form, also called the metric tensor, is used to describe

intrinsic properties of the surface, e.g., measuring length of line elements and areas, the second

fundamental form is related to extrinsic properties such as the principal curvatures. However,

not every aαβ and bαβ correspond to a physical surface that is embeddable in 3D. For the surface

to be embeddable in 3D those tensors must satisfy a set of geometrical compatibility equations,

known by the name of Gauss-Minardi-Patterson-Codazzi (GMPC) equations [20, p. 203].

When treating a thin solid sheet as a mathematical surface, its relaxed state is characterized

by a 2D reference metric tensor, ḡαβ, and a reference second fundamental form, b̄αβ. When these

tensors do not satisfy the GMPC equations, the equilibrium configuration is frustrated — its

actual metric and second fundamental form, aαβ and bαβ, will not coincide with their reference

counterparts, leading to unavoidable intrinsic stresses.

For the sake of this thesis, let us specialize to plates (rather then shells) which are flat in

their reference configuration, b̄αβ = 0. In these cases it is instructive to consider a surface

constructed of a discrete lattice of springs (see Fig. 1.8a). If all the springs in the network

can retain their rest lengths while being flat, the system is said to be compatible. If, however,

some springs must be stretched (or compressed) to keep the network flat, the sheet is said to

be incompatible. The latter case is likely to occur when the rest lengths of the springs depend

on their positions, as in the specific example of Fig. 1.8b. In these cases, as we discuss below,

it is energetically favorable to relax the stress in the springs by out-of-plane buckling.

In the continuous picture the reference metric, ḡαβ, coarse-grain the discrete rest lengths of

the springs. In Fig. 1.8c and 1.8d we give one example for continuous incompatibility in the

special case of an axisymmetric reference metric. In this case the reference metric fixes the rest

length of concentric circles on a disc of radius R. If the rest lengths of the circles are different

from 2πr the sheet is incompatible and internal strains must appear when the sheet remains

planar.

In order to explain why in-plane frustration creates out-of-plane structures we first recall
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Figure 1.8: Demonstration of surface incompatibility through a discrete lattice of springs taken

to the limit of continuous metric description. (a) A lattice of springs with rest length, a. Since

all springs can retain their rest length while the network stays planar, the sheet is compatible.

(b) Example of incompatibility in a unit cell. In this example the rest length of the azimuthal

springs (thick lines) is b and the rest length of the radial springs is a. Under these conditions

not all azimuthal springs can retain their rest length. As discussed in the text, in these cases

it is sometimes energetically favorable to release the in-plane tension by out-of-plane buckling.

(c) Compatible disc of radius R. The rest length of concentric circles on the disc is 2πr. Thus,

the reference metric is flat (or Euclidean) — its Gaussian curvature is zero and the sheet is

compatible. (d) Continuous incompatibility. The rest length of concentric circles on the disc is

2πΦ(r) 6= 2πr. When the disc is flat these circles are either stretched or compressed, depending

on the function Φ(r). Thus, the reference metric is not flat (non-Euclidean) and has non-zero

Gaussian curvature.

that the elastic energy may be written as the sum of the following bending and stretching

contributions [68],

Incompatible: E2D = Es + Eb ∝ t(aαβ − ḡαβ)2 + t3(bαβ)2. (1.23)

Thus, similar to compatible sheets the relative energetic cost for stretching is significantly

increased as the thickness decreases. As a result the actual metric is forced to be equal to the

reference metric. Gauss’s Theorema Egregium states that aαβ → ḡαβ only if Ka → Kḡ, where

Kḡ and Ka are the Gaussian curvatures of the reference and actual configurations [20]. Thus, the
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actual surface must buckle in order to accommodate the Gaussian curvature of the reference

metric. This behavior of incompatible sheets has been observed experimentally [69–77]; see

Fig. 1.9 for several examples.

Figure 1.9: Experimental “programming” of incompatible sheets by Sharon et al. (a) NIPA

hydrogels are programmed with axisymmetric reference metrics [75]. The rest length of con-

centric circles under an elliptic reference metric is 2πΦ(r) < 2πr. As the thickness is reduced

the 3D configuration is converging towards a perfect spherical cap. For a hyperbolic reference

metric we have 2πΦ(r) > 2πr and when the thickness is reduced a series of wave bifurcations

occur. (b) A tube with negative Gaussian curvature [70]. At a critical negative curvature the

tube develops a wavy pattern on its edge. (c) Torn plastic sheet form a fractal configuration on

its edge [76, 77]. Theoretically, this pattern is obtained by prescribing a metric that depends

on a power law of r.

An elastic theory for incompatible thin sheets was proposed in Ref. [68] as an extension

of Koiter’s plate theory [17]. Starting from the energy functional of a 3D elastic body, the

Kirchhoff-Love hypothesis (see Sec. 1.1.2) was utilized to obtain the following 2D energy func-

tional,

E2D = Es + Eb =
t

2

∫
A
Aαβγδ ε̃αβ ε̃γδ

√
ḡdA+

t3

24

∫
A
Aαβγδbαβbγδ

√
ḡdA, (1.24a)

ε̃αβ =
1

2
(aαβ − ḡαβ), (1.24b)

where ε̃αβ is the two-dimensional strain tensor, as defined in this theory, and Aαβγδ is the elastic

coefficient tensor. Minimization of this energy with respect to the three degrees of freedom of the

displacement vector yields three force balance equations, two in-plane and one for the balance

19



CHAPTER 1. INTRODUCTION 20

of the out-of-plane forces.

This theory was successfully applied to several systems as we now review. In Ref. [78] the

plane stress equation for incompatible sheets with axisymmetric reference metric was derived

and numerically solved for three types of reference metrics: flat, elliptic and hyperbolic. This

solution was then used to analyze the flat-to-buckle transition and to obtain the critical buckling

thickness. In Ref. [79] equilibrium configurations of chiral ribbons where studied. Particularly

the transition of a ribbon between twisted and helical configurations was quantitatively studied

and compared to experimental results. A theoretical study that aimed to explain the wave

refinement in a disc with negative Gaussian curvature (Fig. 1.9a) was introduced in [80, 81].

In this study the elastic energy, Eq. (1.24), was reduced to its FvK limit. Under this approxi-

mation it was shown that only two global minimizers exist, flat and saddle shape deformations

with a localized region of stretching near the outer radius (boundary layer). This is in appar-

ent contradiction with the increasing waviness shown in Fig. 1.9a (right), which has not been

resolved to date. In Refs. [82, 83] the geometry of defects in amorphous materials was modeled

using the abovementioned metric description. In Ref. [84] the properties of a frustrated ribbon

spring were investigated. It was shown that, since the reference metric can be embedded as

an isometric minimal surface (surface with no stretching and vanishing mean curvature), its

bending and stretching energies vanish simultaneously, leading to a system that is controlled

by delicate boundary effects. In Ref. [85] thermal fluctuations of geometrically frustrated elas-

tic ribbons were studied. It was shown that statistical-mechanical properties of incompatible

ribbons qualitatively differ from those of compatible ones.

In the present work, Chapter 4, we reconsider the formulation of incompatible thin sheets,

Eq. (1.24), for a simple class of axisymmetric deformations. We show that the mathematical

complexity of this theory is greatly reduced if the strain tensor, Eq. (1.24b), is redefined. Mea-

suring strains based on deviations of line elements from their rest values, rather than distances

squared (as in Eq. (1.24)), significantly simplifies the structure if the theory.
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1.4 Outline of the Thesis

Following the structure of this Introduction the thesis is divided into two major parts. The

first part consists of two projects concerning thin elastic sheets that deform uniaxially (without

Gaussian curvature), and the second part is about configurations of thin incompatible sheets

that in general can deform along the two in-plane directions.

1. Uniaxial deformations of thin sheets:

(a) In Chapter 2 of this thesis we specialize to the problem of a sheet that is floating

on a fluid substrate and uniaxially compressed from the boundaries (see Sec. 1.2.2

above). In particular, we extend the existing theory [41] to sheets of finite length

. We utilize the new theory to obtain (i) exact solution to the wrinkled state, and

(ii) approximate solutions to the folded state. Using the former result we obtain the

pressure-displacement relation in the wrinkles regime and explore their amplitude

growth as a function of the displacement. The latter solution for the folded state

is used to analyze the details of the wrinkles-to-fold transition such as its order

and characteristic exponents. Our analytical predictions are then compared with

experimental results.

(b) In Chapter 3 we relax the inextensibility assumption in Kirchhoff’s kinetic analogy

and show that the resulting corrections in the elastic problem of uniaxial deformations

are mathematically equivalent to relativistic effects in the dynamic system. We then

take advantage of this result in two directions: (i) We identify a new symmetry of

extensible elastic filaments, and (ii) we utilize the solution of extensible elastica to

derive the exact solution for the motion of a relativistic physical pendulum.

2. In Chapter 4 we examine the effect of strain tensor selection on the theory of incompatible

thin sheets. The existing theory uses the deviation of the surface metric from a reference

metric to define the strain, Eq. (1.24). In the present work we define the strain based

on a spring-like model that measures linear extension of line elements (rather then dis-

tances squared as in the metric description). We show that this replacement significantly

reduces the mathematical complexity of the theory for a class of axisymmetric problems.

Our theory yields linear, exactly solvable, equations of equilibrium in the case of planar

deformations, replacing the non-linear ones derived earlier for these problems. In addition,

we obtain a simple criterion determining whether an isometric immersion of such sheets
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satisfies mechanical equilibrium.

Chapter 5 is dedicated to concluding remarks and the discussion of directions for future

research in each of the projects addressed by the thesis.

The main chapters are supplemented by a series of Appendices at the end of the thesis,

which elaborate on additional aspects of the projects.
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Chapter 2

Wrinkles and folds in a

fluid-supported sheet of finite size1

2.1 Introduction

Morphological transitions are often induced by confinement or by spatially constrained growth.

Structures emerge spontaneously when the energy injected into a system through the confine-

ment process ceases to distribute uniformly. These phenomena are observed in various contexts

ranging from the folding of geological layers [87] to patterns in biological membranes and mono-

layers [48, 88–92] and the formation of fingerprints [58, 93]. Besides the initial morphology,

occurring for small confinement, various subsequent transitions may be observed as the confine-

ment increases.

Many model systems have been developed to study the influence of confinement on morpho-

logical transitions [7, 94–99] using rods [100–102] or sheets resting on some substrate [42, 103–

113]. Among them, the experimental model system of a thin elastic sheet, lying on a fluid

substrate [45, 62, 114–121] and subjected to in-plane uniaxial compression, deserves special

interest [39–41, 43, 44, 46, 47, 49], see also Sec. 1.2.2 in the Introduction. Beyond a certain

critical confinement, ∆W, which vanishes for an incompressible sheet, the sheet buckles, dis-

playing regular undulations with a characteristic wavelength λ over its entire length [39, 48]

(Fig. 2.1). Beyond a certain confinement, ∆F, another transition occurs, where the wrinkles

1The material presented in this Chapter was published in O. Oshri, F. Brau and H. Diamant, Phys. Rev. E

91, 052408 (2015) [86]. This paper was selected as an Editor’s Suggestion.
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Wrinkles
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Figure 2.1: Schematic morphological evolution of a compressed finite sheet floating on a liquid.

The scheme shows the emergence of a wavelength λ upon small confinement, ∆ & ∆W, the

growth in amplitude of the wrinkle state for intermediate compression, and the transition to a

fold state beyond some critical confinement, ∆F. Here ~t and ~n are the tangent and normal to

the sheet surface, respectively. φ(s) is the angle between the local tangent and the horizontal

direction x, and the arclength along the sheet is parametrized by s. h(s) is the vertical elevation

of the sheet.

start attenuating except near the center of the sheet, and the deformation energy gets localized

into a single fold [39].

In the case of an infinitely long sheet, an exact solution describing the complete evolution

of the morphology with increasing confinement proves that such a wrinkle-to-fold transition,

strictly, should never occur [41], i.e. ∆F → ∆W. The infinite-sheet morphology is always

localized, but the localization decay length diverges as the buckling threshold ∆W is approached.

Even if an infinitely long sheet is a useful idealization of real systems allowing a good agree-

ment with experiment [43], the apparent discrepancy between theory and experiment concerning

the existence of a wrinkle-to-fold transition should be resolved. Experiments are obviously per-

formed with finite sheets. We demonstrate that a second-order wrinkle-to-fold transition does

occur for finite sheets. In Sec. 2.3 we construct an exact periodic solution for wrinkles of ar-

bitrary amplitude in a finite sheet. An exact solution for a localized deformation in a finite

sheet has evaded us. Hence, in Sec. 2.4, we derive an approximate localized solution using a

multiple-scale analysis. In Sec. 2.5, we identify the order parameter of the transition in the

context of the Landau theory of second-order transitions. We show how both periodic and

localized solutions match at the critical confinement, ∆F = λ2/L, where λ is the wavelength of

the wrinkles and L is the sheet length. In Sec. 2.6, we discuss the experimental implications of

our theory, its limitations, and future extensions.
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2.2 System and governing equation

The system studied here is composed of a thin incompressible elastic sheet (∆W = 0) of length

L, width W , and bending modulus B, lying on a fluid of mass density ρ. The sheet is uniaxially

confined by a distance ∆ along the x-axis and deforms in the xy plane. The shape of the sheet

is described by the parametric equation

x(s) =

∫ s

−L/2
cosφ(s′)ds′, (2.1a)

h(s) =

∫ s

−L/2
sinφ(s′)ds′, (2.1b)

where φ(s) is the angle between the local tangent to the sheet and the x-axis at a given ar-

clength s, see Fig. 2.1. The total energy of the system, E, is composed of the bending en-

ergy of the sheet, Eb = (WB/2)
∫ L/2
−L/2 φ̇

2ds, and the deformation energy of the substrate,

Es = (Wρg/2)
∫ L/2
−L/2 h

2 cosφds, where the dot denotes an s derivative [39, 41]. The displace-

ment along the direction of confinement is given by

∆ =

∫ L/2

−L/2
(1− cosφ) ds, (2.2)

and is related to the applied load necessary to confine the sheet by P = dE/d∆. In the

following, except where it is explicitly mentioned, we use units such that the energy is rescaled

by B, and lengths are rescaled by (B/ρg)1/4 ≡ λ/2π. As a result, the applied load P is rescaled

by (Bρg)1/2.

To find the equilibrium shape, one should minimize the total energy under appropriate

constraints. This can be reformulated as a dynamical problem [41] with an action S =∫ L/2
−L/2 L(φ, h, φ̇, ḣ), where

L =
1

2
φ̇2 +

1

2
h2 cosφ− P (1− cosφ−∆/L)−Q(s)(sinφ− ḣ). (2.3)

In Eq. (2.3), P and Q(s) are Lagrange multipliers introduced to take into account, respectively,

the global constraint (2.2) and the local geometrical constraint between h and φ. The conjugate

momenta are defined as pφ = ∂L/∂φ̇ = φ̇ and ph = ∂L/∂ḣ = Q and are used to construct the

Hamiltonian H = pφφ̇+ phḣ− L. Since L has no explicit dependence on s, the Hamiltonian is

a constant for a given displacement ∆,

H =
1

2
p2
φ + ph sinφ− 1

2
h2 cosφ+ P (1− cosφ−∆/L) = C. (2.4)

Hamilton’s equation, ṗφ = −∂H/∂φ, yields the following equation:

φ̈+ (h2/2 + P ) sinφ+ ph cosφ = 0. (2.5)
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Eliminating ph between Eqs. (2.4) and (2.5), we obtain

φ̈ sinφ− 1

2
φ̇2 cosφ+

1

2
h2 + P − P̃ cosφ = 0, (2.6)

where P̃ ≡ P (1−∆/L)− C is a shifted value of the load, dependent on boundary conditions.

Differentiating Eq. (2.6) once, we obtain the well known equation for Euler’s elastica (see also

Sec. 1.2.1, Eq. 1.7),

...
φ +

(
1

2
φ̇2 + P̃

)
φ̇+ h = 0, (2.7)

where the local normal force exerted on the elastica is given by the hydrostatic term h. A

second differentiation gives the equation governing the system evolution,

....
φ +

3

2
φ̇2φ̈+ P̃ φ̈+ sinφ = 0. (2.8)

Finally, Eq. (2.6) is used to relate the physical load P to the shifted value P̃ . For hinged

boundary conditions, where h and ḧ (and also φ̇) vanish at the boundaries, we have

P = P̃ cosφ(±L/2)− φ̈(±L/2) sinφ(±L/2). (2.9)

As a result, once the solution φ(s) is obtained, the physical load P can be computed from P̃ .

Note that in the limit of an infinite sheet, where φ(±L/2)→ 0, P and P̃ coincide.

The total rescaled energy per unit length of the system reads

E[φ(s)] =
1

2

∫ L/2

−L/2
ds
(
φ̇2 + h2 cosφ

)
. (2.10)

The energy, the displacement ∆ and the equation giving the equilibrium shape of the sheet can

also be written in terms of h instead of φ using ḣ = sinφ:

E[h(s)] =
1

2

∫ L/2

−L/2
ds

(
ḧ2

1− ḣ2
+ h2

√
1− ḣ2

)
, (2.11)

∆[h(s)] =

∫ L/2

−L/2
ds

(
1−

√
1− ḣ2

)
. (2.12)

The shape of the sheet is determined from minimization of either E, given the displacement ∆,

or the function,

G = E − P∆, (2.13)

given the load P .
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2.3 Exact periodic solutions

2.3.1 General results

We first study general solutions of Eq. (2.8) without specifying the boundary conditions. In

order to construct a periodic solution of Eq. (2.8), we recall the connection existing between

this equation and the dynamics of a physical pendulum [41, 122]. For this purpose, we consider

the total energy Up of a pendulum,

Up ≡ 2k2q2 =
φ̇2

2
+ q2(1− cosφ), (2.14)

where q is the natural frequency of the pendulum, and k is a constant determined by the

pendulum’s total energy or, equivalently, by boundary conditions. (In the analogous elastic

sheet these two parameters are related to the natural wrinkling wavenumber, 2π/λ, and the

total displacement ∆.) The equation of motion is obtained by taking the variation of Up in the

above equation,

φ̈+ q2 sinφ = 0. (2.15)

Differentiating twice this last equation and eliminating q2 cosφ and q2 sinφ using respectively

Eqs. (2.14) and (2.15), we obtain

....
φ +

3

2
φ̇2φ̈+

(
1− 2k2

)
q2φ̈ = 0. (2.16)

Adding Eq. (2.15) multiplied by q−2, we finally obtain the equation describing the morphology

of a confined floating sheet, see Eq. (2.8):

....
φ +

3

2
φ̇2φ̈+ P̃ φ̈+ sinφ = 0, (2.17a)

P̃ = q2
(
1− 2k2

)
+ q−2. (2.17b)

Therefore, any solution of Eq. (2.15) is also a solution of Eq. (2.8) with P̃ given by Eq. (2.17b).

It is well known that Eq. (2.15) admits a periodic solution for 0 ≤ k < 1 in terms of Jacobian

elliptic functions [123, p.549],2:

φ(s) = 2 arcsin [k sn(q(s+ s0), k)] . (2.18)

The profile h(s) =
∫ s
−L/2 sinφ(s′)ds′ is thus given by

h(s) =
2k

q
[cn(q(s+ s0), k)− cn(q(−L/2 + s0), k)] . (2.19)

2Note that there are two definitions for the modulus of the elliptic functions. In this section, we use the one

given in Ref. [123]. The other one, m = k2, is used in Ref. [124] and by Mathematica c©.
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This solution has a periodicity of 4K(k)/q, where K(x) is the complete elliptic integral of the

first kind [123, p.487]. Finally, the horizontal displacement is given by

∆ = 2k2

∫ L/2

−L/2
sn2(q(s+ s0), k) ds = 2L− 2

q
{E(q(s+ s0), k)}L/2−L/2 , (2.20)

where E(x, k) is the Jacobi epsilon function [123, p.562]. The quantities s0 and q are fixed to

satisfy the boundary conditions whereas the parameter k is related to the confinement ratio,

∆/L.

2.3.2 Hinged sheets

For hinged boundary conditions both h and ḧ vanish at s = ±L/2. The second derivative of

the sheet profile, Eq. (2.19), is given by

ḧ(s) = 2kq cn(q(s+ s0), k)
(
2 dn2(q(s+ s0), k)− 1

)
. (2.21)

The dn function varies between (1 − k2)1/2 and 1; consequently, so long as k < 1/
√

2, the last

factor in Eq. (2.21) does not vanish. As shown below, the relevant values of k are smaller than

1/3 provided L ≥ 3λ. Larger values of k lead to periodic solutions unstable against localization.

Due to the periodicity of the solution, there exists an infinite number of possible solutions

depending on the number of nodes. From Eq. (2.19), h(L/2) = 0 provided that qL/2 + qs0 =

−qL/2+qs0+4n1K(k). From Eq. (2.21), ḧ(L/2) = 0 provided that qL/2+qs0 = (2n2+1)K(k),

with n1 and n2 positive integers. Due to the definite parity of the solution (either symmetric

or antisymmetric), the condition ḧ(−L/2) = 0 is then automatically satisfied. We have the

following two possibilities. (a) If s0 = 0, then h(L/2) = 0 automatically, for any q, due to the

even parity of the cn function in Eq. (2.19). We are left with the condition for ḧ(L/2) = 0

which gives qL = 2(2n2 +1)K(k). (b) If s0 6= 0, then the two conditions above must be satisfied

simultaneously, giving qL = 4n1K(k) and qs0 = [2(n2 − n1) + 1]K(k). Thus, combining these

two results, we have

q =
2(2p+ 1)K(k)

L
with s0 = 0 (2.22)

q =
2(2p)K(k)

L
with qs0 = K(k), (2.23)

where p is a strictly positive integer. Finally, the solution reads

φ(s) = 2 arcsin [k sn(qs+ εK(k), k)] , (2.24a)

h(s) =
2k

q
cn(qs+ εK(k), k), (2.24b)
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Figure 2.2: Evolution of the exact periodic solution for different values of ∆/λ and L/λ = 3.5

(N = 7), where x(s), h(s) are given by Eqs. (2.1a) and (2.24b) respectively and φ(s) is given

by Eq. (2.24a). The corresponding evolution for the numerical solution of Eq. (2.8) is also

shown. P and Pp correspond to the numerical and the periodic solutions respectively (P = Pp

for ∆/λ ≤ 0.2825). The wrinkle-to-fold transition occurs at ∆/λ ' 0.2825.

where ε = (1 + (−1)n)/2 and

q =
2nK(k)

L
, n = 1, 2, 3 . . . (2.25)

Symmetric solutions correspond to n of odd parity and antisymmetric solutions are obtained

with an even parity of n. The number of nodes of the solution is equal to n + 1 (counting the

two nodes at the boundaries).

2.3.3 Pressure, displacement, and amplitude

From Eq. (2.24a), we have

cosφ(L/2) = 1− 2k2, φ̈(L/2) = ∓2kq2
√

1− k2

sinφ(L/2) = ±2k
√

1− k2. (2.26)

The expression for the applied load is then obtained from Eq. (2.9) together with Eq. (2.17b):

P = q2 + (1− 2k2)q−2. (2.27)

From this infinity of possible solutions for a given value of L, only the one minimizing P is

selected, which fixes the value of n; see below.

The parameter k is related to the confinement ∆ by using Eq. (2.20):

∆ = 2L− 2

q
[E((n+ ε)K, k) + E((n− ε)K, k)] , (2.28)
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where we used the expression (2.25) for q, qs0 = εK(k), and the fact that E is an odd function.

When n = 2p+ 1 such that ε = 0, we obtain

∆ = 2L− 4

q
E((2p+ 1)K, k) = 2L− 4

q
(2p+ 1)E(k)

= 2L

(
1− E(k)

K(k)

)
, (2.29)

where E(k) is the complete elliptic integral of the second kind [123, p.487]. When n = 2p such

that ε = 1, we have

∆ = 2L− 2

q
[E((2p+ 1)K, k) + E(2p− 1)K, k)] (2.30)

= 2L− 8p

q
E(k) = 2L

(
1− E(k)

K(k)

)
. (2.31)

Therefore, the relation between k and ∆ is the same for symmetric and antisymmetric solutions.

The decrease of the applied pressure P as a function of the confinement ∆ is given by the

parametric equation (∆(k), P (k)) given by Eqs. (2.27) and (2.31) and using Eq. (2.25).

However, we still have to determine the optimal value of n minimizing P . For L = Nπ

(L/λ = N/2), it can be shown that n = N provided k is small enough. Above some threshold,

k = k?, we have n = N − 1. As ∆(k) is an increasing function of k [Eq. (2.31)] this means

that for small confinement we have n = N before reaching a threshold, ∆(k?), above which the

compressed system prefers to remove half a wavelength from the profile, n = N − 1. However,

if ∆(k?) ≥ ∆F, where ∆F is the critical confinement for which the periodic solution is unstable

against the localized solution, then n = N for all the values of confinement where the periodic

solution is stable. The threshold k? can be obtained by searching for which value of k, the

pressure P has the same value for n = N and n = N − 1. We found that ∆(k?)/L ' (k?)2 =

2π/3L = λ/3L, where we used a first order expansion for the confinement which is enough

for this discussion (using the full expression leads to the same conclusion). Comparison with

∆F/L = λ2/L2, which is derived in the next section, shows that for L ≥ 3λ the optimal value

of n is always n = N (with L = Nπ). Notice that it leads also to k ≤ 1/3. From now on, we

assume that the length of the sheet is at least as large as three times the wrinkle wavelength.

As a result, when N is odd, the solution is symmetric and when N is even, it is antisymmetric.

For L = Nπ, we thus have n = N and the expression for the pressure reads

P =
4

π2
K(k)2 +

π2(1− 2k2)

4K(k)2
. (2.32)

Let us summarize the scheme for calculating the exact periodic solution. Given L = Nπ,

we have n = N . Given ∆/L we find k from Eq. (2.31). The values obtained for n and k are
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substituted in Eq. (2.25) to obtain q. These values of k and q are used in Eqs. (2.24b) and (2.27)

to obtain the height profile and the pressure. This solution is unique thanks to the monotonic-

increasing nature of the right-hand-side of Eq. (2.31). Finally, the pressure-displacement relation

is obtained parametrically from Eqs. (2.31) and (2.32); see Fig. 2.4. Figure 2.2 shows the

evolution with increasing confinement of the exact periodic solution for L = 7π (L/λ = 3.5)

comparing it to the numerical solution of Eq. (2.8). For ∆/λ . 0.2825, the numerical solution

is periodic. This threshold is close to the critical wrinkle-to-fold confinement computed in

Section 2.4 for large sheets, ∆F/λ = 0.2857.

Since it is expected that this exact periodic solution is unstable against localization for large

enough confinement, we give below its expansion for small ∆. We expand Eqs. (2.31) and (2.32)

in small k to obtain ∆ = Lk2 +O(k4) and P = 2−2k2 +O(k4). Thus, to leading order in small

relative confinement, we have

P ' 2

(
1− ∆

L

)
. (2.33)

The amplitude of the profile is A = 2k/q (see Eq. (2.24b)). For L = Nπ, we have

A =
πk

K(k)
' 2

√
∆

L
. (2.34)

The corresponding profiles for small confinement are

h(s) = A cos s, symmetric profile, (2.35a)

h(s) = A sin s, asymmetric profile. (2.35b)

Thus, to leading order in ∆/L, our exact solution reproduces the expressions for P , A, and h(s),

known for the wrinkle state [42, 48, 91, 94]. Notice that, because we consider L ≥ 3λ, and a

transition to the localized solution occurs for ∆/L = λ2/L2, the maximum relative compression

relevant for the periodic solution is ∆/L ≤ 1/9 ' 0.11, which is indeed small. Therefore, a

first-order expansion is quite sufficient for describing the wrinkle state.

2.4 Approximate localized solutions

2.4.1 Construction of the localized solution

We have not been able to find exact physical solutions for folds in a finite sheet. Exact localized

solutions of Eq. (2.8) for a finite sheet do exist; yet, these profiles are not solutions of the
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present physical problem, as they have a finite height at the boundaries. We describe them in

Appendix A.1 for the sake of mathematical interest and possible relevance for other systems to

be studied in the future.

We resort to a perturbative calculation, extending the multiple-scale analysis of Ref. [40] to

a finite system. The main motivation is to enable an accurate analysis of the wrinkle-to-fold

transition, as will be presented in Sec. 2.5. We therefore assume a very long (yet finite) sheet

compared to the wrinkle wavelength, L� λ. It has been established that, as L is made larger,

the region of stable wrinkles shrinks and their amplitude diminishes [40, 49]. Thus, the critical

values of the pressure and displacement for the wrinkle-to-fold transition, PF and ∆F, can be

assumed arbitrarily close to the ones for the flat-to-wrinkle transition, PW = 2 and ∆W = 0, as

L is taken to be arbitrarily large.

At the transition from a wrinkle state to a localized one, we anticipate that the undulations

of wavelength λ will be attenuated over a much larger length scale of order L. Therefore, the

sheet profile contains two length scales, a short one (λ) and a long one (L). To obtain this

profile near the transition, we then substitute in the energy, Eqs. (2.11)-(2.13), a multiple-scale

function of the form

h(s) = cos(kcs)
∞∑
j=1

εjHj(εs) ' ε cos(kcs)H1(εs), (2.36)

and consider hinged boundary conditions,

h(±L/2) = ḧ(±L/2) = 0. (2.37)

In this expansion, the small parameter ε is given by

ε = (PW − P )1/2, (2.38)

where PW = 2 is the critical flat-to-wrinkle pressure. kc is the wavenumber of the fast oscil-

lations; from the known flat-to-wrinkle transition we expect to get kc = 1 [39, 48]. We have

selected a symmetric profile; an antisymmetric one is obtained by replacing the cosine with a

sine and leads to a similar analysis. For simplicity, we restrict the discussion to commensurate

sheets, L = Nπ (i.e. L/λ = N/2), where odd and even N correspond respectively to symmetric

and antisymmetric solutions. (We will later check the effect of this approximation numerically.)

As in Ref. [40], we substitute the profile Eq. (2.36) in Eq. (2.13), expand in powers of ε, and

integrate over the fast oscillations (which cancel the terms proportional to ε and ε3), to obtain
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a systematic expansion of the energy,

G = G0ε
2 +G1ε

4 +O(ε6), (2.39)

Analysis of the leading order reproduces the known wrinkling transition with PW = 2 and kc = 1

(λ = 2π) without any constraint on H1. This gives G0 = 0, reducing the energy of the system

to G = G1ε
4. The function H1 is determined by minimizing the functional G1, given by

G1 '
1

2

∫ L/2

−L/2

(
[H ′1(S)]2 − 1

16
H4

1 +
1

4
H2

1

)
ds, (2.40)

where S ≡ εs, and a prime denotes a derivative with respect to S. Variation of Eq. (2.40) gives

the amplitude equation for H1 [40],

H ′′1 (S) +
1

8
H3

1 −
1

4
H1 = 0. (2.41)

The boundary conditions of vanishing height, h(±L/2) = 0, are automatically satisfied since

cos((N/2)π) = 0 for odd N . The boundary conditions of vanishing bending moment, ḧ(±L/2) =

0, impose

H ′1(S = ±εL/2) = 0. (2.42)

Equations (2.41) and (2.42) always have the trivial constant solution, H1 =
√

2, correspond-

ing to wrinkles. In addition, Eq. (2.41) has solutions in terms of Jacobian elliptic functions [124].

Out of the twelve Jacobian functions, only one is found to provide a physical solution,3

H1(S) = 4κdn(κS,m), κ =
1

2
√

2−m
. (2.43)

In this section using the other definition of the modulus m [124] makes the presentation more

elegant. It is related to the modulus k of Sec. 2.3 by m = k2. The modulus m (0 ≤ m ≤ 1)

changes with the displacement ∆ (see Eq. (2.50) below). The pressure is also related to the

modulus m using the boundary condition (2.42),4

κεL = 2K(m), (2.44)

where K(m) is the complete elliptic integral of the first kind [124], which is half the period of

the function dn [124], κ(m) is defined in Eq. (2.43), and ε =
√

2− P . Equations (2.36), (2.43)

3The Jacobian function dc yields a solution identical to Eq. (2.43). The function cn describes a solution whose

amplitude decreases with increasing displacement. The remaining nine functions either diverge with increasing

L and/or are odd, thus reversing the symmetry of the solution.
4We use here the envelope at its lowest mode (no nodes). Higher modes, satisfying κεL = 2nK(m) with n > 1,

are valid solutions but with higher energy.

33



CHAPTER 2. FLUID-SUPPORTED SHEET 34

s/l

h(s)

P = 1.112 Δ/l = 0.60

P = 1.605 Δ/l = 0.40

P = 1.846 Δ/l = 0.25

P = 1.901 Δ/l = 0.20

P = 1.945 Δ/l = 0.15

P = 1.979 Δ/l = 0.10

P = 1.982 Δ = ΔF

−12

−8

−4

0

4

8

12

−5 −4 −3 −2 −1 0 1 2 3 4 5

Figure 2.3: Localized height profiles for a sheet of length L/λ = 10.5 for various values of the

confinement parameter.

and (2.44) yield the height profile, h(s), of the sheet for a given m,

h(s) = 4κεdn(κεs,m) cos(s), (2.45a)

=
8K(m)

L
dn

(
2K(m)

L
s,m

)
cos(s), (2.45b)

for L/λ = N/2.

The resulting profiles are demonstrated in Fig. 2.3. In the limit m → 0, the function

dn(u,m) → 1, and from Eq. (2.45b) we recover the wrinkled profile, h(s) =
√

2ε cos(s) [49].

In the opposite limit, m→ 1, we have dn(u,m)→ 1/ cosh(u), which recovers the approximate

localized fold for an infinite sheet [40, 49], h(s) = 2ε cos(s)/ cosh(εs/2). These two limits are

further treated in Sec. 2.4.2. Thus, m serves as the order parameter of the wrinkle-to-fold

transition, as will be discussed in Sec. 2.5. The antisymmetric counterpart of Eq. (2.45b) is

obtained by replacing cos(s) with sin(s).

To further characterize the extent of localization, we define the decay length of the envelope

as,

ξ ≡
∣∣∣∣H1(0)

Ḧ1(0)

∣∣∣∣1/2 =
L

2
√
mK(m)

, (2.46)

where the last equality follows from Eq. (2.45b). The decay length diverges (ξ → ∞) when

m → 0, and vanishes (ξ → 0) as m → 1. This defines the two limits of weakly and strongly

localized profiles to be discussed below. Note, however, that the leading order of the multiple-

scale analysis is not strictly valid in the strongly localized limit. The crossover between these

two limits, ξ = L, where the localization should become observable, occurs at m ' 0.096.
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Figure 2.4: Pressure as a function of displacement for a sheet of length L/λ = 10.5, showing

the second-order transition between the wrinkle state (exact solution, green solid line) and the

fold state (multiple scale approximation, red dash-dotted line). P̄ is the physical dimensional

pressure. Numerical solution (circles) of Eq. (2.8) indicates that the parametric equations (2.31)

and (2.32) for the wrinkle state, and (2.47) and (2.50) for the fold state, provide the correct

evolution of P as a function of ∆. The pressure-displacement relation for a confined infinite

sheet, Eq. (2.58), is shown for comparison (exact solution, black dashed line).

2.4.2 Pressure, displacement, and amplitude

Using Eq. (2.44) together with Eq. (2.38), we obtain the expression for the pressure associated

with the localized solution,

P (m) = 2− 16

L2
(2−m)K(m)2. (2.47)

Since we know that for an infinite sheet the wrinkle state is always unstable against the localized

state [40], we expect that this transition should occur at an arbitrarily small displacement for

a sufficiently long sheet. Therefore, we expand the expression (2.12) of the displacement to the

leading order in ε,

∆ ' 1

2

∫ L/2

−L/2
ds ḣ2. (2.48)

Using the expression (2.45a) for h, averaging over the fast oscillations (short length scale), and

performing the integral over the slow envelope (long length scale), we obtain

∆ = 8κε E(κεL/2,m), (2.49)

where E(x,m) is the Jacobi epsilon function, and κ is given as a function of m in Eq. (2.43).

Using Eq. (2.44), the displacement associated with the localized solution reads,

∆(m) = 8κε E(K(m),m) =
16

L
K(m)E(m), (2.50)
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where E(m) is the complete elliptic integral of the second kind [124]. Since both ∆, given by

Eq. (2.50), and P , given by Eq. (2.47), are functions of m, the evolution of the pressure as a

function of the displacement is given by the parametric form (∆(m), P (m)). This evolution is

demonstrated in Fig. 2.4.

Weakly localized limit

As m grows from zero the profile ceases to be purely periodic and begins to localize. In the

weakly localized limit, m � 1, the symmetry has already been broken, but the localization

length is still larger than the system size, ξ > L. In this limit, therefore, the deviation from the

wrinkle state will be hard to resolve experimentally. Nevertheless, as mentioned above, m ' 0.1

is sufficient to reach ξ ' L.

The displacement given by Eq. (2.50) is an increasing function of m. We notice that, in the

limit m→ 0, the displacement takes a finite value,

∆F ≡ ∆(0) = 4π2/L = λ2/L. (2.51)

This means that the localized solution emerges only beyond this finite displacement in the case

of sheets of finite length. For a confinement smaller than ∆F, the shape of the sheet is described

by the periodic solution constructed in Sec. 2.3. In Appendix A.3 we obtain the critical wrinkle-

to-fold confinement, up to a constant prefactor, ∆F ∼ λ2/L, from a simple scaling analysis.

For small m we have

∆(m) = ∆F +
π2m2

8L
+O(m3), (2.52)

P (m) = 2− 8π2

L2
− 3π2m2

4L2
+O(m3). (2.53)

The parameter m can be eliminated to obtain

P ' 2− 2∆F

L
− 6

(
∆−∆F

L

)
. (2.54)

The profile for m = 0 is obtained from Eq. (2.45b),

h(s) =
4π

L
cos s, m = 0. (2.55)

Although this profile describes periodic wrinkles, it has a finite amplitude since it is obtained

for a finite displacement, ∆ = ∆F.
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Once m > 0, the profile is no longer periodic and its extrema have different heights. The

height of the central fold, A0 = |h(0)|, and that of the extremum next to it, A1 ' |h(π)|, are of

special interest since they are used to experimentally characterize the evolution of the localized

profile [39]; see also Sec. 2.6 and Fig. 2.7. (The localization makes the second extremum shift

slightly from s = π, but this shift is of higher order than our present approximation.) From

Eqs. (2.45b) and (2.52) we get

A0 '
4π

L
+ 2
√

2

(
∆−∆F

L

)1/2

, (2.56a)

A1 '
4π

L
+ 2
√

2 cos

(
2π2

L

)(
∆−∆F

L

)1/2

, (2.56b)

which are valid for ∆ & ∆F. The slopes of both A0 and A1 diverge at ∆F, with an exponent of

1/2, as is typical for a mean-field second-order transition.

Strongly localized limit

In this limit of m→ 1 we have

∆(m) ' 16

L
K(m), (2.57a)

P (m) ' 2− 16

L2
K(m)2. (2.57b)

Eliminating the parameter m between these two last relations leads to

P = 2− ∆2

16
= 2− π2

4

(
∆

λ

)2

, (2.58)

which coincides with the exact pressure-displacement relation for infinite sheets [41]. In this

limit, we also have dn(u,m)→ 1/ cosh(u) [124], such that the profile (2.45b) becomes

h(s) =
∆

2

cos(s)

cosh(s/ξ)
, ξ = 8/∆, (2.59)

which coincides with the approximate localized fold for an infinite sheet [40, 49]. The amplitude

A0 is thus given by the following simple relation,

A0 = ∆/2, (2.60)

which again is identical to the exact result for an infinite sheet [41].
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Figure 2.5: Phase diagrams of an incompressible fluid-supported sheet. (a) Phase diagram on

the displacement–length plane. For 0 < ∆ < λ2/L the sheet forms extended wrinkles, and

for ∆ > λ2/L a localized fold is formed. The rectangle shows the range of the experimentally

determined phase boundary [39] (see also Fig. 2.7). (b) Phase diagram on the pressure–length

plane. P̄ is the physical dimensional pressure. Wrinkles are stable for 2− 2λ2/L2 < P < 2, and

a fold is stable for P < 2 − 2λ2/L2. The wrinkle-fold line is a second-order transition. Note

how the region of stable wrinkles in both diagrams vanishes in the limit of an infinite sheet.

In both diagrams, the theoretical transition curves are compared to the numerical transition

obtained by solving Eq. (2.8) and analyzing the periodicity of the numerical solution from the

relative height of its extrema. Numerical results for both commensurate (L being an integer

or half-integer multiple of λ) and incommensurate sheets are presented, showing a negligible

discrepancy between these two and the theoretical prediction for L & 2λ.

2.5 Wrinkle-to-fold transition

Below a critical value of εL = εFL = 23/2π, Eq. (2.44) has no solution for m. Thus, below

this critical confinement, the localized solution does not exist, and the only possible envelope

is the trivial constant one, corresponding to wrinkles. At εFL itself Eq. (2.44) admits m = 0 as

a unique solution, and for larger values of εL, with m > 0 as a unique solution, the envelope

grows continuously, corresponding to increasingly localized patterns. Accordingly, we define the

order parameter of the wrinkle-to-fold transition as m, and its control parameter as

τ ≡ εL, τF = εFL = 23/2π. (2.61)

38



CHAPTER 2. FLUID-SUPPORTED SHEET 39

2.5.1 Landau expansion

A clear way to present the continuous transition is through a Landau expansion of the energy,

G, in small order parameter. The Landau expansion is to be performed on the energy prior to

minimization. For this purpose, we use the following form for the envelope:

H?
1 (S) =

2√
2−m

dn

(
2K(m)

τ
S,m

)
, (2.62)

where we have substituted the boundary condition (2.44) in the argument of the profile given

by Eq. (2.43), but not in its amplitude. Therefore, H?
1 (S) satisfies the boundary conditions but

does not yet minimize the energy.

Substituting Eq. (2.62) in Eq. (2.40) and expanding to fourth order in small m, yields

∆G ' (τ2
F − τ2)(m2 +m3) +

3

128
(35τ2

F − 33τ2)m4, (2.63)

where ∆G = 32L(G−GW)/ε2, and GW = Lε4/4 is the energy of the wrinkles. The appearance

of the m3 term has no significance for the transition because of its vanishing prefactor. Upon

minimization of ∆G with respect to m we obtain,

m ' 8 [(τ − τF)/3τF]1/2 , (2.64)

with a critical exponent, β = 1/2, as usual for a mean-field second-order transition.

Using the expression (2.61) of τF in Eqs. (2.33) and (2.38) for P and ∆, we recover the

critical values derived in Sec. 2.4.2 from the analysis of weakly localized folds. We repeat here

these central results:

PF = PW − τ2
F/L

2 = 2− 8π2/L2, (2.65)

∆F = τ2
F/(2L) = 4π2/L. (2.66)

The value of ∆F ' 39.5/L corrects an earlier, higher estimate of ∆F = 48/L, which was obtained

by using an Ansatz profile that was not an energy minimizer [49]. Equations (2.65) and (2.66)

confirm that the wrinkle-to-fold transition can be made arbitrarily close to the flat-to-wrinkle

one with increasing size of the sheet. Consequently, this separate second-order transition appears

only in finite systems.

In Fig. 2.5 we summarize the phase diagrams of the incompressible fluid-supported sheet on

the ∆–L and P–L planes. Note that these scaled diagrams are parameter-free.
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Figure 2.6: (a) Evolution of the rescaled pressure as a function of the relative displacement for

various sheet lengths L. P̄ is the physical dimensional pressure. The graphs show the evolution

of the pressure for the periodic state (wrinkles) together with the bifurcations toward the lo-

calized state (fold) at ∆/L = ∆F/L = λ2/L2 and P = 2− 2∆F/L. These bifurcations decrease

the energy of the system compared to the periodic state. (b) Evolution of the amplitudes of the

pattern, rescaled by the wrinkles wavelength, as a function of the relative displacement for the

same sheet lengths as those used in panel (a). The wrinkles amplitude grows as (∆/L)1/2 until

the point ∆/L = λ2/L2 and A/λ = λ/Lπ is reached, where the localized state emerges. The

evolution of the amplitude of the central fold, A0, and of the fold next to it, A1, are shown.
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2.5.2 Matching at the transition

Below the wrinkle-to-fold transition and considering small wrinkles (to first order in ∆/L), we

have found in Sec. 2.3.3,

P = 2

(
1− ∆

L

)
, A0 = 2

√
∆

L
, h(s) = A0 cos(s). (2.67)

At the wrinkle-to-fold-transition, we have shown that ∆ = ∆F = λ2/L and P = PF = 2 −

2λ2/L2. Slightly above the transition, the weakly localized solution is characterized by (see

Sec. 2.4.2),

P = 2

(
1− ∆F

L

)
− 6

(
∆−∆F

L

)
, (2.68)

A0 =
2λ

L
+ 2
√

2

(
∆−∆F

L

)1/2

,

h(s) =
2λ

L
cos(s), at the transition.

Comparing Eqs. (2.67) and (2.68), we see that the transition is continuous. The discontinuity

appears in the pressure derivative, with (dP/d∆)∆→∆−F
= −2/L and (dP/d∆)∆→∆+

F
= −6/L.

Hence, the continuous transition is of second order (discontinuity in the second derivative of E

with respect to ∆). The pressure associated with the localized solution is smaller than the one

associated with the periodic solution once ∆ > ∆F, as illustrated in Fig 2.6a. Since P = dE/d∆,

the localized state has a smaller energy compared to the energy of the periodic state. The latter

is thus unstable once ∆ > ∆F. The evolution of the amplitudes of the wrinkle and localized

states as the displacement increases is shown in Fig 2.6b.

2.6 Discussion

2.6.1 Experimental consequences

The system parameters are the length L and bending modulus B of the thin elastic sheet, and

the density ρ of the liquid. The experimental control parameter is either the displacement ∆ or

the force per unit length P . The measured quantity is the height profile, including the wrinkles

wavelength, λ, and height extrema [39].

The order parameter m, which we have defined here, characterizes the decay of the envelope

away from the center of the fold. Experimentally, one may look instead at the height difference
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between two consecutive local extrema A0 and A1 [39]. These two definitions of the order

parameter are equivalent close to the transition. Indeed, from Eqs. (2.52) and (2.56) we find

Mexp ≡ 1− A1

A0
=

1

2
[sin(λπ/2L)]2m+O(m2) =

π2λ2

8L2
m+O(m2, λ4/L4). (2.69)

Using Eq. (2.52), or equivalently Eq. (2.64), this result is written as a function of the experi-

mental control parameter ∆:

Mexp =
π2

√
2

λ

L

(
∆−∆F

L

)1/2

, (2.70)

where ∆F is given by Eq. (2.51).

The evolution of the pattern amplitude as a function of the displacement can also be mea-

sured. Such data are available in Ref. [39], whose main purpose was to show the universality of

the folding state where all the data collapsed onto a master curve for large enough confinement.

Indeed, in the large-confinement regime, the sheet deformation is localized in a small region,

comparable to the wrinkle wavelength λ, and does not depend significantly on the sheet length

L, provided that L is sufficiently large compared to λ. The data of Ref. [39] are reproduced in

Fig. 2.7 together with the evolution of the amplitudes predicted by the present theory. (Note

that, to comply with the presentation of the experimental data, the amplitude in Fig. 2.7 is

drawn as a function of ∆/λ rather than ∆/L as in Fig. 2.6b.)

Our theory is valid for large enough sheets and consequently for a sufficiently small relative

confinement ∆/L� 1. See, for example, the deviation of the amplitude A1 at large ∆/L for a

small system with L/λ = 3.5 (Fig. 2.7). On the other hand, at large ∆/λ, as the localization

length becomes significantly smaller than L, the exact predictions for an infinite sheet [41]

become accurate for finite sheets as well (see Fig. 2.7). Finally, for the localized state we have

assumed a commensurate sheet (L being an integer or half-integer multiple of λ). Yet, as shown

in Fig. 2.5, the effect of incommensurability becomes negligible already for sheets larger than

2λ, making it inconsequential experimentally.

The authors of Ref. [39] inferred from their experiments that the wrinkle-to-fold transition

occurred at a value of ∆ ' 0.3λ for all sheet lengths L, whereas our theory gives an L-dependent

critical displacement (see Fig. 2.5a). As seen in Fig. 2.7, it was natural to draw that conclusion

given the experimental error. The rectangle shown in the diagram of Fig. 2.5a, representing the

range of the experimentally determined thresholds (Fig. 2.7), is consistent with the theoretical

prediction. Clearly, accurate experimental data focusing on the transition region are still needed.

For this purpose we summarize the predictions for the amplitude evolution below and above
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Figure 2.7: (a) Definitions of the amplitudes A0 and A1 for the localized state. (b) Comparison

between the experimental evolution of A0 and A1 (rescaled by λ) with increasing confinement

for finite sheets [39], and the prediction of Eq. (2.45b) where A0 = |h(0)| and A1 = |h(π)|. The

evolution of the amplitudes of the exact solution for an infinite sheet is also presented [41].

the transition:

For ∆ < ∆F :

A

λ
=

1

π

(
∆

L

)1/2

, (2.71a)

For ∆ & ∆F :

A0

λ
=

λ

πL
+

√
2

π

(
∆−∆F

L

)1/2

, (2.71b)

A1

λ
=

λ

πL
+

√
2

π
cos

(
2π2

L

)(
∆−∆F

L

)1/2

. (2.71c)

In Sec. 2.4, we derived the properties of the critical wrinkle-to-fold transition at which the

localization length ξ diverges. As for critical phenomena in a finite system, the transition will be

observable in practice only when the localization length becomes smaller than the system size,

ξ . L. We find, however, that the displacement required to get ξ ' L is larger than ∆F by only

0.4%. Thus, the finite size of the system should have a negligible effect on the experimentally

observed critical displacement.

43



CHAPTER 2. FLUID-SUPPORTED SHEET 44

2.6.2 Conclusion

In the present work we have derived an exact solution for the wrinkle state in a finite fluid-

supported sheet. The theory developed for fold localization, however, is restricted to large

sheets; it is correct to first order in λ/L. A higher-order theory (next order in ε of the multiple-

scale expansion) would not change the main conclusions obtained above. It is expected to

slightly modify some quantitative predictions such as the value of the critical wrinkle-to-fold

confinement, ∆F. The possibility to discriminate experimentally between the present theory of

the transition and a higher-order one is doubtful.

Although we found exact localized solutions for the governing equation (2.8), these do not

give the physical profile of the sheet (see Appendix A.1). Mathematically, the inability to

derive physical localized profiles from these solutions may indicate that such profiles belong to

a different branch of solutions to the non-linear governing equation. Such a branch is yet to be

found. If it exists, it will probably coincide, in the limit L→∞, with the exact solution known

for this limit [41].

An important extension to the present theory is the inclusion of finite compressibility of the

sheet. This will allow us to treat the flat-to-wrinkle transition, and thus construct the complete

“phase-diagram” of the floating sheet including the two transitions.
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Chapter 3

Properties of extensible elastica

from relativistic analogy1

3.1 Introduction

Analogies to dynamical problems have been used to simplify the physics of various condensed-

matter systems, ranging from the deformation of elastic bodies to the order-parameter profile

across an interface between coexisting phases. A particularly well known example is Kirchhoff’s

kinetic analogy [22]. In this theory the three-dimensional (3D) deformation of a slender elastic

rod is reduced to the bending deformation of an inextensible curve, representing the mid-axis

of the rod. This problem, in turn, is analogous to the dynamics of a rigid body rotating about

a fixed point, where the distance along the curve and its local curvature are analogous, re-

spectively, to time and angular velocity. When the filament is confined to a two-dimensional

(2D) plane (the celebrated Euler elastica [21], see Chapter 1 Sec. 1.2.1), the equation of equi-

librium coincides with the equation of motion of a physical pendulum [22, 52], see discussion in

Sec. 1.2.3.

In the examples above the elastic system was reduced to an indefinitely thin, inextensible

body, whose equilibrium shape follows the trajectory of a classical dynamical system. In the

present work we show that relaxing the inextensibility constraint introduces terms akin to

relativistic corrections to classical dynamics. Within this analogy, the compression modulus,

1The material presented in this Chapter was published in O. Oshri and H. Diamant, Soft Matter (Communi-

cation) 12, 664-668 (2016) [32].
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Y , plays the role of the relativistic particle’s rest mass, and the bendability parameter h−1 ≡

(Y/B)1/2, where B is the bending modulus, is analogous to the speed of light. The limit of an

inextensible rod (h→ 0) corresponds to the nonrelativistic limit. . (The symbol h, having units

of length and denoting here the quantity (B/Y )1/2, should not be confused with the height

variable used in Chapter 2.)

3.2 The elastic energy from a discrete model

Despite the relevance to real systems, including compressible fluid membranes [26], there have

not been many studies of extensible elastica (see [28] and references therein). Following these

works, we consider the 2D deformation of an extensible filament, represented by a planar curve

of relaxed length L. The same model applies to thin elastic sheets, as well as fluid membranes

[25], provided that they are deformed along a single direction. The deformation away from the

flat, stress-free state is parametrized by the angle φ(s) and compressive strain γ(s), as functions

of the relaxed arclength s along the curve, s ∈ [0, L]; see Fig. 3.1(a). We denote the compressed

arclength by ŝ, such that γ = dŝ/ds and the total deformed length is L̂ =
∫ L̂

0 dŝ =
∫ L

0 γ(s)ds.

To obtain the energy functional which keeps the bending and stretching contributions

independent, it is instructive to start from a discrete model (see Fig. 3.1(b)). Consider a

chain of N jointly connected extensible rigid bonds of rest length a. The chain’s configu-

ration is parametrized by a set of bond strains γn (1 ≤ n ≤ N) and a set of joint angles

φn (1 ≤ n ≤ N − 1). The energy of a given configuration has a stretching contribution,

Es = (Y/2a)
∑N

n=1(γna − a)2, and a bending contribution, Eb = (B/2a)
∑N−1

n=1 (φn+1 − φn)2.

For the sake of the analogy we add a potential energy of the form, Ep = a
∑N

n=1 γnV (φn), where

V (φ) is an angle-dependent potential. This choice of potential energy is not artificial. For exam-

ple, if we include an external work on the chain, coupling the force P exerted on the boundaries

with the chain’s projected length, we have Ep = Pa
∑N

n=1 γn cosφn, i.e. V (φ) = P cosφ. We

now take the continuum limit, N →∞ and a→ 0 such that Na→ L and na→ s, getting,

E[φ(s), γ(s)] = Eb + Es + Ep =

∫ L

0
ds

[
B

2

(
dφ

ds

)2

+
Y

2
(γ − 1)2 + γV (φ)

]
. (3.1)

To obtain the equations of equilibrium for the filament one should minimize E with respect
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Figure 3.1: (a) Deformed and undeformed planar configurations. The straight line (solid, purple)

represents a relaxed rod of initial length L, and the curved line (dashed, gold) represents a

deformed rod of total length L̂. Their arclength parameters are s and ŝ respectively. The local

in-plane and out-of-plane deformations are respectively accounted for by the compression field

γ = dŝ/ds and the angle φ(s). (b) An illustration of the discrete model. The initial, zero-energy

configuration (solid, purple) consists of N rigid bonds of rest length a and zero joint angles. A

higher-energy state (dashed, gold) is obtained by compression of each bond, a→ γna, and/or a

change of each joint angle, φn. The continuous limit of this model yields the picture presented

in panel (a).

to γ(s) and φ(s). This gives the two equations,

Y (γ − 1) + V = 0, (3.2a)

B
d2φ

ds2
− γ dV

dφ
= 0. (3.2b)

First integration yields,

H =
B

2

(
dφ

ds

)2

− Y

2
(γ − 1)2 − γV = const, (3.3)

which depends on the boundary conditions at s = 0, L.

3.3 Analogy to relativistic dynamics

The mathematical analogy to relativistic dynamics is revealed once we transform from the

relaxed arclength, s, to the compressed one, ŝ, and redefine the potential as V̄ = −V . Equa-
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tion (3.2b) then turns into

B
d

dŝ

(
γ
dφ

dŝ

)
+
dV̄

dφ
= 0. (3.4)

This equation is analogous to the Euler-Lagrange equation for the one-dimensional motion of a

relativistic particle [125], provided that γ(ŝ) coincides with the Lorentz factor. To obtain γ we

use Eq. (3.3) to eliminate V in Eq. (3.2a), and transform to ŝ, which gives,

γ =

√
1 + 2H/Y√

1 + h2(dφ/dŝ)2
. (3.5)

This expression indeed resembles the Lorentz factor up to the constant prefactor, γ0 ≡
√

1 + 2H/Y .

Absorbing this prefactor in the potential V̄ makes Eq. (3.4) identical to the relativistic one, with

the correct Lorentz factor. This completes the analogy. The mapping between the variables

and parameters of these two systems is summarized in Table 3.3.

Elasticity Relativity

relaxed arclength2, s proper time, τ

compressed arclength, ŝ laboratory time, t

tangent angle, φ angle coordinate, φ

curvature, κ = dφ/dŝ angular velocity, ω = dφ/dt

compression field2, γ = dŝ/ds Lorentz factor, γ = dt/dτ

compression modulus, Y minus the rest energy, −mc2

bending modulus, B moment of inertia, m`2

bendability, h−1 =
√
Y/B speed of light, c

Table 3.1: Mapping between the parameters of extensible elastica and relativistic dynamics

3.4 Symmetry of extensible elastica

We now use the mapping to identify a new symmetry of extensible elastica. First, recall that

the equation of equilibrium of inextensible elastica is invariant to the addition of a constant

curvature κ, making a flat configuration cylindrical. The kinetic analogue of this symmetry is

the Galilean invariance of the equation of motion of a classical free particle to a boost by a

constant velocity. We are after the corresponding symmetry for an extensible elastic filament.

It is natural to try the analogue of a Lorentz boost. To make the connection to a free particle

we first remove the potential energy from Eq. (3.4), V̄ (φ) = 0, and then divide by Bγ0. The

2 More accurately, the analogue of τ is γ0s, where γ0 is a constant prefactor (see text).
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resulting equation of elastic equilibrium,

d

dŝ

(
1√

1 + h2(dφ/dŝ)2

dφ

dŝ

)
= 0, (3.6)

is identical to the equation of motion of a free relativistic particle. With the Lorentz boost in

mind, we immediately identify the transformation of coordinates (ŝ/h, φ) → (Ŝ/h,Φ), which

leaves Eq. (3.6) unchanged:(
ŝ/h

φ

)
=

(
γ −γhκ
γhκ γ

)(
Ŝ/h

Φ

)
, (3.7)

where κ = const, and γ = 1/
√

1 + h2κ2. The transformation is a rotation of the material

coordinates, (ŝ/h, φ), by an angle θ = sin−1(γhκ), turning a flat, relaxed configuration into a

cylindrical, compressed one; see Fig. 3.2. The rotation leaves the line element on the material-

coordinates plane unchanged, dŝ2/h2 +dφ2 = dŜ2/h2 +dΦ2. This reparametrization invariance

defines a continuous family of solutions to the equation of equilibrium, containing all the cylin-

drical, compressed configurations of the filament. These configurations satisfy local mechanical

equilibrium but differ in their total energy. (Obviously, the flat relaxed configuration always

has the lowest energy.) The actual equilibrium configuration for a given problem is selected by

boundary conditions. To our knowledge, this symmetry of extensible filaments has not been

recognized before.

Φ

s
`
�h

F

S
`
�h

Θ

L
`

ΓL
`

1�Κ

Figure 3.2: Rigid rotation of the coordinate system (ŝ/h, φ) → (Ŝ/h,Φ) by an angle θ. A flat

elastic filament of length L̂ is described by the blue line. As viewed from the new frame, the

total length is compressed by a factor γ, and the angle coordinate, Φ, is linearly changing,

resulting in a cylindrical compressed shape of radius 1/κ and length γL̂.

An important physical distinction should be made, however, between the two sides of the

analogy. In the elastic problem one naturally specifies the length L and the boundary conditions
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with respect to that relaxed state; the compressed length L̂ is determined by minimization. By

contrast, in relativity the duration of the experiment and the boundary conditions are given

in the laboratory frame, not the proper one. This difference leads to the extra prefactor γ0

(see further discussion in Appendix B.1). Thanks to this prefactor the elastic strain can be

either compressive or dilative, whereas the relativistic Lorentz factor must be dilative.3 Note

that, because of the minus sign in the mapping Y → −mc2, time dilation corresponds to elastic

compression.

Despite the physical difference, by absorbing the factor γ0 in the potential, the two prob-

lems become mathematically equivalent. Thus, a known solution in one system can be readily

transferred to the other.

3.5 Exact solution to the relativistic non-linear pendulum

We shall now use known results for the buckling of extensible elastica to write down an explicit

solution to the equation of motion of a relativistic nonlinear pendulum. (A solution to this

dynamical system was previously given only in implicit parametric form [126].)

To do so, we should specialize to the potential V (φ) = P cosφ. Substitution of V in

Eq. (3.2a) gives γ = 1− (P/Y ) cosφ. These expressions for V and γ turn Eq. (3.2b) into

B
d2φ

ds2
+ P sinφ− P 2

Y
sinφ cosφ = 0, (3.8)

which is the equation of equilibrium for an extensible elastica under a uniaxial force P [28, 31].

The exact solution to Eq. (3.8) was derived in Ref. [28]. For hinged boundary conditions,

dφ/ds = 0 at s = 0, L, it is given by

φ(s) = 2 sin−1

[
q

(1− (qkh)2/γ0)1/2 cd
(√
γ0ks,m

)[
1− (qkh)2/γ0 cd2

(√
γ0ks,m

)]1/2
]
. (3.9)

Hereafter we use the conventional symbols for the various elliptic functions, cd, am,K and Π,

as defined in Ref. [124]. In addition, k ≡
√
P/B is the wavenumber of the buckled linear

elastica. We have defined three additional parameters which depend on the boundary angle,

3If we formulated the elastic problem and its boundary conditions, unphysically, based on the ultimate de-

formed length L̂, the information on the reference state would be lost, and the two problems, the elastic and

relativistic, would become identical. This can be readily shown by transforming Eq. (3.1) to ŝ and minimizing

with respect to γ (see Appendix B.1).
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φ0 ≡ φ(s = 0):

q ≡ sin(φ0/2)

γ0 = 1− (kh)2 cosφ0

m = q2
[
1 + (qkh)2

]
/γ0. (3.10)

The parameter γ0 = γ(s = 0) gives the boundary strain, which coincides with γ0 as defined

above. The actual wavelength (periodicity) λ of the nonlinear buckled elastica is

λ = 4K(m)/(
√
γ0k). (3.11)

The total rod length matches a half wavelength, L = λ/2. This expression relates φ0 to the

force P and the system parameters via Eq. (3.10). The total deformed length is given by

L̂ =
∫ L

0 [1− (kh)2 cosφ]ds, yielding,

L̂/L = 1− (kh)2

[
2(1− q2)

Π(q2,m)

K(m)
− 1

]
. (3.12)

It is readily shown that the three known solutions for inextensible nonlinear elastica (h → 0)

[22], extensible linear elastica (φ0 � 1) [28], and inextensible linear elastica (h → 0, φ0 � 1)

[22], are obtained from Eq. (3.9) in the respective limits.

To apply the analogy, we first transform Eq. (3.8) to the deformed arclength ŝ using

Eqs. (3.2a), (3.3) and (3.5). This leads to

d

dŝ

(
1√

1 + h2(dφ/dŝ)2

dφ

dŝ

)
+
k2

γ0
sinφ = 0. (3.13)

Next, substituting

{h2, k2/γ0} → {−`2/c2, ω2},

where ω is the natural frequency of the corresponding linear pendulum and ` the pendulum

length, the equation of motion for a relativistic pendulum [127] readily follows:

d

dt

(
1√

1− (`2/c2)(dφ/dt)2

dφ

dt

)
+ ω2 sinφ = 0. (3.14)

From Eq. (3.9) we then immediately write down the explicit solution for the pendulum motion

in terms of its proper time,

φ(τ) = 2 sin−1

[
q

[1 + (qω`/c)2]1/2 cd (ωτ,m)

[1 + (qω`/c)2 cd2 (ωτ,m)]1/2

]
, (3.15)

where, from Eq. (3.10), q = sin(φ0/2) is related to the initial angle of the pendulum, and

m = q2[1 − (ω`/c)2(1 − q2)]. Similarly, the proper period of the pendulum is obtained by

analogy to γ0λ of Eq. (3.11),

Tτ = 4K(m)/ω, (3.16)
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and the laboratory period from L̂/(γ0L) of Eq. (3.12),

Tt/Tτ = 1 + 2(ω`/c)2(1− q2)

[
Π(q2,m)

K(m)
− 1

]
. (3.17)

Finally, we can transform the solution (3.15) to laboratory time through

t = τ +
2(1− q2)

ω
(ω`/c)2

[
Π(q2, am(ωτ,m),m)− ωτ

]
. (3.18)

In Fig. 3.3 we show the resulting motion of the pendulum in both proper and laboratory

times. The dilation of the period of the relativistic pendulum (solid curve), compared to the

nonrelativistic one (dash-dotted), illustrates the compression of the buckling wavelength in the

extensible elastica compared to the inextensible case.

Figure 3.3: Pendulum angle as a function of proper time (Eq. (3.15), dashed line) and labo-

ratory time (Eqs. (3.15) and (3.18), solid line). The chosen parameters, φ0 = 2π/3, ω = 1,

(ω`/c)2 = 0.5, correspond to a highly relativistic pendulum resulting in a significant time di-

lation. Numerical solution of the equation of motion (Eq. (3.14), circles) and the case of a

nonrelativistic pendulum (c→∞, dash-dotted) are plotted for comparison.
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3.6 Discussion

We begin with two additional short comments concerning the analogous systems. First, a similar

factor to the elastic γ0 is encountered in certain relativistic scenarios [126, 128]. Second, we

note that the usage of the original strain field to derive the elastic γ looks similar in spirit to

the “einbein” used to simplify the analysis of actions in different physical contexts [129]. Unlike

those analyses, however, γ here is an actual physical strain, the choice of which is not free but

dictated by elasticity.

The extended Kirchhoff analogy presented in this work should be useful for studying various

soft matter systems. In principle, extensibility corrections are negligible for sufficiently slender

(and therefore bendable) objects. There are several indications, however, that the extensible-

elastica model may be qualitatively predictive beyond its strict limits of validity. For example,

it produces negative compressibility (decrease of the force P with increasing confinement) for

bendability h−1 of order 1 [28]. Although the model is invalid for such values of h−1, this

result is in qualitative agreement with recent experimental and numerical results for buckled

beams [130]. In Ref. [26] Diggins et al. studied the buckling of fluid membranes under uniaxial

confinement using molecular dynamics simulations. To improve the analysis of the simulation

data beyond the inextensible Euler elastica, they used, on purely empirical grounds, expressions

which are very similar to the ones presented here, obtaining good fits to the numerical results.

The reason for the unexpected success of the extensible-elastica model in these two examples is

unclear at present. Extensibility is essential in the case of two-dimensional deformations with

non-zero Gaussian curvature. The present 1D model, as far as we know, has no applicability

in such cases. It is relevant, however, to deformations with cylindrical [61, 131] or conical [13]

symmetries.

Lastly, the analogy can be extended to three dimensions, where the deformation of an

extensible filament in 3D becomes analogous to a relativistic rotor , as outlined in Appendix B.2.
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Chapter 4

Strain tensor selection and the

elastic theory of incompatible thin

sheets1

4.1 Introduction

In the past two decades there has been a renewed interest in the elasticity of thin solid sheets

in view of the wealth of surface patterns and three-dimensional (3D) shapes that they exhibit

under stress [7, 11, 13, 40, 42, 43, 62, 111, 133]; see Chapter 1, Sec. 1.3. In addition, experiments

and models have been devised for incompatible sheets, which contain internal residual stresses

even in the absence of external forces [68–71, 76–78, 134–146]. The study of such sheets has been

motivated by their relevance to morphologies in nature [76, 79, 134, 136, 138] and frustrated

self-assembly [79, 85]. Incompatible sheets form nontrivial 3D shapes spontaneously. They can

also be “programmed” to develop a desired 3D shape [70, 72, 75, 140, 147, 148], see discussion

in Sec. 1.3.2.

We first recall the fundamental points introduced in Sec. 1.3.2. The necessary existence of

sheets with unremovable internal stresses is rationalized as follows. When treating a thin solid

sheet as a mathematical surface, its relaxed state is characterized by a 2D reference metric ten-

sor, ḡαβ, associated with the relaxed in-plane configuration, and a reference second fundamental

form, b̄αβ, related to the relaxed out-of-plane configuration (curvature) [68]. (We shall use Latin

1The material presented in this Chapter has been submitted for publication. A preprint can be found in [132].
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indices (i, j, . . .) for 3D coordinates and Greek indices (α, β, . . .) for 2D ones.) However, not

any ḡαβ and b̄αβ correspond to a physical surface. For the surface to be embeddable in 3D

Euclidean space, these forms must satisfy a set of geometrical constraints [20, p. 203]. Thus,

in general, an actual sheet will be incompatible — its actual metric and second fundamental

form, aαβ and bαβ, will not coincide with their reference counterparts — leading to unavoidable

intrinsic stresses.

A covariant theory for incompatible elastic bodies has been presented by Efrati, Sharon, and

Kupferman (referred to hereafter as ESK) [68] and successfully applied to several experimental

systems [79, 82, 85] (for specific examples, see again Sec. 1.3.2). Their elastic energy for a 3D

body reads,

E3D =

∫
V
Aijklε̃ij ε̃kl

√
|ḡ|dV,

ε̃ij =
1

2
(gij − ḡij), (4.1)

where the integration is over the unstrained volume, V, gij and ḡij are the metric and reference

metric, ḡ is the determinant of the reference metric and Aijkl is the elastic tensor. To explicitly

distinguish the strain used by ESK we mark it with a tilde. ESK also presented a dimensional

reduction of this energy to 2D for incompatible thin elastic sheets, resulting in a sum of stretching

and bending contributions,

ESK: E2D = Es + Eb =
t

2

∫
A
Aαβγδ ε̃αβ ε̃γδ

√
|ḡ|dA+

t3

24

∫
A
Aαβγδbαβbγδ

√
|ḡ|dA,

ε̃αβ =
1

2
(aαβ − ḡαβ), (4.2)

where t is the sheet thickness, the integral is over the unstrained area, and ε̃αβ is the ESK

two-dimensional strain tensor.

Arguably, the functional in Eq. (4.1) represents the simplest covariant theory of incompatible

elasticity. It makes a certain choice of strain tensor, which is based on the relative deviations of

the distances squared from their rest values (the so-called Green–St. Venant strain tensor [68,

149, 150]). In elasticity theory the strain measure is regarded as a parametrization freedom —

so long as the stress tensor (and resulting energy functional) is appropriately defined, different

definitions of the strain tensor will lead to the same equilibrium deformation of the elastic body

[150, Sec. 2.5]. Indeed, other choices of strain have been made in compatible elasticity, such

as the Biot strain tensor [151], which expresses the spring-like deviations of distances within

the body. Generally, one can write a dimensionless deviation of a certain variable ` from its

reference `0 as ∆ = 1
m`m0

(`m − `m0 ), where m is an arbitrary number [149, p. 6]. In the limit of
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small deviations, ∆� 1, one always gets ∆ ' (`− `0)/`0 for any m. Thus, it seems that within

linear elasticity of infinitesimal strains the choice of m is immaterial.

Dimensional reduction of 3D linear elasticity to 2D thin sheets introduces non-quadratic

terms in the reduced energy functional. As we shall see below, a different selection of the strain

tensor for the 3D body — the incompatible analogue of Biot’s strain — leads to non-quadratic

terms in 2D which differ from those obtained from Eq. (4.2). Thus, the resulting theory is

not equivalent to the ESK one. This holds even in the case of a compatible sheet with a flat

reference metric [17, 152]. The differences between the two formulations are quantitatively small

but have a qualitative effect on the structure of the theory and the simplicity of its application.

We note that the present work is not the first to indicate the effect of strain-tensor selection.

Similar observations were made in the context of compatible beam theory [29].

We begin in Sec. 4.2 by presenting the alternative formulation based on Biot’s selection of

3D strain. We perform a reduction to 2D, which is limited to axisymmetric surface deformations

along the principal axes of stress. In Sec. 4.3 we apply the formulation to the simple example

of a compatible sheet that is uniaxially bent by boundary moments. We show that it coincides

in this case with the extensible elastica, yielding a bent, unstrained, cylindrical shape, whereas

the choice made in Eq. (4.2) gives a cylinder with non-zero in-plane strain. Section 4.4 presents

further applications to several examples of incompatible flat discs. We derive linear equations of

equilibrium, and obtain their analytical solutions, for problems which are described by nonlinear

equations in the ESK theory. Section 4.5 presents a self-consistency criterion, based on the

alternative formulation, for the stability of axisymmetric strain-free configurations (isometric

immersions) of such discs with respect to internal bending moments. We apply the criterion

to the case of a reference metric with constant positive Gaussian curvature, whose isometric

immersion is a spherical cap. In Sec. 4.6 we conclude and discuss future extensions of this work.

4.2 Alternative two-dimensional formulation for simple defor-

mations

We impose three requirements on the alternative formulation for 2D incompatible sheets: (a) It

should be invariant under rigid transformations (rotations and translations). (b) In the limit of

incompressibe compatible sheets it should converge to the known Willmore functional [68]. (c)

In the small-slope approximation it should converge to the Föppl-von Kàrmàn (FvK) theory
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(see Sec. 1.3.1) [19].

The formulation presented here holds for a small subset of problems which we can treat

exactly. We consider a disc-like thin sheet of radius R, and parametrize it by the in-plane polar

coordinates (r, θ). The relaxed length, squared, of a line element on the sheet is given by the

following reference metric,

ḡαβ =

(
1 0

0 Φ2(r)

)
, ds2 = dr2 + Φ2(r)dθ2, (4.3)

where dr is the relaxed arclength element along the radial direction and 2πΦ(r) is the relaxed

perimeter of a circle of radius r around the disc center. Once Φ(r) 6= r the flat configuration

contains internal strains. While such a sheet may have a complicated equilibrium deformation,

we restrict ourselves to surfaces of revolution. The 3D position of a displaced point on the

surface is given by

f(r, θ) = [r + ur(r)]̂r + ζ(r)ẑ, (4.4)

where ur is the radial displacement, ζ is the height function, r̂ is a unit vector tangent to the

sheet in the radial direction, and ẑ is a unit vector in the perpendicular direction to the flat

disc. Note that, for an incompatible sheet, the case of ur(r) = ζ(r) = 0 does not correspond to

a stress-free configuration.

The 2D energy functional of this system can be derived out of a 3D formulation using the

Kirchhoff-Love hypothesis [15, 17, 22, 33, 68, 140]; see Chapter 1, Sec. 1.1.2. For this purpose we

identify the 2D sheet defined above with the mid-surface of a 3D slab. Under the Kirchhoff-Love

set of assumptions the configuration of the 3D body is given by,

f?(r, θ, x3) = f(r, θ) + x3n̂(r, θ), (4.5)

where x3 ∈ [−t/2, t/2] is a coordinate in the direction n̂ normal to the mid-surface,

n̂ =
∂rf × ∂θf
|∂rf × ∂θf |

=
(1 + ∂rur)ẑ− ∂rζ r̂√
(1 + ∂rur)2 + (∂rζ)2

. (4.6)

On a surface of constant x3, the length squared of an infinitesimal line element is found, after

some algebra, to be,

df?2 =
[
arr − 2x3brr + x2

3crr
]
dr2 +

[
aθθ − 2x3bθθ + x2

3cθθ
]
dθ2, (4.7)

where aαβ = ∂αf · ∂βf , bαβ = −∂αf · ∂βn̂, and cαβ = ∂αn̂ · ∂βn̂, are the first, second, and third

fundamental forms.

58



CHAPTER 4. STRAIN TENSOR SELECTION 59

On the other hand, following Biot’s approach [151, p. 17], a pure deformation of that surface

is represented by the symmetric transformation matrix,(
dr′

Φdθ′

)
=

(
1 + ε?rr ε?rθ

ε?rθ 1 + ε?θθ

)(
dr

Φdθ

)
, (4.8)

where ε?αβ is the in-plane strain tensor of the constant-x3 surface. Note that this definition of

the strain correponds to changes in length (not length squared). Thus,

df?2 = dr′2 + (Φdθ′)2

=
[
(1 + ε?rr)

2 + (ε?rθ)
2
]
dr2 +

[
(1 + ε?θθ)

2 + (ε?rθ)
2
]

(Φdθ)2 + 2ε?rθ(2 + ε?rr + ε?θθ)Φdθdr.

(4.9)

Comparinging Eqs. (4.7) and (4.9), we identify,

ε?rr =
√

(1 + εrr)2 − 2x3brr + x2
3crr − 1, (4.10a)

ε?θθ =
√

(1 + εθθ)2 − 2x3bθθ/Φ2 + x2
3cθθ/Φ

2 − 1, (4.10b)

ε?rθ = 0, (4.10c)

where

εrr =
√
arr − 1 =

√
(1 + ∂rur)2 + (∂rζ)2 − 1, (4.11a)

εθθ =
√
aθθ/Φ− 1 =

r

Φ
− 1 +

ur
Φ
. (4.11b)

We have reached a definition of the mid-surface in-plane strains in terms of the actual and

reference metrics, based on the spring-like deformed length rather than length squared.

The geometrical interpretation of these strains is illustrated in Fig. 4.1. The fact that the

strains describe deformed lengths [15, p. 41] leads at this stage to two simplifications. First, the

fundamental forms satisfy the simple relations, crr = b2rr/(1 + εrr)
2 and Φ2cθθ = b2θθ/(1 + εθθ)

2.

Second, once these expressions are substituted in Eqs. (4.10), we can rewrite the strains at

constant x3 as,

ε?rr = εrr − x3φrr, (4.12a)

ε?θθ = εθθ − x3φθθ. (4.12b)

(See Fig. 4.1c for the geometrical meaning of these strains.) Here we have defined the out-of-

plane strains,

φrr =
√
crr =

(1 + ∂rur)∂rrζ − ∂rrur∂rζ
(1 + ∂rur)2 + (∂rζ)2

, (4.13a)

φθθ =
√
cθθ/Φ =

1

Φ

∂rζ√
(1 + ∂rur)2 + (∂rζ)2

. (4.13b)
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Defining further φr and φθ as the tangent angles in the radial and azimuthal directions of

the surface of revolution, we find φrr = ∂rφ
r and φθθ = (1/Φ)∂θφ

θ (see Fig. 4.1(a) and the

explanation in its caption). This clarifies the geometrical meaning of the “bending-strains”, φrr

and φθθ.

In the framework of linear elasticity the energy functional of the 3D slab is given by [19],

E3D =
E

2(1− ν2)

∫ t/2

−t/2

∫ R

0

∫ 2π

0

[
(ε?rr)

2 + (ε?θθ)
2 + 2νε?rrε

?
θθ

]
Φdθdrdx3, (4.14)

where E is Young’s modulus and ν the Poisson ratio. Substituting Eqs. (4.12) in (4.14) and

integrating over x3 gives,

E2D =
Y

2

∫ R

0

∫ 2π

0

[
ε2rr + ε2θθ + 2νεrrεθθ

]
Φdθdr +

B

2

∫ R

0

∫ 2π

0

[
φ2
rr + φ2

θθ + 2νφrrφθθ
]

Φdθdr,

(4.15)

where Y = Et/(1 − ν2) is the stretching modulus and B = Et3/12(1 − ν2) is the bending

modulus. The first integral in Eq. (4.15) is the stretching energy,

Es =
1

2

∫ R

0

∫ 2π

0
[σrrεrr + σθθεθθ] Φdθdr, (4.16)

where the stress components σαβ = δE/δεαβ are given by,

σrr = Y (εrr + νεθθ), (4.17a)

σθθ = Y (εθθ + νεrr). (4.17b)

Similarly, the second integral in Eq. (4.15) gives the bending energy,

Eb =
1

2

∫ R

0

∫ 2π

0
[Mrrφrr +Mθθφθθ] Φdθdr, (4.18)

where the bending moments, Mαβ = δE/δφαβ, in the radial and azimuthal directions are given

by,

Mrr = B(φrr + νφθθ), (4.19a)

Mθθ = B(φθθ + νφrr). (4.19b)

Looking back at the dimensional reduction just performed, we see why a generalization

from axisymmetric deformations to general ones, although possible, is going to be much more

cumbersome.

Let us now verify that the three requirements that we have imposed on the energy functional

are fulfilled by Eq. (4.15). The first requirement, of invariance under rigid transformations, is
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Figure 4.1: (a) Deformation of an infinitesimal element in the radial direction. The relaxed

length of the element is dr (solid line), and the deformed length is |∂rf |dr. The radial strain

component is εrr = |∂rf |dr−dr
dr , as given by Eq. (4.11a). The angle φr satisfies sinφr = ∂rf ·ẑ/|∂rf |.

Substituting f(r, θ) from Eq. (4.4) in the latter relation and using Eq. (4.13b) gives φθθ =

sinφr/Φ. In addition, by direct differentiation it can be verified that φrr = ∂rφ
r as given

by Eq. (4.13a). (b) Deformation of an infinitesimal sheet element in the azimuthal direction.

The relaxed length in this direction is Φdθ (solid line) and the deformed length is |∂θf |dθ
(dashed line). Thus, the azimuthal strain is εθθ = |∂θf |dθ−Φdθ

Φdθ , as given by Eq. (4.11b). (c)

Deformation of an infinitesimal line element in the radial direction at height x3 below the mid-

surface. By geometry, the shown angle dϑ = (1 + εrr)dr/R = (1 + ε?rr)dr/(R − x3). Using

1/R = (1 + εrr)
−1dφr/dr and solving for ε?rr gives Eq. (4.12a).

satisfied, since the strains have been derived from a pure deformation matrix, Eq. (4.8), as

discussed in the first chapter of Ref. [151]. Equivalently, Eqs. (4.16) and (4.18) can be rewritten

in terms of the tensor invariants,

Es =
Y

2

∫ R

0

∫ 2π

0

[
tr(ε)2 − 2(1− ν) det (ε)

]√
|ḡ|dθdr,

Eb =
B

2

∫ R

0

∫ 2π

0

[
tr(ḡ−1c) + 2ν

√
det (ḡ−1c)

]√
|ḡ|dθdr,

which is manifestly invariant to rigid transformations.

To verify the second requirement, we take the incompressible limit, aαβ → ḡαβ, and obtain

Es = 0, φ2
rr → κ2

rr and φ2
θθ → κ2

θθ, where κrr and κθθ are the two principal curvatures on the

surface in the radial and azimuthal directions. Substituting the latter relations in the second

integral of Eq. (4.15), we obtain,

Incompressible sheet: Eb =
B

2

∫ R

0

∫ 2π

0

(
(κrr + κθθ)

2 − 2(1− ν)κrrκθθ
)

Φdrdθ, (4.20)

which coincides with the known Willmore functional [68].

Lastly, we verify the third requirement, that for compatible sheets in the small-slope ap-
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proximation our model converges to the FvK theory (cf. Sec. 1.3.1) [19]. Setting Φ = r and

expanding the in-plane strain, Eqs. (4.11), to linear order in ur and quadratic order in ζ, we

have εrr ' ∂rur + 1
2(∂rζ)2 and εθθ = ur/r. The latter strains along with Eq. (4.16) yield the

stretching energy in the FvK approximation [153]. Similarly, the “bending strains”, Eqs. (4.13),

are approximated by φrr ' ∂rrζ and φθθ ' ∂rζ/r. Substituting these in Eq. (4.18), we obtain

the FvK bending energy,

Small slope: Eb '
B

2

∫ R

0

∫ 2π

0

[
(∇2

rζ)2 − 2(1− ν)[ζ, ζ]
]
rdrdθ, (4.21)

where ∇2
rζ ≡ 1

r∂r(r∂rζ) and [ζ, ζ] ≡ 1
r∂rζ∂rrζ are the small-slope approximations of the mean

and Gaussian curvatures.

4.3 Uniaxial deformation by bending

We would like to demonstrate the difference between the ESK model and the one presented in

the preceding section, using the simplest example possible. Consider the uniaxial deformation

of a compatible sheet by bending moments applied at its edges. Alternatively, we can replace

the moments by purely geometrical boundary conditions on the configuration at the edges, as

given below. Since no in-plane axial forces are applied, a particularly simple possibility is a

purely bent cylindrical deformation of the sheet’s midplane — an isometry which contains no

stretching energy (Fig. 4.2). Indeed, this is the deformation obtained in this case from the

theory of extensible elastica [28, 31, 32, 34], as we recall below.

Figure 4.2: A flat thin sheet is deformed into a cylinder of constant radius without stretching

of its midplane. This deformation is obtained for the extensible elastica by applying bending

moments, M0, on the sheet edges or by imposing dφ/ds at the boundaries.

To apply the formulation to this simple problem we should reduce the 2D energy, Eq. (4.15),

to 1D. Consider a radial cut of a θ-independent deformation as a planar compatible filament

(Φ(r) = 1). Identify r → s, where s ∈ [0, L] is the undeformed arclength along the filament, and

φr(r) → φ(s), the angle between the tangent to the filament and the flat reference plane. We
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then have φ2
rr → φ2

ss = (dφ/ds)2, εrr → εss, and φθθ = εθθ = 0. Substitution of these relations

in Eq. (4.15) gives,

E1D = Es + Eb =

∫ L

0

[
Y

2
ε2ss +

B

2

(
dφ

ds

)2
]
ds. (4.22)

This functional coincides with the energy of an extensible elastic filament in a planar deformation

as given by the theory of extensible elastica [28, 31, 32, 34], see also Eq. (1.9) in Sec. 1.2.1.

Alternatively, we could reduce the sheet into a filament through an azimuthal cut along

a narrow annulus of large radius ρ, in which case dθ → ds, φ2
θθ → φss = (dφ/(Φds))2, and

φrr = εrr = 0. We then obtain

E1D = Es + Eb =

∫ L′

0

[
Y

2
ε2ss +

B

2

(
dφ

Φds

)2
]

Φds. (4.23)

The parameter s now runs between 0 and L′, such that L =
∫ L′

0 Φds is the total relaxed length.

In addition, εss now measures the in-plane strain with respect to the prescribed metric. The

energy of Eq. (4.23) is the extension of the extensible elastica theory to the case of a nontrivial

reference metric.

Returning to the ordinary extensible elastica, we note that Eq. (4.22) can be derived from a

discrete model of springs and joints [32] while enforcing from the outset the decoupling between

the stretching and bending contributions [33, p. 77]; see Chapter 3, Sec. 3.2. In Eq. (4.22) this

decoupling is manifest in the independence of Es on φ, δEs
δφ = 0, while Eb is independent of εss,

δEb
δεss

= 0. In the absence of boundary axial forces, the equations of equilibrium are obtained

from minimization of Eq. (4.22). Defining the in-plane stress (acting to only locally stretch the

filament) and bending moment (acting only to change its local angle) as,

σss ≡
δE1D

δεss
= Y εss, (4.24a)

Mss ≡
δE1D

δ
(
dφ
ds

) = B
dφ

ds
, (4.24b)

those equations of equilibrium are,

σss = 0, (4.25a)

dMss

ds
= 0. (4.25b)

When a constant moment, M0, is applied at the boundaries (Fig. 4.2), Eqs. (4.24)–(4.25)

yield εss = 0 and φ(s) = φ(0) + (M0/B)s. This solution corresponds to a circular arc of

radius B/M0 and total length L. Alternatively, if we impose (dφ/ds)|s=0 = c, we get φ(s) =

63



CHAPTER 4. STRAIN TENSOR SELECTION 64

φ(0) + cs, corresponding to a circular arc of radius 1/c. The energy of this configuration is

E1D = (B/2)c2L.

The strain-free cylindrical shape is preserved also in the more complicated case of a nonuni-

form reference metric, Eq. (4.23). Variation of this energy with respect to εss and φ gives,

as before, Eqs. (4.25), where the in-plane stress is given again by Eq. (4.24a). The bending

moment is modified to,

Mss =
δE1D

δ
(

1
Φ
dφ
ds

) =
B

Φ

dφ

ds
, (4.26)

which replaces Eq. (4.24b). The in-plane strain (with respect to the reference metric) vanishes.

When we apply a moment M0 at the boundaries, or impose (dφ/(Φds))|s=0 = c, we find again

a strain-free cylindrical shape with radius B/M0, or 1/c.

We now show that the ESK functional gives a different result. We specialize Eq. (4.2) to

the case of a compatible sheet under uniaxial deformation. Since the deformation has zero

Gaussian curvature, we set ḡss = 1 and, from Eq. (4.2), obtain ass = 1 + 2ε̃ss. In addition, we

have
√
|ḡ|dA → ds, tAssss → Y , and t3

12A
ssss → B. Substituting these relations in Eq. (4.2)

gives

ESK: E1D =

∫ L

0

(
Y

2
ε̃2ss +

B

2
b2ss

)
ds. (4.27)

The relations between the variables appearing in the ESK Eq. (4.27) and the ones in Eq. (4.22)

are ε̃ss = εss(1 + εss/2), and bss = ∂s(
√
asst̂) · n̂ = (1 + 2ε̃ss)

1/2 dφ
ds .

Naively, if we set the variations of the energy (4.27) with respect to ε̃ss and bss to zero,

we will get the same result as above, i.e., a strain-free circular configuration with ε̃ss = 0,

bss = (dφ/ds)s=0 = c, and energy E1D = (B/2)c2L. Thus, the coupling between ε̃ss and dφ/ds

appearing in bss = (1 + 2ε̃ss)
1/2 dφ

ds would not have an effect on the configuration. However, the

correct minimization is with respect to the filament’s trajectory f(s). As shown in Appendix C.1,

this is equivalent to the minimization with respect to εss and φ. In terms of these variables,

Eq. (4.27) becomes

ESK: E1D =

∫ L

0

[
Y

2
[εss(1 + εss/2)]2 +

B

2
[1 + 2εss(1 + εss/2)

(
dφ

ds

)2
]
ds. (4.28)

The bending contribution to this energy depends on εss, which results in a strained configu-

ration under the boundary conditions given above. Specifically, minimization of the energy in

Eq. (4.28) with respect to εss and φ, under the boundary condition (dφ/ds)s=0 = c, yields a cir-

cular arc, φ(s) = φ(0)+cs, which nonetheless contains non-zero strain, εss =
√

1− 2Bc2/Y −1.
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The energy of this configuration is E1D = (B/2)c2L[1 − (B/Y )c2], slightly deviating from the

energy of the extensible elastica obtained above.

Two comments should be added concerning the difference between the two models. (a) As

demonstrated by the case of a geometrical boundary condition on dφ/ds, the difference does

not arise from different definitions of the boundary bending moment. (This remains correct if

we impose the condition on the apparent curvature, [dφ/d(1 + εss)s]s=0.) (b) In Ref. [68] a term

proportional to ε̃ss(dφ/ds)
2 was neglected in the final step. Clearly, its inclusion merely changes

the numerical coefficient in the second term of Eq. (4.28).

In summary, unlike the formulation of Sec. 4.2, the ESK model does not strictly reduce to

the extensible elastica. Under uniaxial bending at the boundaries it produces a small in-plane

strain, while our formulation and the extensible elastica predict a strain-free cylindrical shape.

The discrepancy is small and vanishes in the incompressible limit of B/Y → 0. Moreover, the

correction terms are of order (B/Y )c2 ∼ (tc)2, which must always be small in any elasticity

theory of sheets of finite thickness. Nevertheless, the effect of the coupling between stress and

bending moments goes beyond this simple 1D example and profoundly affects the structure of

the theory, as will be shown in the following sections.

4.4 Exact solutions for planar deformations of incompatible sheets

We now demonstrate the advantage of the alternative formulation in simple examples of flat

configurations. In the flat state the bending energy is zero and the equation of equilibrium is

obtained by minimizing the stretching energy alone. To do so we first set ζ = 0 in Eqs. (4.11),

εrr = ∂rur, (4.29a)

εθθ =
r

Φ
− 1 +

ur
Φ
, (4.29b)

and then substitute Eqs. (4.29) in (4.16), obtaining,

Es =
1

2

∫ R

0

∫ 2π

0

[
σrr∂rur + σθθ

( r
Φ
− 1 +

ur
Φ

)]
Φdθdr. (4.30)

Minimization of Es with respect to ur gives the equation of equilibrium,

∂r(Φσrr)− σθθ = 0, (4.31)

which expresses balance of forces in the radial direction (see Fig. 4.3). Substituting the in-plane

strains, Eqs. (4.29), in the stress components, Eqs. (4.17), and then in (4.31), we obtain the
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equation of equilibrium in terms of ur alone,

Φ∂r(Φ∂rur)− ur = r − Φ− νΦ(1− ∂rΦ). (4.32)

This second-order equation for ur is supplemented by two boundary conditions: vanishing stress

at the free edge, σrr|r=R = 0 and vanishing displacement at the origin. The resulting conditions

are

[Φ∂rur + νur + ν (r − Φ)]r=R = 0, (4.33a)

ur|r=0 = 0. (4.33b)

Importantly, unlike earlier analysis of the same problem [78], Eqs. (4.32) and (4.33) are

linear and therefore solvable. To demonstrate this key advantage we now derive exact solutions

of Eq. (4.32) for three types of reference metrics: flat, elliptic, and hyperbolic (see Fig. 4.4). In

Figure 4.3: Radial force balance on an infinitesimal element of a flat sheet [154, p. 65]. At the

point P we have contributions from the two radial stresses, (σrr)1Φdθ and −(σrr)3Φdθ, and

from the two azimuthal stresses −(σθθ)2dr sin(dθ/2) and −(σθθ)4dr sin(dθ/2). Balancing these

terms gives Eq. (4.31).

the following subsections we compare the results obtained from analytical solutions of our model

for the different reference metrics with those obtained from the ESK nonlinear equations. To

assure a meaningful comparison we examine the following: (a) the radial displacement ur, which

is an unambiguous experimental observable; (b) the stress components obtained by variation

of the energy with respect to the strain ε (not the metric-based one, ε̃) for both models. In

Appendix C.4 we elaborate on the relations between these stress tensors in the two theories.
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Figure 4.4: Layouts of the three considered reference metrics. (a) Flat metric, Eq. (4.34). When

the two radii (dash-dotted red lines) are held together, the rest length of concentric circles on

the closed disc become 2παr < 2πr. (b) Elliptic metric, Eq. (4.40). Gluing together the two

curved dash-dotted red lines creates a frustrated disc, where concentric circles have rest length

of 2πΦ(r) < 2πr. (c) Hyperbolic metric, Eq. (4.47). In this panel dashing represents unseen

lines; concentric circles have rest length 2πΦ(r) > 2πr, causing pieces of the disc to be placed

in the relaxed configuration one over the other (marked in blue). Attaching together the lower

(hidden) red-dashed line with the upper solid red line results in a disc with a hyperbolic metric.

4.4.1 Flat metric

A flat reference metric is given by,

Φ(r) = αr, (4.34)

where α < 1. Substituting Eq. (4.34) in (4.32) and (4.33a) gives,

α2r∂r(r∂rur)− ur = (1− α)(1− να)r, (4.35a)

[αr∂rur + νur + ν(1− α)r]r=R = 0. (4.35b)

Equation (4.35a) replaces the nonlinear Eq. (10) of Ref. [78] which could be solved only numer-

ically. The solution to Eq. (4.35a) is given by,

ur(r) = A0r
1/α +B0r

−1/α − 1− αν
1 + α

r, (4.36)

where A0 and B0 are constants to be determined by boundary conditions. The vanishing dis-

placement at the disc center, Eq. (4.33b), is satisfied for B0 = 0. The value of A0 is determined

by the second boundary condition, (4.35b). This gives,

ur(r) = −1− αν
1 + α

[
1− (1− ν)α

1− αν

( r
R

) 1
α
−1
]
r. (4.37)

Substituting Eq. (4.37) in Eqs. (4.29) and then in Eqs. (4.17), we obtain the radial and
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azimuthal stress components,

σrr(r) = − Et

1 + α

[
1−

( r
R

) 1
α
−1
]
, (4.38a)

σθθ(r) = − Et

1 + α

[
α−

( r
R

) 1
α
−1
]
. (4.38b)

Note that the stress components do not depend on ν. Note also that the azimuthal stress

becomes positive at rcr = αα/(1−α)R, whereas the radial one is always negative. The problem

can be solved for other boundary conditions, e.g., for an annulus with inner radius Ri and outer

radius Ro, and with free boundary conditions at its two rims. The solution reads,

ur =
α(1− ν)

1 + α

[
1− ρ

1
α

+1

1− ρ2/α

(
r

Ro

) 1
α
−1

− 1 + ν

1− ν
1− ρ

1
α
−1

1− ρ2/α

(
Ri
r

) 1
α

+1

− 1− να
α(1− ν)

]
r,

(4.39a)

σrr = − Et

1 + α

[
1− 1− ρ

1
α

+1

1− ρ2/α

(
r

Ro

) 1
α
−1

− 1− ρ
1
α
−1

1− ρ2/α

(
Ri
r

) 1
α

+1
]
, (4.39b)

σθθ = − Et

1 + α

[
α− 1− ρ

1
α

+1

1− ρ2/α

(
r

Ro

) 1
α
−1

+
1− ρ

1
α
−1

1− ρ2/α

(
Ri
r

) 1
α

+1
]
, (4.39c)

where ρ ≡ Ri/Ro. In Fig. 4.5 we compare the exact analytical solution for the radial displace-

ment, Eq. (4.39a), with the numerical solution of the formalism given in Ref. [78]. The two

theories converge to the same solution as α → 1. However, away from this nearly Euclidean

regime there are significant differences in the resultant displacements. Since the displacement is

an unambiguous observable, these differences underline the fact that the two formulations are

not equivalent. Figure 4.6 presents a similar comparison of the plane stresses obtained from the

two theories.

Figure 4.5: Comparison between the exact solution for the radial displacement (Eq. (4.39a);

black, solid line) and the numerical solution of Eq. (10) in Ref. [78] (dashed, blue line) for a flat

reference metric. We consider an annulus with inner and outer radii Ri = 0.1 and Ro = 1.1. In

accordance with the example in Ref. [78], we use ν = 0. The units of length are arbitrary so

long as the same units are used for r and ur (see Eqs. 4.39).
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Figure 4.6: Comparison between the exact plane-stress solutions (Eqs. (4.39), black solid line)

and the numerical solution of Eq. (10) in Ref. [78] (dashed blue line) for a flat reference metric.

Parameters are as in Fig. 4.5.

4.4.2 Elliptic metric

An elliptic reference metric is given by,

Φ(r) =
1√
K

sin(
√
Kr), (4.40)

whereK is a constant positive reference Gaussian curvature. Substituting Eq. (4.40) in Eqs. (4.32)

and (4.33a) gives,

sin(r)∂r(sin(r)∂rur)− ur = r − sin(r)− ν sin(r)(1− cos(r)), (4.41a)

[sin(r)∂rur + νur + ν(r − sin(r))]r=R = 0, (4.41b)

where we have rescaled the lengths r and ur by K−1/2. The following expression is verified to

be the general solution by direct substitution in Eq. (4.41a),

ur(r) = A0 tan(r/2) +B0 cot(r/2)− r − 2(1 + ν) cot(r/2) ln[cos(r/2)]. (4.42)

We set B0 = 0 to satisfy the vanishing displacement at the disc center, Eq. (4.33b), and

determine A0 by the boundary condition (4.41b), obtaining,

ur(r) = −r − 2(1− ν) ln[cos(R/2)] cot2(R/2)

(
1 +

1 + ν

1− ν
cot2(r/2)

cot2(R/2)

ln[cos(r/2)]

ln[cos(R/2)]

)
tan(r/2).

(4.43)

Note that the solution diverges for r = rn = nπ where n is a positive integer. At such points

the reference metric, Eq. (4.40), vanishes, i.e., these divegencies correspond to unphysical cases

where the rest length shrinks to zero. Substituting Eq. (4.43) in Eqs. (4.17), we obtain the
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distributed stress on the disc,

σrr(r) = −Et
(

1− cot2(r/2)

cot2(R/2)

ln[cos(r/2)]

ln[cos(R/2)]

)
ln[cos(R/2)] cot2(R/2)

cos2(r/2)
, (4.44a)

σθθ(r) = −Et
(

1 +
ln[cos(r/2)]

sin2(r/2)
+ cot2(R/2)

ln[cos(R/2)]

cos2(r/2)

)
. (4.44b)

Once again, the solution is independent of the Poisson ratio.

In order to compare our exact solution to the numerical one obtained in Ref. [78], we also

derive the displacement and the planar stress in an annulus with free boundary conditions. In

this case the constants A0 and B0 in Eq. (4.42) are

A0 =
4(1− ν)

cos(Ri)− cos(Ro)
cos2(Ri/2) cos2(Ro/2) (ln[cos(Ri/2)]− ln[cos(Ro/2)]) ,(4.45a)

B0 =
1 + ν

cos(Ri)− cos(Ro)
{(1 + cos(Ri))(1− cos(Ro)) ln[cos(Ri/2)] (4.45b)

−(1− cos(Ri))(1 + cos(Ro)) ln[cos(Ro/2)]},

and the stress components become

σrr = −2Et

[
1 +

(
1− cos(Ri)− cos(Ro)

cos(r)− cos(Ro)

cos2(r/2)

cos2(Ri/2)

ln[cos(r/2)]

ln[cos(Ri/2)]

)
(4.46a)

× 1 + cos(Ri)

1 + cos(Ro)

cos(r)− cos(Ro)

cos(Ri)− cos(r)

ln[cos(Ri/2)]

ln[cos(Ro/2)]

]
1 + cos(Ro)

sin2(r)

cos(Ri)− cos(r)

cos(Ri)− cos(Ro)
ln[cos(Ro/2)],

σθθ = −Et
[
1 +

ln[cos(r/2)]

sin2(r/2)
+ 4

(
1− cos2(Ri/2)

cos2(Ro/2)

1− cos(Ro) cos(r)

1− cos(Ri) cos(r)

ln[cos(Ri/2)]

ln[cos(Ro/2)]

)
× cos2(Ro/2)

sin2(r)

1− cos(Ri) cos(r)

cos(Ri)− cos(Ro)
ln[cos(Ro/2)]

]
. (4.46b)

In Fig. 4.7 we compare the radial displacement obtained from this exact solution, Eqs. (4.42)

and (4.45), to the numerical solution of Eq. (10) in Ref. [78]. In addition, Fig. 4.8 compares

the radial and azimuthal stress components of the two models. The two solutions converge for

a narrow annulus and differ significantly as the annulus becomes wider. (Note that increasing

Ro is equivalent to increasing K.)

4.4.3 Hyperbolic metric

A hyperbolic reference metric is given by,

Φ(r) =
1√
K

sinh(
√
Kr). (4.47)
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Figure 4.7: The exact solution for the radial displacement (Eqs. (4.42) and (4.45); black solid

line) is plotted alongside the numerical solution of Eq. (10) in Ref. [78] (dashed blue line) for

an elliptic reference metric. We consider an annulus with an inner radius Ri = 0.1, ν = 0, and

two different values of Ro as indicated. Lengths are normalized by K−1/2.

Figure 4.8: Comparison between the exact plane-stress solutions, Eqs. (4.46) (black solid line),

and the numerical results based on Ref. [78] (dashed blue line) for an elliptic reference metric.

Parameters as in Fig. 4.7.

The equation of equilibrium and the boundary condition are obtained by substituting Eq. (4.47)

in Eq. (4.32) and (4.33a),

sinh(r)∂r(sinh(r)∂rur)− ur = r − sinh(r) + ν sinh(r)(1− cosh(r)), (4.48a)

[sinh(r)∂rur + νur + ν(r − sinh(r)) = 0]r=R , (4.48b)

where again we have rescaled r and ur by K−1/2. Since Eq. (4.48a) is obtained from (4.41a) by

a Wick transformation,

r → ir, ur → iur, (4.49)
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we immediately obtain from Eqs. (4.43) and (4.44) the solution,

ur(r) = −r + 2(1− ν) coth2(R/2) ln[cosh(R/2)]

×
(

1 +
1 + ν

1− ν
coth2(r/2)

coth2(R/2)

ln[cosh(r/2)]

ln[cosh(R/2)]

)
tanh(r/2), (4.50a)

σrr(r) = Et

(
1− coth2(r/2)

coth2(R/2)

ln[cosh(r/2)]

ln[cosh(R/2)]

)
ln[cosh(R/2)] coth2(R/2)

cosh2(r/2)
, (4.50b)

σθθ(r) = −Et
(

1− ln[cosh(r/2)]

sinh2(r/2)
− cosh2(R/2)

ln[cosh(R/2)]

cosh2(r/2)

)
. (4.50c)

It is readily verified that this solution satisfies the boundary condition (4.48b).

Similarly, the radial displacement and the stress distribution in an annulus with hyperbolic

reference metric is obtained from Eqs. (4.46) via a Wick transformation, Eq. (4.49). In Figs. 4.9

and 4.10 we compare these solutions to the one obtained in Ref. [78].

Figure 4.9: The exact solution for the radial displacement (black solid line) is plotted alongside

the numerical solution of Eq. (10) in Ref. [78] (dashed blue line) for a hyperbolic reference

metric. We consider an annulus with an inner radius Ri = 0.1, ν = 0, and two different values

of Ro as indicated. Lengths are normalized by K−1/2.

4.5 Stability criterion for isometric immersions

An isometric immersion refers to a strain-free configuration, εαβ ≡ 0, leading to Es = 0. It

is obviously the minimizer of the elastic energy for B = 0. In this section we do not directly

seek the minimizer of the total energy, Eq. (4.15), but check whether the isometric immersion

happens to be a minimizer also for B > 0. Since this configuration already minimizes Es, we

need to check only whether it also minimizes Eb. Note, however, that there are two different

routes for such minimization: (a) set εαβ = 0 in Eb and then minimize with respect to curvature

alone; (b) minimize Eb with respect to both strain and curvature and only then set the strain
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Figure 4.10: The exact radial and azimuthal plane-stress solutions for a flat annulus with

a hyperbolic reference metric (solid black line) are compared with the numerical solution of

Eq. (10) in Ref. [78] (dashed blue line). Parameters are as in Fig. 4.9.

to zero, which is the appropriate route. It is straightforward to show that in our model the

two routes are equivalent. This is because the strain appears only quadratically in the energy

(see, for example, Eq. (4.22)) and, therefore, setting the strain to zero, either before or after

minimization, eliminates the same terms. However, in the ESK model the additional coupling

term in the bending energy is linear in the strain (compare, for example, to Eq. (4.27)), leading

to different results of the two routes. Hence, we conclude that the two theories should give the

same results in case (a) but may differ in the appropriate minimization, case (b).

For a given reference metric of the form of Eq. (4.3), i.e., for a given Φ(r), the requirement of

vanishing strain uniquely determines the configuration of the sheet up to rigid transformations.

Indeed, setting Eqs. (4.11) to zero, we obtain,

ur(r) = Φ− r, (4.51a)

∂rζ =
√

1− (∂rΦ)2. (4.51b)

We can now check whether this configuration satisfies local mechanical equilibrium of bending

moments.

We substitute in Eq. (4.18) φrr = ∂rφ
r and φθθ = sinφr/Φ (see Fig. 4.1(a)),

Eb =
1

2

∫ R

0

∫ 2π

0
[Mrr∂rφ

r +Mθθ sinφr/Φ] Φdθdr, (4.52)

and minimize with respect to φr,

∂r(ΦMrr)− cosφrMθθ = 0, (4.53a)

Mrr|r=R = 0. (4.53b)
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(As has been done for the uniaxial bending case (Appendix C.1), one can show here as well that

this minimization is equivalent to the appropriate one with respect to the spatial configuration;

see Appendix C.4.) Equation (4.53a) expresses balance of moments on an infinitesimal sheet

element in the radial direction [33, 155]. The boundary condition, Eq. (4.53b), imposes the

vanishing of radial bending moment at the free edge.

Our aim now is to check whether the displacements given by Eqs. (4.51) also satisfy Eqs. (4.53).

To this end we first express φrr and φθθ in terms of Φ(r) using Eqs. (4.13) and (4.51),

φrr = −∂rrΦ/
√

1− (∂rΦ)2, (4.54a)

φθθ =
√

1− (∂rΦ)2/Φ. (4.54b)

In addition, we have (see the relation between φθθ and the angle φr in Fig. 4.1(a) and its

caption),

cosφr = ∂rΦ. (4.55)

Substituting Eqs. (4.54) in Eqs. (4.19), and the result, along with Eq. (4.55), in Eqs. (4.53), we

obtain an equation and a boundary condition for Φ(r) alone,

∂r(Φ∂rrΦ/
√

1− (∂rΦ)2) + ∂rΦ
√

1− (∂rΦ)2/Φ = 0, (4.56a)[
∂rrΦ/

√
1− (∂rΦ)2 − ν

√
1− (∂rΦ)2/Φ

]
r=R

= 0. (4.56b)

Equations (4.56) are a self-consistency condition for the reference metric, which must be satisfied

for the isometric immersion to be an equilibrium configuration of the total energy. (It should

be stressed that, if a certain isometric immersion does not satisfy this condition, it can still

become the equilibrium configuration asymptotically, in the limit of vanishing B/Y [156].)

The displacements, Eqs. (4.51), and the bulk equilibrium equation, Eq. (4.56a), do not

depend on ν. Hence, any solution but the trivial flat configuration, Φ(r) = r, will violate, in

general, the boundary condition (4.56b), which does depend on ν explicitly. In Ref. [78] it was

shown that such boundary conditions may be taken care of by boundary layers. Thus, up to

a small correction at the boundary (which vanishes in the limit of zero thickness), an isometry

that satisfies the bulk condition, Eq. (4.56a), may be in mechanical equilibrium even if the

boundary condition (4.56b) is not satisfied.

Let us now check the stability condition, Eq. (4.56a), for the examples of flat and elliptic

reference metrics. In the case of a hyperbolic one, Eq. (4.47), the isometric immersion is not

a surface of revolution [75], and therefore lies outside the scope of this work. (Substituting

Eq. (4.47) in the height function, Eq. (4.51b), produces an imaginary result.)
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Considering a flat reference metric, Φ(r) = αr, we immediately find that the self-consistency

condition, Eq. (4.56a), is violated, and conclude that any isometric immersion of this metric

will be unstable for B > 0. The isometric immersion of the flat metric is a cone with an opening

angle ϑ = 2 tan−1(α/
√

1− α2),

f(r, θ) = r
[
αr̂ +

√
1− α2ẑ

]
. (4.57)

Note again that this does not preclude the possibility that the actual minimizer approaches a

cone asymptotically for a vanishingly small B/Y [156].

In the example of an elliptic reference metric we substitute Eq. (4.40) in (4.56a) and find

that the self-consistency condition is satisfied in the bulk. The isometric immersion of an elliptic

reference metric is a spherical cap of radius 1/
√
K,

f(r, θ) =
1√
K

(
sin(
√
Kr)r̂ + cos(

√
Kr)ẑ

)
. (4.58)

When we substitute this configuration in the formalism of Ref. [68] (the first of Eqs. (3.10) in

Ref. [68]), we find that it does not satisfy balance of normal forces (see Appendix C.4). This

procedure corresponds to route (b) described above, i.e., substitution of the isometric immersion

in the full equations of equilibrium rather than eliminating the strain from the beginning. Thus,

as anticipated above, the two theories disagree. A spherical cap satisfies our stability condition

but is found to be unstable for B > 0 by the ESK theory. (Recall that the two theories

do coincide if one wrongly follows the other route in the ESK model.) The spherical cap

configuration of a sheet with elliptic reference metric was found to be stable in experiments

[75]. We note that the criterion at the boundary, Eq. (4.56b), is not satisfied by the elliptic

Φ(r). This can be mended by a thin boundary layer of width ∝ t1/2 [78]. In Appendix C.2 we

give an alternative, more complete derivation of this result within the FvK approximation.

In Appendix C.3 we add a similar stability criterion for two examples of surfaces of revolution

whose reference metric is slightly more general than the ones assumed so far.

4.6 Discussion

We have presented an alternative formulation for the elasticity of incompatible thin sheets, which

is restricted to axisymmetric deformations. This formulation and the existing ESK theory [78]

are not equivalent. The lack of equivalence has been demonstrated in three systems — the
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existence or absence of in-plane strain in a uniaxially bent sheet (Sec. 4.3); the strains forming

in flat incompatible sheets (Sec. 4.4, see Figs. 4.5 – 4.7); and the stability of the spherical-cap

isometry for a sheet with an elliptic reference metric (Sec. 4.5).

The key ingredient that sets the two models apart is a coupling between stretching and

bending, which appears in the ESK model upon dimensional reduction, and is removed in the

present formulation by using distance deviations, rather than metric deviations, to define strain.

(Recall, for example, Eq. (4.22) vs. Eq. (4.27).) Let us pinpoint the stage at which this difference

emerges. If the derivation of Eqs. (4.5)–(4.12) in the dimensional reduction is repeated for the

Green-St. Venant strain, Eq. (4.1), then Eqs. (4.12) are replaced by ε̃?rr = ε̃rr−2x3brr+x
2
3crr, and

ε̃?θθ = ε̃θθ−2x3bθθ/Φ
2 +x2

3cθθ/Φ
2. The different dependence on the x3 coordinate perpendicular

to the mid-surface, inevitably leads to additional terms upon integration of the energy over x3.

Quantitatively, the differences caused by the coupling terms are small and indeed may lie

outside the strict limits of the infinitesimal-strain theory. They seem negligible experimentally.

The removal of these terms, however, leads to a much simpler analysis, as demonstrated by

the exact solutions in Sec. 4.4. (A similar observation was made in the context of beam theory

[29].) Since, at least for the problems considered in this manuscript, the differences can be

neglected, there is freedom, and clear benefit, in choosing a more tractable formulation when it

is available.

The two models become equivalent in the incompressible limit, B/Y = 0. The problems

treated in Secs. 4.3 and 4.5 reveal an essential difference in the way the two models depart

from this limit. Both problems — the uniaxially bent sheet and the sheet with elliptic reference

metric — possess a strain-free configuration (isometric immersion) as the energy minimizer for

B/Y = 0. According to the ESK model this configuration ceases to be the minimizer for an

arbtirarily small but finite B/Y ; according to the model presented here it remains the energy

minimizer to leading order in B/Y . In other words, as B/Y tends to zero, the equilibrium

configuration reaches the isometry with nonzero slope in the former, and with zero slope in

the latter. In a sheet made of a 3D material both Y and B emanate from the same elastic

modulus. Then, it may well be that a stretching-bending coupling exists even in the absence

of Gaussian curvature, leading with decreasing thickness to the “nonzero slope” behavior. In

a genuinely 2D sheet, such as a monomolecular layer or a 2D polymer network, Y and B

can be independent (e.g., arising from the rigidities of bonds and bond angles, respectively).

In such cases, for example, it may well be that stretching and bending should be decoupled,
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leading to the “zero slope” case — i.e., an isometry (no stretched bonds) remaining the energy

minimizer for B/Y > 0 (finite joint rigidity). These delicate issues might be checked in discrete

simulations. While being conceptually interesting, they may have (at least according to the

problems considered here) little practical significance.

The exact solutions presented in Sec. 4.4 for the strains and stresses in flat incompatible

sheets can be used as the base solutions for a perturbative (near-threshold) treatment of buckling

instabilities in these systems, which can then be studied experimentally. Our formulation can be

applied to additional examples beyond those addressed in Secs. 4.4 and 4.5, where the reference

metric is axisymmetric. An interesting problem, for instance, might be the case of a highly

localized (delta-function) Φ(r). In addition, the theory might be useful for analyzing stress

fields around two-dimensional defects [82, 83].

The most important extension of this work, however, would be to obtain a similarly tractable

formulation for sheets of any two-dimensional deformation. The discussion above suggests two

possible routes. One is to generalize the formulation presented in Sec. 4.2 beyond axisymmetric

deformations. The other is to modify the ESK energy functional such that the two choices of

strain measures lead to equivalent theories.
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Chapter 5

Concluding remarks and future

directions

This thesis highlights the complexity and rich behavior of strongly deformed elastic sheets.

Below, for each of the three parts of the thesis, we briefly summarize the results and indicate

possible directions for future study.

5.1 The problem of floating elastica

In this thesis we extended the elastic theory of a thin sheet lying on a fluid substrate and

uniaxially compressed, to accommodate finite size effects (see Chapter 2). We obtained the

exact solution for the wrinkled state and an approximate solution for the folded state. We

predicted that at the critical confinement ∆F = λ2/L the wrinkles state becomes unstable

against the localized pattern. This result has not yet been confirmed experimentally.

Future extensions to this work can be divided into static and dynamic applications. Here

are four suggestions for the static, time-independent, case: (i) Extending the theory to include

extensibility corrections. This modification will allow to treat both the flat-to-wrinkle and the

wrinkles-to-fold transitions, and to construct the complete “phase-diagram” of the system. (ii)

Solving the equilibrium equations for different boundary conditions. In this study only hinged

conditions have been considered, Eq. (2.37). However, other conditions, such as clamped, are

frequently used in experimental systems [157, 158]. (iii) Considering the effect of different sub-
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strates [43]. For example, when the fluid is replaced with an elastic foundation [108], wrinkles

become unstable against multiple-length-scale patterns at a critical confinement. The charac-

teristics of this transition are yet to be determined. (iv) We have not been able to find the exact

localized solution for a finite sheet. Looking for such a solution may justify additional effort,

because it should probably belong to a different branch of solutions of the governing nonlinear

equation, which has not been considered so far.

A floating sheet can also be perturbed dynamically if, for example, one of the external forces

is oscillating in time. One possible setup for such study is a liquid, vibrated from below, whose

upper surface is covered by a thin elastic sheet. At a critical excitation mode the upper surface

is expected to become unstable against periodic undulations, a phenomenon known (without

the elastic layer) as Faraday waves.

Within the context of this interesting Faraday-Elastica system we suggest two possible prob-

lems to explore. (i) The study of pattern selection. Classical experiments on Faraday systems

find stripes (wrinkles), squares, hexagons, and even quasicrystalline point symmetries on the

free surface of the vibrated vessel [159]. When the upper surface is covered with a thin sheet

the interplay between stretching and bending is expected to play a crucial roll in the selection

of a specific pattern, especially when non-zero Gaussian curvature (beyond wrinkles) is formed.

(ii) The study of solitary waves. Localized waves in Faraday systems have been experimentally

observed [160–162] and theoretically analyzed [163–166]. These studies, however, required ei-

ther special geometric configuration of the fluid vessel, such as Hele-Shaw cells, or a special

configuration in the vibrating forces, such as simultaneous vibrations of the vertical and hori-

zontal directions. Given our results for the static system (Chapter 2), we would expect to have

localized patterns in the modified Faraday-elastica system even without the above-mentioned

modifications.

5.2 Elastic-kinetic analogies

In this project we extended the analogy between inextensible thin rods and the classical dynam-

ics of rigid bodies, see Chapter 3. We showed that if the inextensibilty assumption is relaxed,

the corrections to the elastic model are akin to relativistic corrections in the dynamic system.

On a broader perspective, the extended analogy suggests an alternative derivation of special-
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relativistic mechanics. In this approach the two postulates of relativity are naturally obtained

from minimization of a more primitive action, e.g., the Lorentz invariance and the limiting speed

result from an action variation. Deriving the theory from a more fundamental starting point

allows one to ask more elementary questions on the origin of the two traditional postulates. For

example, in Appendix B.1 we showed that Galilean or Lorentz invariance of the elastic energy

depends on the given information prior to the minimization. Analogously, we concluded that

Lorentz invariance is selected in the dynamic problem since the boundary conditions and the

duration of the experiment are given in the laboratory frame, not the proper one. We were not

able to provide a similar explanation for the limiting speed.

The extended analogy was utilized to reveal a new symmetry in the elastic problem and to

derive an exact solution to the motion of the relativistic physical pendulum. Future extensions

may address the following. The instability of a flat extensible rod or sheet toward curved

configurations is connected to the emergence of oscillations from rest in the parametric resonance

of a relativistic oscillator (see discussion in Sec. 1.2.3). A change in the compression modulus

of an elastic system (e.g., as a result of a temperature change) might be studied in analogy to

a change in a particle’s rest mass.

5.3 The elastic theory of incompatible sheets

In this study we reconsidered the elastic theory of incompatible thin sheets [68], see Chapter 4.

We showed that, if the strain tensor is redefined based on Biot’s approach, the mathematical

complexity of the existing theory is greatly reduced. Despite these important differences we

found, qualitatively, only minor discrepancies between the minimizing configurations of the two

models.

Naturally, one may still ask if these discrepancies are necessarily negligible in any system

of incompatible thin sheets. Although we do not have a conclusive answer to this question, let

us try to address it by classifying the elastic problems into two groups. The classification that

we suggest here is based on our qualitative discussion in Sec. 4.6 on the slope of convergence

towards the isometric shapes. Quantitatively, denoting the energy of the configuration f(r) by

E[f ] =
∫
e[f ]dA, one way to define this slope is,

m ≡ 1

E[fiso]

∫ ∣∣∣∣e[fiso + δf ]− e[fiso]

δf

∣∣∣∣ dA ' 1

E[fiso]

∫ ∣∣∣∣δeδf
∣∣∣∣
f=fiso

dA, (5.1)
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where fiso is the isometric configuration, δf is a general perturbation and |x| is the norm of the

vector x. In the limit of small thickness, Eq. (5.1) measures how the energy of the isometric

immersion changes when it is slightly distorted, e.g., as m increases the convergence towards the

isometry is slower. Practically, to calculate the slope one needs to obtain the equilibrium equa-

tions, δe/δf = 0, substitute the strain-free configuration inside them, perform the integration

and normalize by E[fiso]1.

Obviously, the value of m must be one of the following: (i) zero, (ii) finite constant, or (iii)

infinity. The slope is zero if fiso satisfies the equilibrium equations, δe/δf = 0; as, for example,

it happens in the spherical cap case using our model (see Sec. 4.5). The slope is a constant if

fiso violates the equilibrium equations and δe/δf ∼ t3. (The non-zero terms that remain after

the substitution of the isometric shape in the equations scale as t3). See for example the cone

in Sec. 4.5 and the spherical cap in the ESK theory, Appendix C.4.2. Lastly, the slope diverges

if fiso does not satisfy the equilibrium equations and δe/δf →∞. Such problems have not been

considered in the present work.

We identify the first class of elastic problems with cases (i) and (ii). In this class an elastic

configuration converges to a strain-free shape in the limit of vanishing thickness. While in

our theory the convergence can either be with a zero or a finite slope, in the ESK theory the

convergence is always with a finite slope. Since in this class both models differ only slightly

in their rate of convergence towards the isometry, we expect the experimental differences to be

negligible. Nevertheless, if the slope of convergence is very high but finite, cases (i) and (ii) may

behave differently. For the problems considered herein, this behavior was not encountered.

We identify the second class of problems with case (iii) where the slope diverges (m →

∞). This class dominates, for example, when the isometric shapes include discontinuities [80,

81]. Physically, sharp corners in the elastic configuration correspond to discontinuous bending

moments, which in return leads to divergences in the equilibrium equations, δE/δf → ∞.

Typical problems in this class include multi-wave patterns (see Fig. 1.9a) and wrinkles cascades

(Fig. 1.9c). Thus, it lies outside the scope of the formulation developed in Chapter 4 for

axisymmetric shapes. We assess that this class, for some scenarios, should entail significantly

different experimental predictions as obtained from the two models.

Recent experiments and theoretical studies on wrinkles in compatible sheets [10, 62], sug-

1This definition neglects the effects of boundary conditions.
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gested that these patterns emerge from stretching and bending competition at scales that are

larger than t3. Based on these observations it seems reasonable to assume that this is also

the mechanism in incompatible sheets, at least for some range of their parameters. Thus, we

anticipate that the different stretching-bending coupling terms in the two models might have a

stronger effect on the selected pattern in these systems as well.
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Appendix A

Wrinkles and folds in a fluid

supported sheet - Appendices

A.1 Exact localized solutions to Eq. (2.8)

In this Appendix we derive exact localized solutions to Eq. (2.8), which are not physical solutions

of our problem treated here, but may be of use in future research. Equation (2.8) is a member of

the sine-Gordon-modified-Korteweg-de Vries hierarchy [122] in which the sine-Gordon equation

is a lower member. Consequently, a solution of the sine-Gordon equation is also a solution of

Eq. (2.8). Using the separation of variable proposed by Lamb [167], the following function

φ(s, t) = 4 arctan(F (s)/G(t)), (A.1)

is a solution of the sine-Gordon equation provided F and G satisfy the following differential

equations [168]

(F ′)2 = −κF 4 + µF 2 + λ, (A.2a)

(G′)2 = κG4 + (µ− 1)G2 − λ, (A.2b)

where κ, µ and λ are arbitrary constants. The function (A.1) with t = s is also a solution of

Eq. (2.8) if F and G satisfy the relations (A.2) and provided that

P̃ = 2− 4µ. (A.3)
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Figure A.1: Evolution of the normalized height of the exact solution (A.6a) at the boundaries

as a function of the normalized displacement. The dots indicate the position of the threshold,

∆F/λ, below which the profile is periodic. The shaded area corresponds thus to the wrinkle

state. This area is delimited by the relation h(±L/2)/h(0) = 0.279 ∆F/λ = 0.279λ/L.

Introducing some scaling parameters [169], Af(βs) = F (s) and g(ωs) = 1/G(s), Eqs. (A.2)

become

(f ′)2 = β−2
[
−κA2f4 + µf2 + λA−2

]
, (A.4a)

(g′)2 = ω−2
[
−λg4 + (µ− 1)g2 + κ

]
. (A.4b)

Solving Eqs. (A.4) allows to determine f and g and to obtain an exact solution of Eq. (2.8).

Those equations are satisfied by the Jacobi elliptic functions with arguments βs and ωs and

parameters kf and kg. The various parameters are fixed by comparison between Eqs. (A.4) and

those satisfied by the Jacobi functions:

sn(s, k) : (y′)2 = k2y4 − (1 + k2)y2 + 1 (A.5a)

cn(s, k) : (y′)2 = −k2y4 + (2k2 − 1)y2 + 1− k2 (A.5b)

dn(s, k) : (y′)2 = −y4 + (2− k2)y2 − 1 + k2 (A.5c)

Hinged sheets

We choose f = cn(βs, kf ) and g = sn(ω+s, k+
g ) or g = cn(ω−s, k−g ) such that

φ(s) = 4 arctan[A cn(βs, kf ) sn(ω+s, k+
g )], (A.6a)

φ(s) = 4 arctan[A cn(βs, kf ) cn(ω−s, k−g )]. (A.6b)
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Exact localized Numerics
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Figure A.2: (Color online) Evolution of the solution (A.6a) for different values of ∆/λ and L/λ =

5.5, where x(s), h(s) are given by Eqs. (2.1) and φ(s) is given by Eq. (A.6a). The corresponding

evolution for the numerical solution of Eq. (2.8) is also shown. For ∆/λ < ∆F/λ = 0.182, the

numerical solution is periodic and coincides with the solution reported in Section 2.3.

Equations (A.6a) and (A.6b) lead to symmetric and antisymmetric solutions respectively. Com-

parison between Eqs. (A.4) and Eqs. (A.5) for that particular choices of f and g fixes six pa-

rameters (among eight parameters for each parity of φ) as a function of A and β as follows:

ω+ =

[
1 + (1 +A2)β2

]1/2
1 +A2

, (A.7a)

ω− =

[
2

1 +A2
+ β2 − 1

]1/2

, (A.7b)

k+
g = A

[
1 +A2

1 + (1 +A2)β2
− 1

]1/2

, (A.7c)

k−g = A

[
β2 +A2(β2 − 1)

1−A4 + (1 +A2)2β2

]1/2

, (A.7d)

kf =
A

1 +A2

(
1 +A2 + β−2

)1/2
, (A.7e)

µ =
2A2 + (A4 − 1)β2

(1 +A2)2
. (A.7f)

The expressions of κ and λ are not needed in the following and are not written. The amplitude

A of the solutions (A.6) is related to the displacement ∆ through Eq. (2.2) whereas β should

be fixed to satisfy the boundary conditions.

For hinged boundary conditions both h and ḧ = φ̇ cosφ vanish at s = ±L/2. From Eq. (2.7),

this is equivalent to φ̇(±L/2) =
...
φ (±L/2) = 0. The condition φ̇(L/2) = 0 for the symmetric
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solution (A.6a) leads to the constraint

dn(x, kf ) sn(x, kf ) sn(y, k+
g )

cn(x, kf ) cn(y, k+
g ) dn(y, k+

g )
=
y

x
, (A.8)

where x = βL/2 and y = ω+L/2. Due to the definite parity of the solution, φ̇(−L/2) = 0

is automatically satisfied. A similar relation is easily obtained for the antisymmetric solution

(A.6b) which is not written here. For a given amplitude, A, and a given sheet length, L, Eq. (A.8)

fixes β. The displacement, ∆, and the pressure, P̃ , are then computed from Eqs. (2.2) and (A.3)

respectively. Finally, P is computed from Eq. (2.9).

It is however impossible to satisfy both boundary conditions with the solutions (A.6). For

the exact periodic solution (2.18), both φ̇(s) and
...
φ (s) are proportional to cn(q(s+ s0), k) such

that they can simultaneously vanish at the boundaries with a suitable choice of q (and s0),

see Eqs. (2.22). Here, φ̇(L/2) and
...
φ (L/2) cannot simultaneously vanish for the same value of

β. Therefore, the height of the profile assumes a finite value at the boundaries as shown in

Fig. A.1. Notice however that h(±L/2)/h(0) decreases as L increases.

Nevertheless, despite the fact that it does not properly satisfy the boundary conditions,

this solution is a very good approximation of the numerical solution satisfying both boundary

conditions. Figure A.2 shows a comparison between this exact localized solution and the nu-

merical solution of Eq. (2.8). The agreement is good especially near the central fold and for

large enough confinement.

A.2 Accuracy of ∆F and PF

The critical displacement, ∆F, and pressure, PF, at which the transition from wrinkles to fold

occurs has been computed in Sections 2.4.2 and 2.5. These expressions are obtained from

matching, at the first order in ∆/L, between the exact periodic and the approximate localized

solutions, see Section 2.5.2, and converge toward the exact values in the limit L→∞. Although

a rigorous derivation of the error on these two quantities is only possible if their exact expressions

are known, an estimation of the rate of convergence can be obtained from the exact periodic

solution.

Indeed, since at the transition P (∆) coincides for both the periodic and the localized solu-

tions, the exact expressions of ∆F and PF should satisfy Eqs. (2.31) and (2.32) for the same
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Figure A.3: (Color online) Evolution of δ∆ and δP as a function of the sheet length (normalized

by the wavelength) obtained by solving numerically Eqs. (A.9). The asymptotic behaviors

(A.10) are also shown.

k = kc. This is not the case with the approximate expressions we have obtained in this paper.

Therefore, we define two quantities, δ∆ and δP, as follows

δ∆ =
∆(k̄c)−∆F

∆(k̄c)
with P (k̄c) = PF, (A.9a)

δP =
P (k̃c)− PF

P (k̃c)
with ∆(k̃c) = ∆F, (A.9b)

where ∆(k), P (k), PF and ∆F are given by Eqs. (2.31), (2.32), (2.65) and (2.66) respectively.

With the exact expressions of ∆F and PF, we have k̄c = k̃c and δ∆ = δP = 0. The quantities

δ∆ and δP are thus a measure of the error introduced and of the rate of convergence toward the

exact expressions of the critical displacement and pressure.

Expanding both ∆(k) and P (k) up to k4, we obtain at the leading order in λ/L:

δ∆ =
3λ2

4L2
+O

[
λ4

L4

]
and δP =

3λ4

4L4
+O

[
λ6

L6

]
. (A.10)

Figure A.3 shows that the evolution of δ∆ and δP as a function of L/λ obtained by solving

numerically Eqs. (A.9) agrees well with the asymptotic expression (A.10) even when L/λ is not

so large. Therefore, the expressions of ∆F and PF derived in the paper converges toward the

exact values as L−2 and L−4 respectively.
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Wrinkles Fold

Figure A.4: Schematics for wrinkles and fold patterns.

A.3 Scaling approach

In this section, we show that some of the results obtained in the main text, and in particular the

critical confinement at which a wrinkle-to-fold transition occurs, can be qualitatively recovered

using a simple scaling approach. As formulated in Sec. 2.2, the bending energy of the sheet Eb

and the deformation energy of the substrate Es read

Eb =
WB

2

∫ L/2

−L/2
φ̇2ds, (A.11)

Es =
Wρg

2

∫ L/2

−L/2
h2 cosφds, (A.12)

and the displacement along the direction of confinement is given by

∆ =

∫ L/2

−L/2
(1− cosφ) ds. (A.13)

Small displacement

For small displacement, leading to small sheet deformations (φ� 1), wrinkles emerge with an

amplitude A, wavelength λ and curvature φ̇ ∼ A/λ2, see Fig. A.4. The energies thus scale as

Eb ∼ BWLA2/λ4; Es ∼ ρgWLA2. (A.14)

The balance of these two energies leads to

λ ∼ (B/ρg)1/4. (A.15)

In the limit φ� 1, the relation between the amplitude and the displacement is given by

∆ ∼
∫ L/2

−L/2
φ2 ds ∼

∫ L/2

−L/2
(dh/ds)2 ds ∼ L(A/λ)2. (A.16)
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Large displacement

The total energy of the system can be written as

E

W
=
B

2

∫ L/2

−L/2
φ̇2ds+

ρg

2

∫ L/2

−L/2
h2ds− ρg

2

∫ L/2

−L/2
h2(1− cosφ )ds (A.17)

∼ BΛφ̇2 + ρgΛA2 − ρgA2∆ ∼ ρg
[
λ4Λφ̇2 + ΛA2 −A2∆

]
, (A.18)

where Λ is the spatial extent of the localized pattern, φ̇ its typical curvature and A its amplitude.

For wrinkles, we have Λ ∼ L, φ̇ ∼ A/λ2 and A ∼ λ
√

∆/L, see Eq. (A.16). The wrinkles

energy can thus be written as

EW /W = ρgλ3
[
a∆/λ− b (λ/L)(∆/λ)2

]
, (A.19)

where a and b are numerical constants. For a fold, we have Λ ∼ `, the fold width, φ̇ ∼ `−1, and

A ∼ ∆, see Fig. A.4. The fold energy can thus be written as

EF /W = ρg
[
(c2/4c̄)λ4/`+ c̄ `∆2 − d∆3

]
, (A.20)

where c, c̄ and d are numerical constants. A minimization of EF with respect to ` gives

` = (c/2c̄)λ2/∆ and the energy becomes

EF /W = ρgλ3
[
c∆/λ− d(∆/λ)3

]
. (A.21)

Requiring that the wrinkles and fold energies match at ∆ = ∆F gives a quadratic equation for

∆F. Demanding that ∆F vanishes when L diverges yields a = c. A wrinkle-to-fold transition

occurs when EW > EF or equivalently, using a = c, when ∆ > ∆F = (b/d)λ2/L. Thus, this

simple analysis has recovered the correct scaling of ∆F with respect to λ and L. As shown in

Sec. 2.5, the prefactor b/d turns out to be exactly 1.
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Appendix B

Analogy between extensible elastica

and relativistic dynamics —

Appendices

B.1 On Galilean and Lorenz invariance of a free extensible fil-

ament

In this appendix we show that in the absence of external fields the energy of an extensible

filament, Eq. (3.1), is invariant under an “elastic Galilean boost” if the given information prior

to minimization is the total undeformed length of the filament, L (see Fig. B.1a). Contrary,

under the same conditions Eq. (3.1) is invariant under an “elastic Lorentz boost” if the given

information prior to minimization is the deformed length of the filament, L̂ (see Fig. B.1b).

Hereafter we will refer to these boosts as just “Galilean” or “Lorentz”. In addition, let us

emphasize that this is only a theoretical discussion, for the sake of getting more insight into

the analogy. Of course, in elasticity the first direction is always the physical one — given the

undeformed length, L, we minimize the enery to obtain L̂.

In the following two subsections we explore these two directions of minimization and show

that the elastic energy becomes canonically invariant to Galilean or Lorentz transformation once

a certain direction is selected.

A transformation, {s, φ} → {S,Φ}, is said to be canonical if the minimized configuration of
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E[φ(s)], which we denote by φ(s), that is transformed into Φ(S), yields the same result as first

transforming the energy, E[φ(s)], into the new coordinates, and then minimizing E[Φ(S)] with

respect Φ(S). In other words, the following two routes

route i: E[φ(s)]→ φ(s)→ Φ(S), (B.1a)

route ii: E[φ(s)]→ E[Φ(S)]→ Φ(S), (B.1b)

must yields the same solution for Φ(S) in order for the energy to be canonically invariant under

a given transformation.

B.1.1 Extensible Galilean filament

When the total relaxed length of the filament, L, is conserved we may minimize Eq. (3.1) as it

is without further modifications (Fig. B.1a). In the absence of an external potential, V = 0, we

have from Eq. (3.2a) that γ = 1, and the energy reduces to,

E[φ(s)] =
B

2

∫ L

0

(
dφ

ds

)2

ds. (B.2)

Equation (B.2) is analogous to the Lagrangian of a free, classical, particle (see Table 3.3 and

Fig. B.1c). Despite its trivial form and obvious result upon minimization we proceed to show

that it is invariant under a Galilean boost. This analysis will later be useful in comparison with

the less-trivial, Lorentz case.

Considering the Galilean transformation,

ds = dS, (B.3a)

dφ = dΦ + κdS, (B.3b)

we aim to show that Eq. (B.2) gives the same result for Φ(S) according to the two routes,

Eqs. (B.1). Following the first route, Eq. (B.1a), we minimize Eq. (B.2) with respect to φ(s)

obtaining dφ/ds = 0. Galilean boost of this solution to the new coordinates, Eqs. (B.3), gives,

dΦ

dS
= −κ. (B.4)

Following the second route, Eq. (B.1b), we transform the energy, Eq. (B.2), to {Φ, S}1,

E[Φ(S)] =
B

2

∫ L

0

(
dΦ

dS

)2

dS +Bκ

∫ L

0
dΦ +

B

2
κ2

∫ L

0
dS, (B.5)

1For simplicity of the following derivations we use the notation
∫ L

0
dΦ =

∫ L
0

dΦ
dS
dS to denote the integral of a

total derivative. This term in the energy contributes only to the boundary condition.
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Figure B.1: The formulation of extensible filaments is divided into two groups according to the

conserved length prior to minimization. (a) If the undeformed length, L, is conserved, the energy

functional and the stretching field are given by Eqs. (3.1) and (3.5). This is the physical model

of extensible elastica; see Chapter 1 Sec. 1.2.1 and Chapter 3 Sec. 3.2. In the absence of external

fields, V = 0, the energy becomes invariant under the “elastic Galilean boost”, Eq. (B.3), and

the stretching field is equal to unity, γ = 1. These filaments, strictly, do not have a kinetic

analogue. However, their equilibrium equation, Eq. (3.4), becomes mathematically analogous

to the relativistic one if the constant prefactor, γ0, is absorbed in the potential (see discussion

in the main text, Chapter 3 Sec. 3.3). (b) If, unphysically, the deformed length, L̂, is conserved

the energy and the stretching field are given by Eqs. (B.11) and (B.12). If, in addition, V = 0

this energy becomes invariant under the “elastic Lorentz boost”, Eq. (B.14). Consequently, the

formulation of extensible Lorentz filaments is analogous to relativistic mechanics (up to a sign

difference in the denominator of γ). (c) In the limit of inextensibility (Y → ∞) both panels,

(a) and (b), converge to Euler’s elastica (see Sec. 1.2.1). In the absence of external forces this

formulation becomes Galilean invariant (similar to panel (a)). The kinetic analogue of these

filaments is the classical, non-relativistic, dynamics.

and minimize it with respect to Φ(S). This yields the following equilibrium equation and

boundary condition,

d2Φ/dS2 = 0, (B.6a)

[dΦ/dS]s=0,L = −κ. (B.6b)

Since the solution of these equations is given by Eq. (B.4), the energy is found to be canonically

invariant under a Galilean boost. Furthermore, one can now verify from Eqs. (B.2) and (B.5)

that E[φ(s)] = E[Φ(S)] = 0 upon substitution of their respective minimizing configurations.
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This invariance property is preserved in the slightly more general case of a filament that is

confined by pure bending moments, M = Bκ̄ (keeping in mind that γ = 1). In this case the

energy, Eq. (B.2), is modified into,

E[φ(s)] =
B

2

∫ L

0

(
dφ

ds

)2

ds+M

∫ L

0
dφ. (B.7)

Following the first route, Eq. (B.1a), and minimizing Eq. (B.7) with respect to φ(s) gives,

dφ/ds = −κ̄. Galilean boost of this solution yields,

dΦ

dS
= −(κ̄+ κ). (B.8)

On the other hand, in the second route, Eq. (B.1b), we transform the energy, Eq. (B.7), to the

new coordinates,

E[Φ(S)] =
B

2

∫ L

0

(
dΦ

dS

)2

dS +B(κ̄+ κ)

∫ L

0
dΦ +B(κ2/2 + κκ̄)

∫ L

0
dS, (B.9)

and minimize with respect to Φ(S). This gives the equilibrium equation, Eq. (B.6a), and the

boundary condition,

[dΦ/dS]S=0,L = −(κ̄+ κ). (B.10)

Thus, the solutions from the first and second routes are equivalent and the energy, Eq. (B.7),

keeps the canonical invariant property. As in the previous case, it may readily be verified from

Eqs. (B.7) and (B.9) that E[φ(s)] = E[Φ(S)] = −(B/2)κ̄2L.

B.1.2 Extensible Lorentz filament

In order to conserve the total deformed length, L̂, throughout the minimization process we first

transform Eq. (3.1) from the relaxed arclength parameter, s, to the compressed one, ŝ,

E[φ(ŝ), γ(ŝ)] =

∫ L̂

0

[
B

2
γ

(
dφ

dŝ

)2

+
Y

2

(γ − 1)2

γ
+ V (φ)

]
dŝ. (B.11)

Then, we minimize Eq. (B.11) with respect to ŝ,

γ =
1√

1 + h2(dφ/dŝ)2
, (B.12)

and substitute Eq. (B.12) and V = 0 back in Eq. (B.11). This gives,

E[φ(ŝ)] = Y

∫ L̂

0

√
1 + h2(dφ/dŝ)2dŝ− Y

∫ L̂

0
dŝ. (B.13)

Up to the second term, which is a constant, this energy is analogous to the Lagrangian of a

free, relativistic, particle (see Fig. B.1b). As we shall now demonstrate, although this constant

98



APPENDIX B. ELASTIC-DYNAMIC ANALOGY 99

does not affect the minimizing shape in the current coordinates, {ŝ, φ}, it does have an effect

in the new coordinates, {Ŝ,Φ}.

Considering the following Lorentz transformation,

dŝ/h = γ(dŜ/h)− γhκdΦ, (B.14a)

dφ = γhκ(dŜ/h) + γdΦ, (B.14b)

where γ = 1/
√

1 + h2κ2, we aim to show that Eq. (B.13) is canonically invariant according to

our requirement, Eq. (B.1).

Following the first route, Eq. (B.1a), we minimize Eq. (B.13) with respect to φ(ŝ) obtaining

dφ/dŝ = 0. Lorentz boost of this solution to the new coordinates, Eqs. (B.14), gives,

dΦ

dŜ
= −κ. (B.15)

Following the second route, Eq. (B.1b), we first transform the energy, Eq. (B.13), to the new

coordinates,

E[Φ(Ŝ)] = Y

∫ γL̂

0

√
1 + h2(dΦ/dŜ)2dŜ +Bγκ

∫ γL̂

0
dΦ− Y γ

∫ γL̂

0
dŜ, (B.16)

and minimize it with respect to Φ(Ŝ). This yields the following equilibrium equation and

boundary condition,

equilibrium equation:
d

dŜ

 B√
1 + h2(dΦ/dŜ)2

dΦ

dŜ

 = 0, (B.17a)

boundary condition:

 B√
1 + h2(dΦ/dŜ)2

dΦ

dŜ
= −Bγκ


Ŝ=0,γL̂

. (B.17b)

It can readily be verified that the solution to Eqs. (B.17) is equivalent to Eq. (B.15). Thus,

the energy, Eq. (B.13), is canonically invariant under the Lorentz transformation. As in pre-

vious cases, one can check that E[φ(s)] = E[Φ(S)] = 0 upon substitution of the minimizing

configurations into Eq. (B.13) and (B.16).

Note the roll of the constant Y in keeping the energy, Eq. (B.13), canonically invariant. This

term yields after the transformation the external bending moment, −Bγκ, in the boundary

condition, Eq. (B.17b).

We now turn to examine the effect of pure bending moments on the invariance property.

It can be shown that adding a constant bending term, M = Bγκ̄κ̄ where γκ̄ = 1/
√

1 + h2κ̄2,
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alone to Eq. (B.13) breaks the symmetry down. Nevertheless, as we shall now demonstrate, the

invariance is preserved if in addition to M we shift the energy by the constant, P = Y (1− γκ̄).

This constant plays the same roll as Y in Eq. (B.13), although it has no effect in the old

coordinates it changes the boundary condition in the new coordinates.

Modifying Eq. (B.13) to include the bending moment, M , and the constant, P , we have,

E[φ(ŝ)] = Y

∫ L̂

0

√
1 + h2(dφ/dŝ)2dŝ− Y

∫ L̂

0
dŝ+M

∫ L̂

0
dφ+ P

∫ L̂

0
dŝ, (B.18)

Following the first route, Eq. (B.1a), we minimize Eq. (B.18) with respect to φ(ŝ) obtaining,

dφ/dŝ = −M/(Bγκ̄) = −κ̄. A Lorentz boost of this solution gives,

dΦ

dŜ
= − κ̄+ κ

1− h2κ̄κ
. (B.19)

On the other hand, following the second route, Eq. (B.1b), we transform Eq. (B.18) to the new

coordinates,

E[Φ(Ŝ)] = Y

∫ γL̂

0

√
1 + h2(dΦ/dŝ)2dŜ + (P̄ − Y γ)

∫ γL̂

0
dŜ + (M̄ +Bγκ)

∫ γL̂

0
dΦ, (B.20)

where {P̄ , M̄} are related to the {P,M} by the following Lorentz-like transformation,(
M̄/h

P̄

)
=

(
γ −γhκ
γhκ γ

)(
M/h

P

)
. (B.21)

Minimization of Eq. (B.20) with respect to Φ(Ŝ) yields the bulk equation, Eq. (B.17a), and the

boundary condition,  B√
1 + h2(dΦ/dŜ)2

dΦ

dŜ
= −(M̄ +Bγκ)


Ŝ=0,γL̂

. (B.22)

Note that the constant M̄ depends on both, M and P , according to the transformation,

Eq. (B.21). Thus, the constant, P , which is insignificant in the old coordinates, Eq. (B.18),

influence the boundary condition in the new coordinates, Eq. (B.20). As before, one can now

check that the solution to this equation is given by Eq. (B.19). Thus, the energy, Eq. (B.18),

is canonically invariant under the Lorentz transformation. In addition, we also have that

E[φ(ŝ)] = E[Φ(Ŝ] = 0 upon substitution of the minimizing configurations in Eqs. (B.18) and

(B.20).

B.1.3 Summary

Let us summarize this discussion with four comments. First, we have shown that both Galilean

and Lorentz invariances emerge from Eq. (3.1) depending on the given information prior to
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Figure B.2: Schematic figures of Galilean and Lorentz invariant elements. A Galilean element

is a filament that is bend to a constant radius of curvature, 1/κ, at its natural configuration. It

becomes equivalent to the flat, zero energy, state once it is subjected to a straightening bending

moment, M = Bκ. A Lorentz invariant element is a filament that is curved to a constant

radius of curvature, 1/κ, and at the same time compressed to γL̂ at its natural configuration.

It becomes equivalent to the flat state once it is subjected to a straightening bending moment,

M = Bγκ.

minimization. The group of Galilean invariant elements, Eq. (B.3), are filaments that are

unstrained and bent to a constant curvature in their natural configuration. They become

equivalent to a straight filament once a pure bending moment, M = Bκ (see Eq. (B.6b)), is

acting to flatten them. Similarly, the Lorentz invariant elements, Eq. (B.14), are naturally

strained and constantly bend filaments. When a constant bending moment, M = Bγκ (see

Eq. (B.17b)), is acting to straighten them, they become equivalent to a filament that is flat at

its rest configuration, see Fig. B.2.

Second, while the Galilean functional, Eq. (B.2), is invariant under an arbitrary shift of

the total energy by a constant, the Lorentz functional, Eq. (B.13), is not. This is because the

arclength parameter is invariant under the Galilean transformation, Eq. (B.3a), but it is not

invariant under the Lorentz transformation, Eq. (B.14a). Nevertheless, the energy, Eq. (B.13)

preserves the Lorentz symmetry for a unique selection of the constant shift. The additional con-

stant −Y in Eq. (B.13) and the additional constant P in Eq. (B.18), are two examples for such

a unique selection. These constants affect the boundary conditions after the transformation.

They correspond to an additional bending moments on the filament edges. It is yet interesting

to note that unlike the constant , P , the constant −Y is automatically obtained in the second

101



APPENDIX B. ELASTIC-DYNAMIC ANALOGY 102

path of minimization.

Third, when the filament is confined by pure bending moments we find that the Galilean

system, Eq. (B.7), preserves its canonical symmetry, while the Lorentz energy, Eq. (B.18),

preserves the symmetry only if an additional constant term, P , is added (see discussion in the

second comment). Confinement by pure bending moments is equivalent in the kinetic analogy

to a constant shift of the particle’s velocity. While a velocity addition in the Galilean framework

is linear2, Eq. (B.8), the Lorentz counterpart, Eq. (B.19), is non-linear.

Fourth, in this Appendix we have only considered free filaments since, in general, the inclu-

sion of a potential term in the elastic energy, V 6= 0 in Eq. (3.1), breaks the symmetries down.

Nevertheless, it is still intriguing to note that the equilibrium equations in both cases have the

same mathematical structure (also see Eq. (3.4) in the main text),

d

dŝ

(
γ
dφ

dŝ

)
− dV

dφ
= 0. (B.23)

Equation (B.23) is the minimizer of the Galilean energy, Eq. (3.1), if γ is given by Eq. (3.5)

and the boundary conditions of the problem are prescribed on the undeformed length, L. On

the other hand, Eq. (B.23) is the minimizer in the Lorentz case, Eq. (B.11), if γ is given by

Eq. (B.12) and the boundary conditions are prescribed on the ultimate deformed length, L̂.

Although the two formulas for γ, Eqs. (3.5) and (B.12), differ only by the constant prefactor,

γ0 =
√

1 + 2H/Y , they are significantly different. In the Galilean picture stretching effects take

place only when V 6= 0, by contrast, in the Lorentz case the stretching field, Eq. (B.12), may

differ from unity even in the absence of external fields.

2Since it is linear we can first apply a straightening bending moment, M = Bκ, on the naturally curved

filament and once it is straight, add the moment, M = Bκ̄ [21, p. 112].
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B.2 Analogy between extensible 3D Kirchhoff’s rod

and relativistic rotor

In this appendix we derive the equations of equilibrium for a 3D extensible elastic rod under the

assumptions of Kirchhoff’s model[52, 150]. It is shown that these equations are mathematically

analogous to the 3D Euler’s equations of rigid-body rotation, where the non-relativistic angular

momentum, L, is replaced by, γL, γ being the Lorentz factor. This analogy is derived while

keeping in mind the known difficulties in the latter, relativistic problem [170, 171].

Following the formulation in Ref. [38], we consider a space curve described by the position

vector, f(s), where s is the arclength parameter of the relaxed configuration. Defining ŝ as the

arclength parameter of the deformed configuration, the unit tangent vector to f(s) is given by,

d3 = df/dŝ. In addition, let {d1,d2} be a pair of unit vectors perpendicular to d3 and parallel

to the principal axes of the filament’s cross-section. The triad {d1,d2,d3} form a co-moving

coordinate frame attached to the rod’s mid-axis. These vectors satisfy the relations,

ddi
ds

= γκκκ× di, (B.24)

where i = 1, 2, 3, γ = dŝ/ds is the strain field, and κκκ = κ1d1 + κ2d2 + κ3d3 is the curvature

vector. The local bending moment is given by,

M(s) = B1(γκ1)d1 +B2(γκ2)d2 +B3(γκ3)d3, (B.25)

where Bi are bending rigidities.

In correspondence with Eq. (3.1) of the main text, the energy functional of a 3D elastic

filament, confined by a boundary constant force P, is given by E =
∫ L

0 e[κκκ(s), γ(s)]ds, where

e[κκκ(s), γ(s)] =
1

2
M · (γκκκ) +

Y

2
(γ − 1)2 + γd3 ·P. (B.26)

The appearance of the γκκκ term in the bending energy is a consequence of the requirement to

keep bending and stretching contributions independent. Minimizing Eq. (B.26) with respect to

γ and κi (see Appendix B.3) gives [38],

dM

dŝ
− d3 ×P = 0, (B.27a)

Y (γ − 1) + d3 ·P = 0. (B.27b)

In the inextensible limit Eq. (B.27b) is redundant and Eqs. (B.27a) become analogous to

the non-relativistic Euler equations of a 3D rigid body, fixed at one point and rotating under
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the influence of an external force (such as gravity) [172, p. 200]. In this analogy, the bending

moment takes the role of angular momentum, M↔ L, and the boundary force is analogous to

an external torque, d3 ×P ↔ N. Turning on extensibility effects, we have by Eq. (B.25) that

M → γM. Thus, it is left to show that γ coincides with the Lorentz factor. First integration

of Eqs. (B.27a) and (B.27b) gives,

H =
1

2
M · (γκκκ)− Y

2
(γ − 1)2 − γd3 ·P = const. (B.28)

Eliminating d3 ·P from Eq. (B.28) and substituting in Eq. (B.27b) gives,

γ =

√
1 + 2H/Y√

1 + B1
Y κ

2
1 + B2

Y κ
2
2 + B3

Y κ
2
3

. (B.29)

This expression extend Eq. (3.5) of the main text to 3D. It indeed resembles the Lorentz factor

up to the constant prefactor, γ0 ≡
√

1 + 2H/Y , which appears also in the 2D problem, and

which can be absorbed in the force P, (see discussion in the main text).
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B.3 Minimization of Eq. (B.26)

In this appendix we minimize Eq. (B.26) with respect to spatial configurations of the elastic

filament and show that the equilibrium equations are equivalent to the one considered in (B.27).

Following our formulation in Appendix B.2, a general variation over the spatial configuration,

f(s), is given by,

f̃(s) = f(s) + δf(s) = f(s) + ψ1(s)d1 + ψ2(s)d2 + ψ3(s)d3, (B.30)

where {d1,d2,d3} is the co-moving coordinate frame and {ψ1, ψ2, ψ3} are arbitrary perturbation

functions. In this appendix we will denote by a tilde, x̃, all the components that are calculated

in the perturbed configuration, f̃(s). Equivalently, up to a shift of the origin, we can represent

the variation of the configuration by its derivative, df̃/ds = df/ds+dδf/ds. Then, the variation

of the energy is written as,

δE =

∫
(E1d1 + E2d2 + E3d3) · dδf

ds
ds, (B.31)

where Ei = 0 are the equilibrium equations. In a similar way to our derivations in the case

of a planar filament (see Appendix C.1 Eq. (C.8)), it can be shown that the derivative of the

perturbation vector is given by,

dδf

ds
= γδφ1d1 + γδφ2d2 + δγd3, (B.32)

where φ1 and φ2 are two out-of-plane angles.

In our case, the variation of the elastic energy in Kirchhoff’s model, Eq. (B.26), reads,

δe = M · (κκκδγ + γδκκκ) + Y (γ − 1)δγ + δγd3 ·P + γδd3 ·P. (B.33)

where δκκκ is the variation of the curvature vector3 and δd3 = d̃3 − d3 is the variation of the

tangent vector. Thus, in order to find the equilibrium equations, Ei in Eq. (B.31), we need to

express δκκκ and δd3 in terms of {γδφ1, γδφ2, δγ} (see Eq. (B.32)).

The variation of the tangent vector, d3, can straightforwardly be calculated by,

d̃3 =
df̃/ds

|df̃/ds|
= d3 + δφ1d1 + δφ2d2. (B.34)

3The components of this vector are δκκκ = (κ̃1 − κ1, κ̃2 − κ2, κ̃3 − κ3), where κ̃i are the components of the

curvature vector in the perturbed configuration, f̃(s).
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In addition to Eq. (B.34), the triad {d̃1, d̃2, d̃3} form an orthonormal set if d̃1 and d̃2 are given

by4,

d̃1 = d1 + ξ(s)d2 − δφ1d3, (B.35a)

d̃2 = d2 − ξ(s)d1 − δφ2d3, (B.35b)

where ξ(s) is related to the perturbation functions in a way that is yet to be determined.

Differentiating Eq. (B.34) with respect to s and using Eqs. (B.24) and (B.35), it can be

shown that κ̃1 and κ̃2 are given by,

κ̃1 = κ1 −
κ1

γ
δγ − 1

γ

dδφ2

ds
− κ3δφ1 + ξ(s)κ2, (B.36)

κ̃2 = κ2 −
κ2

γ
δγ +

1

γ

dδφ1

ds
− κ3δφ2 − ξ(s)κ1. (B.37)

Similarly, differentiating Eq. (B.35a) with respect to s, dotting the resulting equations with d̃2,

and using Eqs. (B.34) and (B.35b) gives,

κ̃3 = κ3 −
κ3

γ
δγ +

1

γ

dξ

ds
+ κ1δφ1 + κ2δφ2. (B.38)

Lastly, in Kirchhoff’s model the ratio between the two lateral curvatures, κ1 and κ2, is a constant

of variation [22]. Thus, κ1/κ2 = κ̃1/κ̃2 form an equation for the function ξ(s). Its solution reads,

ξ(s) =
1

κ2
1 + κ2

2

(
κ1

γ

dδφ1

ds
+
κ2

γ

dδφ2

ds
+ κ2κ3δφ1 − κ1κ3δφ2

)
. (B.39)

Substituting Eqs. (B.34), (B.36), (B.38) and (B.39) in the variation of the energy, Eq. (B.33),

we can obtain the minimizing equations, Ei. Collecting terms that are proportional to δγ

immediately yields Eq. (B.27b). Similarly, collecting terms that are proportional to δφ1 and

δφ2 yield, after integration by parts, the two other equations,

0 = B2
d(γκ2)

ds
+ (B1 −B3)γ2κ1κ3 − γd1 ·P + Γ

κ2κ3

κ2
1 + κ2

2

− d

ds

(
Γ

κ1

γ(κ2
1 + κ2

2)

)
, (B.40a)

0 = B1
d(γκ1)

ds
+ (B3 −B2)γ2κ2κ3 + γd2 ·P + Γ

κ1κ3

κ2
1 + κ2

2

+
d

ds

(
Γ

κ2

γ(κ2
1 + κ2

2)

)
, (B.40b)

where we have defined,

Γ ≡ B3
d(γκ3)

ds
+ (B2 −B1)γ2κ1κ2. (B.41)

Equations (B.40) and (B.41) recover the three equations for balance of bending moments,

Eqs. (B.27a), once we set Γ = 0.

4We require that to leading order in the perturbation functions d̃i · d̃j = δij where δij is the Kronecker delta.

106



Appendix C

Strain tensor selection - Appendices

C.1 Consistent energy minimization for a uniaxially deformed

sheet

In this Appendix we show that minimization of E1D with respect to εss and φ yields equations

of equilibrium which are identical to the ones obtained by the appropriate minimization with

respect to the spatial configuration, f(s).

We first define the perturbed configuration, f̃(s), by

f̃(s) = f(s) + δf(s) = f(s) + ψt(s)̂t + ψn(s)n̂, (C.1)

where {t̂(s), n̂(s)} are the unit vectors tangent and normal to the sheet along the deformation

axis, and ψt and ψn are arbitrary perturbation functions. Equivalently (up to a shift of the

origin), we can represent the configuration by df/ds, i.e., df̃/ds = df/ds + dδf/ds. Then, the

variation of the energy is written as

δE1D =

∫
(Ett̂ + Enn̂) · dδf

ds
ds, (C.2)

where Et and En are some functions of εss and φ yet to be determined. We wish to relate the

variation dδf/ds with the variations δεss and δφ.

The vectors {t̂(s), n̂(s)} satisfy the Frenet-Serret formulas [20],

dt̂

ds
= (1 + εss)κn̂ =

dφ

ds
n̂, (C.3a)

dn̂

ds
= −(1 + εss)κt̂ = −dφ

ds
t̂, (C.3b)
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where κ = dφ/dŝ is the curvature and ŝ is the arclength of the deformed configuration, dŝ/ds =

1 + εss. With the help of Eqs. (C.3), differentiating δf of Eq. (C.1) with respect to s gives

dδf

ds
=

(
dψt
ds
− dφ

ds
ψn

)
t̂ +

(
dψn
ds

+
dφ

ds
ψt

)
n̂. (C.4)

Next, we examine the in-plane variation δεss to leading order in the perturbation functions,

δεss =

∣∣∣∣∣df̃ds
∣∣∣∣∣−
∣∣∣∣dfds
∣∣∣∣ ' dψt

ds
− dφ

ds
ψn, (C.5)

To do the same for the δφ we start by writing cosφ = t̂ · x̂, where x̂ is a constant unit vector

along the horizontal direction. Upon variation we have, − sinφδφ = δt̂ · x̂. In turn, the variation

of the tangent vector is given by,

δt̂ =
df̃/ds

|df̃/ds|
− df/ds

|df/ds|
' 1

1 + εss

(
dψn
ds

+
dφ

ds
ψt

)
n̂, (C.6)

and, since n̂ · x̂ = − sinφ, we get

(1 + εss)δφ =
dψn
ds

+
dφ

ds
ψt. (C.7)

Collecting the results for δεss and δφ (Eqs. (C.5) and (C.7)) and substituting in Eq. (C.4), we

obtain the desired relation,
dδf

ds
= δεsst̂ + (1 + εss)δφn̂. (C.8)

This proves that the variation with respect to the spatial configuration is equivalent to the

variation with respect to δεss and δφ.

We can proceed to rewrite the variation of the energy, Eq. (C.2), as

δE1D =

∫
[Etδεss + (1 + εss)Enδφ] ds. (C.9)

The straightforward way to get the equations of equilibrium is to set this functional to zero for

arbitrary δεss and δφ, i.e., Et = 0 and En = 0. This is what has been done in Sec. 4.3, where

Et = Y εss = σss = 0, (C.10a)

En = − B

1 + εss

d2φ

ds2
= −dMss

dŝ
= 0. (C.10b)

(See Eqs. (4.24) and (4.25).)

Alternatively, we can rewrite the energy variation, Eq. (C.2), in terms of δf rather than

dδf/ds, using intergration by parts. This yields the equations of equilibrium in the different

form,

dEt
ds
− dφ

ds
En = 0, (C.11a)

dEn
ds

+
dφ

ds
Et = 0. (C.11b)
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Subtituting Eqs. (C.10), this gives

dσss
dŝ
− κσsn = 0, (C.12a)

dσsn
dŝ

+ κσss = 0, (C.12b)

where σsn = −dMss/dŝ is the normal force at a cross section [22, p. 387].

The difference between the two equivalent sets of equilibrium equations is explained in

Fig. C.1. While Eqs. (C.10) represent balance of forces and moments across a finite segment of

the sheet, Eqs. (C.12) represent the balance for an infinitesimal segment.

Figure C.1: (a) Schematic force balance on a finite sheet segment. A bending moment, Mo,

applied at the boundary, is balanced by the reaction forces, σss and σsn, and the reaction

bending moment, Mss. Under these conditions σss = σsn = 0 and Mss = Mo, consistently with

Eqs. (C.10). (b) Schematic force balance on an infinitesimal sheet segment of length dŝ. Balance

of forces in the tangential direction, t̂(ŝ), is given by, −σss(ŝ) + σss(ŝ + dŝ)̂t(ŝ + dŝ) · t̂(ŝ) +

σsn(ŝ + dŝ)n̂(ŝ + dŝ) · t̂(ŝ) = 0. Expanding this equation to leading order in the differential

dŝ (using Eqs. (C.3)) we obtain dσss/dŝ − κσsn = 0. Similarly, force balance in the normal

direction and balance of bending moments gives: dσsn/dŝ + κσss = 0 and dMss/dŝ + σns = 0,

consistently with Eqs. (C.12).

C.2 Boundary layer in a sheet with elliptic reference metric

In this Appendix we show that the energy of the isometric spherical cap, Eq. (4.58), is reduced

when a boundary layer is formed (i) near the outer radius of a complete disc, and (ii) near the

outer and inner radii of an annulus. The existence of these boundary layers and the scaling of

their width with the thickness t were found in Ref. [78]. Here we derive these results based on

a variational Ansatz within the FvK approximation, thus obtaining full expressions including

prefactors.
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Considering the elliptic reference metric, Eq. (4.40), and employing the small-slope approx-

imation, we obtain for the in-plane strains, Eqs. (4.11),

εrr ' ∂rur +
1

2
(∂rζ)2, (C.13a)

εθθ '
Kr2

6
+
ur
r
. (C.13b)

For the isometric immersion these strains vanish, yielding the height function ζiso '
√
Kr2/2.

The total energy of the spherical cap is obtained by substituting this function in Eq. (4.21),

giving,

Eiso = π(1 + ν)(KR2)B. (C.14)

Let us try to reduce the total energy below Eiso through the following variational Ansatz:

ζ(r) = ζiso + ζbl =

√
Kr2

2
− (1 + ν)

α(α+ ν − 1)

√
KR2

( r
R

)α
, (C.15)

where α serves as a variational parameter. The coefficient of the second term in Eq. (C.15) has

been chosen so as to satisfy the boundary condition of zero radial bending moment at the outer

radius, Mrr|r=R ' B
[
∂rrζ + ν

r ∂rζ
]
r=R

= 0. When α � 1 the additional term is negligible

everywhere except close to the edge, as expected from a boundary layer. As shown below, the

minimizing configuration has α ∼ t−1/2.

Since our Ansatz, Eq. (C.15), is not an isometry, it contains in-plane stress. To calculate

this stress we first minimize the stretching energy, Eq. (4.16), with respect to ur. In the FvK

approximation the resulting equation reads,

∂r(rσrr)− σθθ = 0. (C.16)

Substituting, Eq. (C.15) in the strains, Eqs. (C.13), and then in the stress-strain relations,

Eqs. (4.17), we obtain from Eq. (C.16),

r∂r(r∂rur)−ur = −4

3
Kr3+(1+ν)

α− ν + 1

α+ ν − 1
KR3

( r
R

)α+1
+

1

2
(1+ν)2 ν − 2α+ 1

(α+ ν − 1)2
KR3

( r
R

)2α−1
.

(C.17)

Two boundary conditions are necessary: one is a vanishing stress at the free edge, σrr|r=R = 0,

and the other is a vanishing displacement at the origin, ur|r=0 = 0. The solution of Eq. (C.17)

subject to these conditions is,

ur(r) = A0r−
K

6
r3+

(1 + ν)(α− ν + 1)

α(α+ 2)(α+ ν − 1)
KR3

( r
R

)α+1
+

1

8

(1 + ν)2(ν − 2α+ 1)

α(α− 1)(α+ ν − 1)2
KR3

( r
R

)2α−1
,

(C.18)

where A0 is determined by the first boundary condition.
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Substituting ur and ζ from Eqs. (C.15) and (C.18), in Eqs. (4.16) and (4.21), and expanding

to leading order in 1/α, gives,

E ' π

2
Y R2(KR2)2(1− ν)(1 + ν)3α−5 + π(1 + ν)(KR2)B − 3π

2
(1 + ν)2(KR2)Bα−1, (C.19)

where the first term comes from stretching and the last two are bending contributions. Mini-

mization of Eq. (C.19) with respect to α yields,

α = (5/3)1/4(1− ν2)1/4(KR2)1/4(Y R2/B)1/4 = (20)1/4(1− ν2)1/4(KR2)1/4(t/R)−1/2. (C.20)

Substituting this result in Eq. (C.19) we finally obtain,

E ' Eiso −
6π

5

(
3

5

)1/4 (1 + ν)2

(1− ν2)1/4
(KR2)3/4

(
B

Y R2

)1/4

B, (C.21)

where Eiso is given by Eq. (C.14). Thus, the energy of the isometric immersion is reduced by the

introduction of a boundary layer. The reduction scales as t7/2 whereas Eiso ∼ t3. In the limit

of small thickness we can write ζbl(r) ' − (1+ν)
√
KR2

α2 e−(R−r)/w with the width of the boundary

layer being,

w = R/α = (20)−1/4(1− ν2)−1/4(KR2)−1/4(t/R)1/2R. (C.22)

This derivation can straightforwardly be extended to the more general case of an annulus

with inner radius Ri and outer radius Ro. In this case the energy of the isometric immersion,

ζiso, is given by,

Eiso = π(1 + ν)K(R2
o −R2

i )B. (C.23)

This energy can be reduced below Eiso if two boundary layers are formed near the outer and

inner radii, as indicated by the following Ansatz,

ζ(r) = ζiso + ζbl =

√
Kr2

2
+Ao

(
r

Ro

)α
+Bo

(
Ri
r

)α
. (C.24)

As in the case of a disc, Ao and Bo are chosen such that the radial bending moment is zero at

the two boundaries, Mrr|r=Ri,Ro = 0. This gives,

Ao = −
√
KR2

o

1 + ν

α(α+ ν − 1)

1− ρα+2

1− ρ2α
, (C.25a)

Bo = −
√
KR2

i

1 + ν

α(α− ν + 1)

1− ρα−2

1− ρ2α
, (C.25b)

where ρ ≡ Ri/Ro.

Following the same route as in Eqs. (C.16)-(C.18), we find after expansion in powers of α−1

and assuming ρα → 0 that the total energy of the annulus is given by,

E ' π

2
Y R2

o(KR
2
o)

2
(
1 + ρ6

)
(1− ν)(1 + ν)3α−5 + π(1 + ν)K(R2

o −R2
i )B

− 3π

2
(1 + ν)2(KR2

o)
(
1 + ρ2

)
Bα−1. (C.26)
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Minimization of this energy with respect to α gives,

α = (5/3)1/4(1− ν2)1/4

(
1 + ρ6

1 + ρ2

)1/4

(KR2
o)

1/4

(
Y R2

o

B

)1/4

= (20)1/4(1− ν2)1/4

(
1 + ρ6

1 + ρ2

)1/4

(KR2
o)

1/4

(
t

Ro

)−1/2

. (C.27)

Note that in the limit of ρ → 0 this result coincides with Eq. (C.20). Substituting Eq. (C.27)

back in the energy, Eq. (C.26), we obtain,

E ' Eiso −
6π

5

(
3

5

)1/4 (1 + ν)2

(1− ν2)1/4
(KR2

o)
3/4

(
1 + ρ2

)5/4
(1 + ρ6)1/4

(
B

Y R2
o

)1/4

B, (C.28)

where Eiso is given by Eq. (C.23). Thus, the introduction of two boundary layers, at the inner

and outer radii of the annulus, reduce the energy of an isometric immersion.

C.3 Stability criterion for isometric immersions with negative

Gaussian curvature

In this appendix we extend the theory presented in Sec. 4.2 to surfaces of revolution, [see

Eq. (4.4)], whose reference metric is given by,

ḡαβ =

(
ḡ2
r 0

0 ḡ2
θ

)
, ds2 = ḡ2

r (r)dr
2 + ḡ2

θ(r)dθ
2. (C.29)

Our aim is to derive a self-consistent stability criterion, similar to Eqs. (4.56), for isometric

immersions with constant negative Gaussian curvature [81].

Following Sec. 4.2 it is straightforward to show that the energy functional, Eq. (4.15), is

modified into,

E =
Y

2

∫ R

0

∫ 2π

0

[
ε2rr + ε2θθ + 2νεrrεθθ

]
ḡrḡθdθdr +

B

2

∫ R

0

∫ 2π

0

[
φ2
rr + φ2

θθ + 2νφrrφθθ
]
ḡrḡθdθdr,

(C.30)

where the in-plane strains are given by,

εrr =
√
arr/ḡr − 1 =

√
(1 + ∂rur)2 + (∂rζ)2/ḡr − 1, (C.31a)

εθθ =
√
aθθ/ḡθ − 1 = (r + ur)/ḡθ − 1, (C.31b)

and the “bending-strains”, are given by,

φrr =
√
crr/ḡr =

1

ḡr

(1 + ∂rur)∂rrζ − ∂rrur∂rζ
(1 + ∂rur)2 + (∂rζ)2

= ∂rφ
r/ḡr, (C.32a)

φθθ =
√
cθθ/ḡθ =

1

ḡθ

∂rζ√
(1 + ∂rur)2 + (∂rζ)2

= sinφr/ḡθ. (C.32b)
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Setting Eqs. (C.31) to zero, we obtain the displacement corresponding to the isometric

immersion of Eq. (C.29),

ur = ḡθ − r, (C.33a)

∂rζ =
√
ḡ2
r − (∂rḡθ)2. (C.33b)

Following the analysis in Sec. 4.5, we minimize the bending energy,

Eb =
1

2

∫ R

0

∫ 2π

0
[Mrr∂rφ

r/ḡr +Mθθ sinφr/ḡθ] ḡrḡθdθdr,

with respect to φr to obtain the balance of bending moments. This gives,

∂r(ḡθMrr)− ḡr cosφrMθθ = 0. (C.34)

where Mαβ are given by Eqs. (4.19) and φαβ are given by Eqs. (C.32).

Substituting the displacements of Eqs. (C.33) in the “bending strains”, Eqs. (C.32), we

obtain,

φrr =
(
∂rḡθ∂r

√
ḡ2
r − (∂rḡθ)2 − ∂rrḡθ

√
ḡ2
r − (∂rḡθ)2

)
/ḡ3
r , (C.35a)

φθθ =
√
ḡ2
r − (∂rḡθ)2/(ḡrḡθ). (C.35b)

In addition, using Eq. (C.32b), we have that,

cosφr = ∂rḡθ/ḡr. (C.36)

Substituting Eqs. (C.35) in (4.19) and then, along with Eq. (C.36), in (C.34) we finally obtain

the self-consistency condition,

∂r

(
ḡθ

(
∂rḡθ∂r

√
ḡ2
r − (∂rḡθ)2 − ∂rrḡθ

√
ḡ2
r − (∂rḡθ)2

)
/ḡ3
r

)
− ∂rḡθ

√
ḡ2
r − (∂rḡθ)2/(ḡrḡθ) = 0.

(C.37)

It is now straightforward to verify that a pseudosphere, ḡr = tanh r and ḡθ = 1/ cosh r,

and hyperboloid of revolution, ḡr = b sn(r, b) and ḡθ = dn(r, b) (sn and dn denoting the Jacobi

elliptic functions [124]), both do not satisfy Eq. (C.37). Thus, both are mechanically unstable.

As in the case of the cone, we note that these conclusions do not rule out the possibility that

the objects approach these shapes in the limit t→ 0.
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C.4 Comparison between thin sheet theories based on model-

independent force-balance equations

As has been demonstrated in the main text by several examples, the ESK model and the present

one produce different equations of equilibrium and different equilibrium configurations. Yet,

obviously, both models describe balance of forces and torques. Therefore, using an appropriate

representation, both should result in identical (albeit not equivalent) equations of equilibrium.

Thus the lack of equivalence would be confined to the relations between stress and deformation

(the constitutive relations), and we would get an instructive comparison of the stress and torque

under similar loading conditions in the two models. Such a representation is the goal of this

Supplemental Material.

While the present model is based on the Biot strain measure, Eq. (4.10), the ESK theory [68]

is based on the second Piola-Kirchhoff strain, Eq. (4.1). As a result, our equilibrium equations,

Eqs. (4.32) and (4.53a), manifestly differ from the ones obtained in Ref. [68], Eq. (3.10) in that

paper.

To derive the conditions of force and torque balance we first define the co-moving coordinate

system {t̂r, t̂θ, n̂}, where t̂α = ∂αf/|∂αf | are two in-plane unit vectors and n̂ is the unit normal,

given the spatial configuration f(r, θ). Second, we cut an infinitesimal patch of the surface,

whose borders lie along lines of constant coordinates [15, p. 24], and balance the force and

torque vectors applied on its edges. This gives [15, p. 29],

0 = ∂r(ΦFr) + ∂θFθ, (C.38a)

0 = ∂r(ΦMr) + ∂θMθ − Φ∂rf × Fr − ∂θf × Fθ, (C.38b)

where Fα and Mα are the forces and bending moments per undeformed unit length along the

directions α = r, θ. Lastly, we resolve the components of these vectors projected on our triad

basis,

Fα = σαr t̂r + σαθ t̂θ + σα3n̂, (C.39a)

Mα = n̂× (Mαr t̂r +Mαθ t̂θ). (C.39b)

Note the delicate point, crucial for the sake of this section, that the tensors σαβ and Mαβ

here correspond to the actual forces and torques, i.e., the fluxes of linear and angular momenta.

As such, they do not depend on the choice of model; unlike Eqs. (4.17) and (4.19) in the main
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text, we do not relate them at this moment to a certain definition of strain. In other words,

they are not necessarily equal to the variation of the energy of the chosen model with respect

to the strain and curvature of that model. Similarly, the configuration is represented in these

equations through the model-independent spatial triad {t̂r, t̂θ, n̂}.

For axisymmetric deformations, Eq. (4.4), we always have σrθ = Mrθ = 0, and Eqs. (C.38)

and (C.39) form a system of five differential equations for the eight unknowns, {σαα, σα3,Mαα, ur, ζ},

where the configuration is now represented by the displacements ur and ζ, obtainable from

{t̂r, t̂θ, n̂}. Thus, to have a closure we must derive constitutive relations between the stress and

torque components and the actual deformation.

The definition of mechanical energy, as well, does not depend on the choice of model. It

is the sum of two terms: (i) The work done by in-plane forces to displace the sheet from its

rest state to the given configuration (not displacement squared), and (ii) the work done by

bending moments to change the out-of-plane angles from their rest values. For clarity of the

expressions that follow, it is helpful to represent the displacements equivalently by in-plane

stretching fields, γαα ≡
√
aαα/ḡαα, and out-of-plane bending fields, ḡααφαα ≡ bαα/γαα (where

α = r, θ, and the mixed terms vanish by axisymmetry). The variation of the energy is given

then by the infinitesimal work,

δE =

∫ R

0

∫ 2π

0
(σαβδγαβ +Mαβδφαβ) Φdrdθ. (C.40)

We note that Eq. (C.40) is the 2D extension of the so-called principle of virtual work [29, 34]. In

addition, similar to our proof in Appendix A it can be shown that δγαβ and δφαβ are consistent

with minimization of the energy with respect to the configuration. These infinitesimals are

proportional to the 1D variations, δεss and δφ, considered in Sec. 4.3.

If we now consider the energy functional of each model, express it in terms of the actual

deformation fields γαα and φαα, and take the variation with respect to these fields, we will get

the constitutive relations for the actual stresses and bending moments, as arising from each

model.

The energy functional of the present model (Eq. (4.15)) is rewritten in terms of the defor-

mation fields as

E2D =
Y

2

∫ R

0

∫ 2π

0

[
(γrr − 1)2 + (γθθ − 1)2 + 2ν(γrr − 1)(γθθ − 1)

]
Φdθdr

+
B

2

∫ R

0

∫ 2π

0

[
φ2
rr + φ2

θθ + 2νφrrφθθ
]

Φdθdr. (C.41)
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Variations with respect to γαα and φαα give

σrr = Y [(γrr − 1) + ν(γθθ − 1)] , (C.42a)

σθθ = Y [(γθθ − 1) + ν(γrr − 1)] , (C.42b)

Mrr = B (φrr + νφθθ) , (C.42c)

Mθθ = B (φθθ + νφrr) . (C.42d)

The energy functional of the ESK model is obtained by specializing Eq. (4.2) to the axisym-

metric case and re-expressing it in terms of the deformation fields, yielding

ESK: E2D =
Y

8

∫ R

0

∫ 2π

0

[
(γ2
rr − 1)2 + (γ2

θθ − 1)2 + 2ν(γ2
rr − 1)(γ2

θθ − 1)
]

Φdθdr

+
B

2

∫ R

0

∫ 2π

0

[
(γrrφrr)

2 + (γθθφθθ)
2 + 2ν(γrrφrr)(γθθφθθ)

]
Φdθdr.

(C.43)

Variations of this energy with respect to γαα and φαα give

ESK: σrr =
Y

2
γrr
[
(γ2
rr − 1) + ν(γ2

θθ − 1)
]

+Bφrr (γrrφrr + νγθθφθθ) , (C.44a)

σθθ =
Y

2
γθθ
[
(γ2
θθ − 1) + ν(γ2

rr − 1)
]

+Bφθθ (γθθφθθ + νγrrφrr) , (C.44b)

Mrr = Bγrr (γrrφrr + νγθθφθθ) , (C.44c)

Mθθ = Bγθθ (γθθφθθ + νγrrφrr) . (C.44d)

The comparison between the constitutive relations in Eqs. (C.42) and Eqs. (C.44) underlines

once again the difference between the two models. While the former relations are linear, the

latter are nonlinear; while in the former σαα depend only on γαα and Mαα depend only on φαα,

in the latter there are mixed terms.

A natural question then is how the actual stresses given by these relations correspond to

the ones obtained by variation of the energy with respect to the strain as it is defined in each

model. In the present model they are identical; compare Eqs. (C.42) to Eqs. (4.17) and (4.19).

This is because the relation between γαα and the strain εαα used in this model is linear; hence,

δεαα = δγαα. The stress and moments tensors, sαα and mαα, which were defined in Ref. [68]

differ from the actual ones, Eqs. (C.44). The stress, sαα, is based on variation of the energy with

respect to the strain ε̃αα and the bending moment, mαα, is based on variation of the energy with

respect to the second fundamental form bαα. The two sets of stresses and bending moments,
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{σαα,Mαα} from Eqs. (C.44) and {sαα,mαα} are inter-related according to

ESK: σrr = γrrs
rr + φrrm

rr, (C.45a)

σθθ = Φ2(γθθs
θθ + φθθm

θθ), (C.45b)

Mrr = γrrm
rr, (C.45c)

Mθθ = Φ2γθθm
θθ. (C.45d)

In summary, the equations of equilibrium (C.38b) and (C.39b) are model-independent and,

in particular, common to the two models compared here. They become different only once

the different constitutive relations, either (C.42) or (C.44), are substituted in them. Upon this

substitution, one obtains the equations of equilibrium, predicted by the respective model from

minimization of its respective energy over spatial configurations f . We now demonstrate it in

two examples.

C.4.1 Flat deformations

In the case of flat deformations, ζ = 0, we have from both models , Mαα = 0. Substituting this

result in the torque balance equation (C.38b), we get also that the normal stresses vanishing,

σα3 = 0. In addition, for the case of planar axisymmetric deformations Eq. (C.38a) is automat-

ically satisfied in the tangential and normal directions. Thus, the only non-vanishing equation

is the balance of forces in the radial direction, which reads,

∂r(Φσrr)− σθθ = 0. (C.46)

This recovers Eq. (4.31) of the main text. Since we have not yet used a constitutive relation,

this equation holds also in the ESK model.

Substituting in Eq. (C.46) the constitutive relations of the present model, Eqs. (C.42a) and

(C.42b), we recover the linear equilibrium equation of the main text, Eq. (4.32). Repeating the

same using the ESK constitutive relations (C.44a) and (C.44b), we obtain

∂r (Φγrrs
rr)− Φ2γθθs

θθ = 0, (C.47)

where the ESK stresses of Eq. (C.45) have been used. Finally, introducing the Christoffel

symbols, Γrrr = ∂rγrr/γrr and Γrθθ = −Φγθθ/γrr, we recover Eq. (7) of Ref. [78],

1

Φ
∂r(Φs

rr) + Γrrrs
rr + Γrθθs

θθ = 0. (C.48)
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This equation exhibits the covariant form of the ESK theory. At the same time it has the

disadvantage of being nonlinear in the displacement, ur, compared to the present model’s linear

Eq. (4.32).

C.4.2 Normal force balance in an isometric immersion

As a second example we return to the issue addressed in Sec. 4.5, i.e., the balance of normal forces

in the spherical-cap isometry of a sheet with elliptic reference metric. Once again, we apply the

different sets of constitutive relations of the two models to the model-independent equations of

equilibrium, and compare the results. In the ESK case this procedure recovers, here based on

force balance, the first of Eqs. (3.10) in Ref. [68]. In the present model it leads to a different

equation of equilibrium. The two equations disagree concerning the balance of normal forces

in an isometric spherical cap, as presented in Sec. 4.5. The spherical cap satisfies the present

equation and does not satisfy the ESK one. As will be shown below, this disagreement arises

from the additional coupling terms between stretching and bending appearing in Eqs. (C.44a)

and (C.44b).

To derive the equation of normal force balance we first project Eq. (C.38a) onto the normal

direction, and Eq. (C.38b) onto the tangential direction,

0 =
1

Φ
∂r(Φσr3) + σrrφrr + σθθφθθ, (C.49a)

γrrΦσr3 = −∂r(ΦMrr) +Mθθ cosφr. (C.49b)

(The geometrical meaning of cosφr is explained in Fig. 4.1 of the main text.) Eliminating σr3

gives,

0 =
1

Φ
∂r

[
1

γrr
(∂r(ΦMrr)−Mθθ cosφr)

]
− σrrφrr − σθθφθθ. (C.50)

Equation (C.50) expresses normal force balance regardless of model.

Now, we substitute in Eq. (C.50) the constitutive relations of the present model, Eqs. (C.42).

For isometric immersion γrr = γθθ = 1, we have from Eqs. (C.42a) and (C.42b) that σαα = 0. As

a result, Eq. (C.50) can be integrated, thus recovering, for free boundary conditions, Eq. (4.53a)

of the main text. As discussed in Sec. 4.5, this equation of normal force balance is satisfied by

the spherical cap isometry, Eq. (4.58).
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Now we substitute in Eq. (C.50) the ESK constitutive relations Eqs. (C.44). This gives

0 =
1

Φ
∂r

[
Φ

(
1

Φ
∂r(Φm

rr) + Γrrrm
rr + Γrθθm

θθ

)]
− srrbrr − sθθbθθ −mrrcrr −mθθcθθ, (C.51)

where cαα = ḡααφ
2
αα, and the Christoffel symbols have been used again, Γrrr = ∂rγrr/γrr,

Γrθθ = −(Φγθθ/γrr) cosφr.

For the isometry, γαα = 1, we have from Eqs. (C.45) that Mrr = mrr and Mθθ = Φ2mθθ.

As a result, the first terms in Eqs. (C.51) and (C.50) become equal, and the terms sααbαα and

σααφαα in the two equations vanish. However, the last terms in Eq. (C.51), mααcαα, do not

have a counterpart in the general equation of normal force balance (C.50). They originate in the

bending contributions appearing in the ESK stresses of Eqs. (C.45) or (C.44), compared to those

of Eqs. (C.42). They do not vanish for an isometry, leaving σrr = φrrMrr and σθθ = φθθMθθ.

Upon substitution of the spherical cap, Eq. (4.58), in Eq. (C.51), the terms mααcαα remain

finite, and normal force balance is not satisfied.
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משקל מכאני. עבור מטריקת מטרה בעל עקמומיות גאוסיאנית חיובית, נמצא כי כיפה כדורית מקיימת את התנאי 

 י איזור צר של שכבת גבול בקצותיה.לשיווי משקל עד כד

שתוכל לתאר גופים ומלאה ות המובאות בעבודה זו מהוות צעד נוסף לעבר מציאת תיאוריה עיקבית לסיכום,  התוצא

 אלסטיים דקים העוברים מעוותים גדולים, רחוק מאד ממצב שיווי המשקל הרפוי שלהם.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

 תקציר

מוביל כיום תחום מחקר  יאדקות בפרט, ה אלסטיות ווך אלסטי בכלל, ועל יריעותתב תבניות ספונטאניותהיווצרות 

שהעובי  ממדי-תלת קרוסקופיאמ מוצק . יריעה אלסטית דקה היא חומררכיםהחומרים השל  ופעיל בתחום הפיזיקה

מדיו. בשל תכונה ייחודית זו יריעות דקות הן גמישות מאד וניתנות לכיפוף בקלות יחסית לשאר למ מאדשלו קטן 

יתרה. לכן ע"י הפעלת כוחות חיצוניים (לרב קטנים מאד), נוצרים מבנים מורפולוגיים עשירים על פני השטח של 

 שלושת הפרויקטים הבאים:בהתיאוריה של יריעות דקות להרחיב את  באה זו  היריעה. עבודה

כאשר יה.  דהפרויקט הראשון עוסק ביריעה דקה המונחת על גבי מצע נוזלי ונתונה לכוחות דחיסה ציריים משני צד

ניתן לאפיינו המשתרע על כל שטחה ושמחזורי -מקרבים במעט את שני קצותיה של היריעה, מופיע על פניה מבנה גלי

המבנה שעל  ,עבר השניאל  י קצותיה של היריעה האחד. כאשר ממשיכים לקרב את שנ𝜆𝜆ע"י אורך גל המוגדר היטב, 

עבודה קודמת  מבנה ממוקם בו כל הדפורמציה נמצאת במרכז היריעה.גלי ל-מחזוריהופך בהדרגה ממשתנה ו פניה

-בלתימצא שהמבנה הגלי נפתרון זה מה נלקח כאינסופי. שעסקה במערכת זו מצאה פתרון מדויק כאשר אורך היריע

תיאוריה הקיימת ליריעות בעלות את הו מרחיבים ה ככל שתהיה. בעבודה הנוכחית אנקטנ ,יציב לכל דחיסה צירית

התיאוריה , כדי שנוכל לנתח את המעבר שנצפה בניסויים בין המבנה הגלי למבנה הממוקם. בעזרת 𝐿𝐿אורך סופי, 

מוצאים פתרונות מדויקים למבנה הגלי עבור יריעות באורך סופי ופתרונות מקורבים למבנה הממוקם.  והמורחבת אנ

. הנקודה הקריטית בה שהוא מתנהג כמעבר פאזה מסדר שני ומוצאים בניםבנוסף אנו מנתחים את המעבר בין שני המ

Δ𝐹𝐹 -במוזזים ר שני צידי היריעה אשכמתרחש השינוי  היא  = 𝜆𝜆2/𝐿𝐿. 

לתנועה  בכיוון אחד בלבד) המכופפותמוטות אלסטיים דקים (או יריעות דקות  השני עוסק באנלוגיה שבין הפרויקט

של גופים קשיחים. האנלוגיה הקינטית של קירכהוף מקשרת בין מוטות אלסטיים דקים שאינם דחיסים לבין התנועה 

וטות דקים אך דחיסים ומראים שהתיקונים למ של קירכהוף של גופים קשיחים. בעבודה זו אנו מרחיבים את האנלוגיה

לתיקונים יחסותיים לתנועה של גופים קשיחים. בעזרת האנלוגיה המורחבת  שקוליםהאלסטיים הנובעים מתוספת זו 

אנו מוצאים סימטריה חדשה למוטות אלסטיים דחיסים ובנוסף, ע"י שימוש בפתרונות ידועים לגופים אלסטיים, אנו 

מטוטלת פיזיקלית יחסותית. לבסוף אנו דנים כיצד האנלוגיה המורחבת יכולה לעזור תנועה של מוצאים פתרון מדויק ל

 מערכות אחרות של גופים רכים. ימודלל

יריעות אלסטיות הנתונות למאמצים פנימיים גם ללא  –הפרויקט השלישי עוסק ביריעות אלסטיות דקות ומתוסכלות 

מעוותים המודד שינויים יריעות אלסטיות מתוסכלות מבוססת על טנזור הפעלת כוחות חיצוניים. התיאוריה הקיימת ל

בעיות פשוטות בעלות סימטריה סיבובית אנו בוחנים תאוריה של מטריקת המשטח לפני ואחרי הדפורמציה. עבור 

בריבוע). בעוד שתי  אורכים(במקום  אורכיםאלטרנטיבית המוגדרת ע"י טנזור מעוותים המבוסס על מדידת 

דחיסות, עבור מקרים אחרים אנו -בלתישל יריעות בגבול ומאד גבול של מעוותים קטנים ביות מתכנסות התיאור

התיאוריה החלופית מציגה מספר תכונות שאינן קיימות בתיאוריה  .נבדלות אחת מהשנייהמוצאים ששתי התיאוריות 

. (ב) התיאוריה פתירה במדויקבלת משוואת שיווי משקל ליניארית (א) עבור דפורמציות שטוחות מתק הנוכחית:

למוטות דחיסים כאשר היריעה מורשית להתעוות בכיוון אחד בלבד.  מקובלתה קההאלסטי תהחדשה מתלכדת עם תור

(ג) מתוך התיאוריה החדשה באופן ספציפי, ממודל זה מתקבל שמוט המכופף לרדיוס קבוע איננו משנה את אורכו. 

במרחב) נמצאת בשיווי איזומטרי ל קריטריון פשוט הקובע האם יריעה ללא מעוותים פנימיים (הניתנת לשיכון מתקב
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 הפקולטה למדעים מדויקים 

 ע"ש ריימונד ובברלי סאקלר

 בית הספר לפיזיקה ואסטרונומיה

 

 חיבור לשם קבלת התואר "דוקטור לפילוסופיה"

 

 היווצרות תבניות ביריעות אלסטיות דקות

 

 הוגש לסנאט של אוניברסיטת תל אביב על ידי

 עוז אושרי
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