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Abstract

Vesicles are closed fluctuating compartments, whose envelope is a lipidic bilayer mem-

brane. Due to the amphiphilic nature of the lipid molecules, once in an aqueous

solution, they self-assemble to form a membrane, which is semipermeable — while

small non-ionic molecules permeate relatively easily through this membrane in or out

of the vesicle, the permeation of bigger or ionic molecules is hindered. As a conse-

quence, solvent diffusion may change the vesicle volume, while solute particles trapped

inside the vesicle exert pressure on the membrane.

In this thesis we study the statistical thermodynamics of vesicle swelling in two

scenarios — that of a fixed inflating pressure difference and that of vesicles encapsu-

lating a fixed number of particles. While the first case was previously investigated

in several studies, the second one is addressed here in detail for the first time. A

particle-encapsulating vesicle is a unique system, which has no constraint on its vol-

ume, neither directly by fixing the volume, nor by a Lagrange multiplier p. Although

this object has a mean volume, which depends on the number of trapped particles,

the resulting thermodynamic ensemble is not necessarily equivalent to that of fixed

pressure difference — fixing the number of particles does not imply a priori a cer-

tain osmotic pressure, because the manifold is free to change its mean volume and,

hence, the mean particle concentration. In other words, both the volume and pressure

difference fluctuate.

The investigation begins with general scaling analyses for the swelling of random

manifolds in the two scenarios. These analyses yield scaling laws, which relate the

mean volume of the vesicle to the pressure difference or to the number of trapped

particles. It is shown that, while the swelling with pressure difference might undergo a

criticality, that of particle-encapsulating random manifolds is always gradual with the

number Q of trapped particles. This analysis demonstrates the difference between the

two ensembles and serves as a guideline along the thesis, where a statistical mechanics

investigation of several specific models is conducted.
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The first model is that of a closed two-dimensional freely jointed chain, i.e., an ideal

inextensible ring, in the fixed-p and fixed-Q ensembles. This system is treated using a

Flory argument, a mean-field calculation of the partition function, and Monte Carlo

simulations. All three methods show that in the fixed-p ensemble the ring undergoes

a continuous transition from a crumpled random-walk-like phase to a smooth one.

This transition disappears when the swelling is caused by a fixed number of trapped

particles, where the vesicle swells gradually, following a single scaling law. In the limit

of highly swollen rings, exact expressions relating the mean volume to p or Q are

obtained.

We then continue to a two-dimensional self-avoiding ring. We treat both pressur-

ized and particle-encapsulating rings using Monte Carlo simulations. The obtained

data is consistent with the scaling analyses and yield a gradual swelling in both sce-

narios and the two scenarios are shown to be thermodynamically equivalent for this

model.

A third model, of a three-dimensional particle-encapsulating fluid vesicle, is studied

using Monte Carlo simulations, and the results are compared to those of a previously

studied similar system subject to a pressure difference. While the swelling with pres-

sure difference undergoes a first-order transition, the swelling with increasing number

of particles particles is gradual, i.e., the ensembles are inequivalent for this model

system.

Finally, we consider a ubiquitous scenario where a fluctuating, semipermeable vesi-

cle is immersed in a solution while enclosing a fixed number of solute particles. Assum-

ing that the vesicle has a maximum volume, we show that its swelling with increasing

number of trapped particles exhibits a continuous phase transition from a fluctuating

state to the maximum-volume configuration. Beyond the transition vesicle fluctua-

tions are suppressed and appreciable pressure difference and surface tension build up.

This criticality is unique to particle-encapsulating vesicles and is absent when the

swelling is caused by a controlled pressure difference. It implies a universal swelling

behavior of vesicles as they approach their limiting volume and osmotic lysis.

Overall, the scaling analysis and host of examples studied in this thesis empha-

size the qualitative differences which may emerge between pressurized manifolds and

particle-encapsulating ones. Beside the theoretical interest in these systems, the ob-

servations may be also of practical importance, since particle-encapsulating vesicles

are the common scenario in nature and industrial applications.
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Chapter 1

General Introduction

Biological membranes are flexible surfaces which have a crucial role in

nature. They form a limiting envelope for every living cell as well as for

some types of viruses. The compartment of the cell, as well as that of a cell

organelle, is defined by a bilayer membrane vesicle, which functions as a

selective barrier between the interior and exterior. Vesicles are also widely

used in industrial applications for cosmetics and drug delivery. From a

physical point of view, membranes belong to the class of soft condensed

matter, that is, condensed matter, which is neither a simple liquid nor an

ordered solid. A major breakthrough in the field of soft-matter physics

was achieved by de Gennes in his works on polymers and liquid crystals,

for which he received the Nobel prize in 1991. The study of membrane

statistical thermodynamics, at least in the way it is conducted along this

thesis, is closely related to the principles and scaling methods developed by

de Gennes and others soft-matter theorists for strongly fluctuating systems

(e.g., polymers in solution).

The aim of this chapter is to give a brief overview of the statistical

thermodynamics of membranes and the established methods used in this

field, focusing on issues and methods that will be useful in later chapter of

this thesis. The first section (Section 1.1) presents some of the theoretical

tools used in the field of polymer physics and examines several analytical

approaches as well as Monte Carlo simulations. Section 1.2 extends these

tools to the membranal case and discusses other theoretical models used

in membrane research.
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1.1 Polymers

Polymers are chain-like molecules composed of covalently connected repeat units called

monomers. Man-produced polymers surround our everyday life. Common examples

are plastic and rubber, but synthetic polymers (e.g., Nylon, Dacron, Teflon, Celluloid)

are actually incorporated in most products including those of the food industry. Poly-

mers also appear in nature; the most prominent example is DNA molecules, which

exist in every living organism as well as in viruses and carry the genetic code. Other

biological examples include proteins, polysaccharides, and actin and myosin filaments.

(The last two examples are polymers whose repeat unit is a protein — a polymer by

itself.)

While the implementation of polymer science leads to a variety of unique materials,

the theoretical study of this field is related to diverse and fascinating areas of physics

and mathematics such as critical phenomena and the world of fractals.

1.1.1 Freely Jointed Chain

The most naive description of a polymer chain is that of a freely jointed model, also

called the ideal chain model. In such a description there is no interaction between

monomers and thus link directions are uncorrelated. In other words, one might say

that the angle θ between two links could be chosen from [0, 2π] with uniform proba-

bility (including θ = π !).1 Obviously, this model is not physical. To start with, it

does not include an excluded volume interaction between monomers. Furthermore,

in its simplified formalism, it does not take into account the bending modulus of the

polymeric chain. (We will address these two issues in the following subsections.) Nev-

ertheless, the ideal chain model is a good description for polymers in theta-solvents [1],

for which the monomer–monomer interaction is similar to the monomer–solvent one.

Also, due to the simplicity of the model, calculations are more easily performed and

the obtained analytical results may serve as a limiting case, with which more detailed

models can be compared.

The freely jointed chain description is analogous to random walks [2, 3], and thus,

1Actually, to describe the conformation of a polymer embedded in three dimensions one should
define, for each two successive links, a torsion angle as well.
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for long enough chains the polymer’s end-to-end distance (random walk displacement)

R is related to the number of monomers (steps) N by

〈R2〉 ∼ N2νl2, ν = 1/2, (1.1)

where l is the monomer–monomer link length (step size). The exponent ν is called,

in polymer physics, the swelling exponent, and for random walk statistics its value is

ν = 1/2 for any embedding dimension [3].

The probability density function of the end-to-end distance is also known from

random walk theories to be,

P (R) =

(
3

2πNl2

)3/2

e−3R2/(2Nl2). (1.2)

This probability density function holds only for end-to-end distances much smaller

than the total chain length, |R| � Nl.

The free energy of a polymer chain for a given end-to-end distance R, up to a

constant prefactor, is simply given by

F (R) = −kBT logP (R) = 3kBTR2/(2Nl2) + const, (1.3)

which is sometime referred to as the entropic spring. To say it differently, holding both

ends of the polymer and pulling them to a distance R one from the other is analogous

to stretching a harmonic spring, having a spring constant 3kBT/(Nl
2), by R.

For closed chains, which are the focus of Chapters 3 and 4, the end-to-end distance

is R = 0. To characterize their size, we must use a different quantity—the radius of

gyration Rg, which is defined as the root-mean-square distance of monomers from the

center of mass of the chain. It is this property, rather than the end-to-end distance,

which is measured by scattering experiments on polymers. It is quite simple to show

that for open ideal chains, the radius of gyration follows the same statistics as the

end-to-end distance, Rg
2 ∼ 〈R2〉 ∼ N , and for ideal closed chains we have simply

Rg
2 ∼ N [1].

The swelling exponent ν = 1/2 is sometimes referred to as the mean-field swelling

exponent, also due to the analogy between polymers and critical phenomena [4]. In this

analogy, approaching the critical temperature, T − Tc → 0 (in a system undergoing a
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continuous phase transition), is analogous to taking the thermodynamic limit 1/N → 0

(in a polymeric system). The correlation length, which diverges as ξ ∼ |T − Tc|−ν at

the critical point, is analogous to the radius of gyration, Rg ∼ N ν . In the mean-field

universality class, the critical exponent ν is 1/2 [5], which is equal to the swelling

exponent of an ideal chain. Further discussion of this analogy is found in de Gennes’

book [4].

1.1.2 Chemical Constraints and Semiflexible Chains

Real polymers, however, do not obey the simple ideal chain model and their link direc-

tions are correlated. This may have several explanations. In a chemical-microscopic

view, the angle between links θ has a nonuniform distribution. (See, for example, the

Ramachandran distribution for protein backbone angles [6].) In many polymers θ is

roughly fixed. On a different level, a physical-macroscopic description will incorporate

a resistance of the chain to bending, i.e., bending rigidity κ. Both explanations sug-

gest that there is correlation along the chain, which decays after a sufficient number

of repeat units or, equivalently, beyond a sufficient large distance along the chain con-

tour. This distance is called the Kuhn length. Since links become uncorrelated beyond

this distance, it is possible to return to the ideal chain description by redefining the

number n of (Kuhn) monomers and (Kuhn) link length b as follows,

n = Nl/b,

b = 〈R2〉/(Nl). (1.4)

For sufficiently long chains, b does not depend on N and is an intrinsic property of

the polymer. The swelling thus obeys,

〈R2〉 = n2νb2 ∼ N2ν , ν = 1/2, (1.5)

i.e., despite the introduction of correlations, the polymer obeys random walk statistics.

The universal property just described becomes extremely handy in theoretical stud-

ies of chains by constraining them to a lattice. This constraint is an example of a

nonuniform distribution of θ. Both analytical calculations and simulations benefit

tremendously from this simplification. The partition function becomes Gaussian, and
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the simulation database is much easily maintained and scanned. Visual examples of

off- and on-lattice two-dimensional chains are given in Fig. 1.1. For large enough N it

is almost impossible to distinguish between the two only by looking. Nevertheless, the

lattice-constrained polymer swells to a larger extent by a constant prefactor because

of the renormalization of link lengths due to this constraint.

In studies of semiflexible polymers, i.e., chains which are not fully flexible as

ideal chains but not as stiff as a rod, the term persistence length, lp, is often used

rather than the Kuhn length, although both terms have practically the same mean-

ing, lp = κ/(kBT ) = b/2, where κ is the bending rigidity. Typical persistence lengths

of polymers may range from a few nanometers to millimeters. For example, the persis-

tence lengths of single-stranded DNA, double-stranded DNA, F-actin, and microtubule

are 4nm, 50nm, 10µm, and 1-5mm, respectively ([7, 8, 9, 10], respectively).

Figure 1.1: Typical conformations of two-dimensional ideal chains obtained by simulations.
Both chains are 1.5 × 106 monomers long. The one on the right is constrained to a square
lattice while the chain on the left is off-lattice with a uniform distribution of inter-link angle
θ.

1.1.3 Self-Avoidance, Flory Argument, and the Critical Di-
mension

As a second step in understanding polymers one wishes to consider self-avoidance,

i.e., excluded volume interactions, since two monomers sterically repel each other and

cannot occupy the same position at a given time. A simplified tool to understand



6 General Introduction

the effect imposed by such a restriction is the Flory argument [4, 11], which goes as

follows: the relevant terms in the free energy of the system are written down (leaving

prefactors out), and the energy is then minimized with respect to R to obtain the

swelling exponent. For example, the free energy of a self-avoiding polymer is,

F = Fel + Fv,

Fel ∼ kBTR
2/(Nl2), Fv ∼ kBTvN

2/Rd. (1.6)

The first term is related to stretching an ideal chain [the entropic spring derived in

Eq. (1.3)]. The second term takes into account the exclusion of a monomer from a

volume v around another monomer. The number of exclusions is proportional to the

number of monomers N times their density N/Rd, where d is the embedding space

dimension. Minimizing F with respect to R yields,

R ∼ (vl2)1/(d+2)N ν , ν = 3/(d+ 2), (1.7)

i.e., ν = 3/4 and 3/5 for two- and three-dimensional self-avoiding polymers, respec-

tively.

As stated above, the Flory argument is not rigorous, and it is essential to confirm its

results in another manner. The d = 2 case was solved exactly by Nienhuis [12] resulting

in ν = 3/4 as obtained by Flory. For three-dimensional chains, numerical calculations

and Monte Carlo simulations yield ν ' 0.588 [13, 14, 15]. This result, although close to

the Flory prediction of 3/5, shows that it is inaccurate. The Flory argument is known

to break in several other cases, for example, in the case of polyelectrolytes (charged

polymer chains) [16]. Attempts to systematically improve the Flory argument have

usually led to worse results. (See a detailed discussion of this issue in [4, 17].)

For a polymer residing in a four-dimensional space, Eq. (1.7) yields ν = 1/2,

which is the swelling exponent of an ideal chain. For d ≥ 4 self-avoidance ceases to

influence the large-scale polymer statistics, and the chain behaves as an ideal chain.

One may imagine that the monomers become so sparse in space that their interaction

is negligible. For d > 4 the excluded-volume contribution to the free energy [Fv in

Eq. (1.6)] becomes negligibly small and should be omitted from the equation. The

dimension dc = 4 is called the critical dimension. In agreement with the theory of
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critical phenomena, for d > dc all critical exponents get the values of the mean-field

universality class [5].

1.1.4 Fractal Nature of Polymers

A fractal is a mathematical definition of an object which displays self-similarity, that

is, an object that has the same shape as one or more of its subparts. A consequence of

this characteristic is the scale-invariance of fractals [18]. To say it in simple words, no

matter how much you “zoom” on this object, you will always see the same pattern. A

trivial example of a fractal is a straight (infinite) line. When you “zoom in” and look

at a part of it, you see exactly what was revealed with no magnification. Although

fractals are not the focus of this thesis, polymers and manifolds show self-similarity

characteristics (as will be shown below). To learn more about the nature of these

objects we will examine a famous fractal—the Koch snowflake. Building it one starts

with an equilateral triangle and replace the middle third of each side with a (smaller)

equilateral triangle, as depicted in the upper part of Fig. 1.2. Repeating this process

indefinitely yields the Koch snowflake. (See Fig. 1.2.)

To relate the mass (or “amount of curve”) to the geometrical size of the object the

fractal dimension is defined as D = logMr/ logZr, where Mr is the ratio of the masses

of the viewed object prior to and after zooming by a factor of Zr.
2 For example, in

Fig. 1.3 zooming (out) by a factor of 3 (from the small circle to the big one), the mass

of the object in frame is increased by a factor of 4 and, thus, the fractal dimension of a

Koch curve is D = log 4/ log 3 ' 1.26. For the simple straight line example, zooming

by a factor of Zr increases the length of the viewed line by the same factor, and thus

the fractal dimension of a straight line is D = 1. Although mathematically the fractal

dimension can be any non-negative number, for physically relevant objects D ≥ 1. Its

upper limit is the dimensionality of the embedding space d. The relation D = d is

fulfilled for compact objects, i.e., for objects that fill space—zooming out by a factor

of Zr will reveal a similar object, (Zr)
d-times heavier. Nevertheless, we will see in

the next section (1.2.2) that phantom, i.e., unphysical, manifolds in d = 3 can have

D > d.

2D is sometimes referred to as the Hausdorff dimension.
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Figure 1.2: Koch snowflake fractal. The upper part depicts the basic step in creating this
fractal, i.e., replacing the middle third of a section with an equilateral triangle. Middle draw-
ing shows, from left to right, the shapes at different steps of the construction. The bottom
drawing is a part of the Koch fractal, called sometime the Koch curve, which demonstrates
clearly the self-similarity.

Polymers are not exactly self-similar in the sense that, when you zoom on them they

do not look exactly the same. Nevertheless, their statistics show fractal characteristics.

This is termed a statistical or random fractal [1, 18]. Multiplying the number of

monomers N , and hence the polymer mass, by a factor of Mr leads to a mean end-to-

end distance R ∼ (MrN)ν . According to the definition of the fractal dimension, we

get for a polymer D = 1/ν. A visual example of the self-similarity of an ideal chain is

presented in Fig. 1.4.

1.1.5 Stretched Polymers and Blob Analysis

As a consequence of the analogy between polymer statistics and critical phenomena,

small perturbation of a polymer chain may be studied using a scaling analysis [4]. To

understand the concept of this theory in polymer physics let us consider the stretching

of a chain by a fixed force f , that is, holding both ends of the polymer and pulling

them by a force f one from the other. The statistical mechanics of such a system may

be solved analytically in the case of ideal chains by simply calculating the partition
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Figure 1.3: Calculating the fractal dimension of a Koch curve. Tripling the diameter of the
circle or, alternatively, zooming out by a factor of 3, reveals a curve 4 times heavier. This
leads to a fractal dimension D = log 4/ log 3.

function of the polymer (see, e.g., Eq. (A.1) for a chain in 2D). However, here we will

focus on the qualitative behavior of such a system, which can be generalized to more

complicated cases.

Scaling analysis suggests that the perturbation leads to a characteristic length

scale ξ ∼ kBT/f . For distances smaller than ξ the system is not affected by the

perturbation, while for distances larger than ξ, the system behavior is modified. To

say it differently, one can conceptually divide the chain into so-called Pincus blobs

[19] of linear size ξ, see Fig. 1.5. It is an assumption of the blob analysis that the

chain within the blob is unaffected by the perturbation, and thus the typical number

of monomers within the blob g is given by ξ ∼ gν , where ν is the swelling exponent of

the unperturbed chain. For simplicity, we take hereafter the link length to be l ≡ 1.

The pulling affects only the alignment of the blobs with respect to one another (the

effective links that connect the blobs) in the direction of f . Hence, the end-to-end

distance follows the relation R ∼ ξN/g. Since one degree of freedom per blob has

been restricted, the system pays a free energy penalty kBT per blob.

Solving the set of four relations,

ξ ∼ gν , R ∼ ξN/g, F ∼ kBTN/g, F ∼ fR, (1.8)
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Figure 1.4: An ideal two-dimensional chain composed of 106 monomers (leftmost frame)
displaying self similarity.

f
f

ξ

Figure 1.5: An ideal chain stretched by a constant force f . The chain may be described by
a set of blobs, where the chain within a blob is not disturbed while the blobs themselves are
stretched with respect to one another.

leads to the following scaling laws:

R ∼ N

(
f

kBT

)(1−ν)/ν

, (1.9)

g ∼ (kBT/f)1/ν . (1.10)

This analysis breaks down for sufficiently small pulling force f , when the whole chain

is contained in a single blob, that is, when the number of monomers within a blob is

g ∼ N , which is obtained for f ∼ kBT/N
ν . Substituting this value in Eq. (1.9) reveals

the expected relation for an unperturbed chain, R ∼ N ν . Below this limit, the force

is too weak to perturb the chain. In the upper limit of the theory the chain breaks up
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into N blobs, or alternatively g ∼ 1. This leads to f ∼ kBT and a stretched statistics,

R ∼ N .

1.1.6 Monte Carlo Simulations of Polymers

In order to verify analytical results, or when calculation cannot be performed, it is

beneficial to use computer simulations. The most common method in equilibrium

statistical physics is the Monte Carlo simulation [20, 21, 22], which is mostly used

with the Metropolis criterion [23] to perform a correct sampling of the configuration

space. In a typical simulation, one builds up an initial configuration, and then a series

of configurational changes are randomly generated (steps). Each step is accepted or

rejected according to the Metropolis criterion [23]— if the system’s energy decreases,

or if the energy difference ∆E obeys exp[−∆E/(kBT )] > w, where w is a random

number in the range [0,1] the step is accepted. After a sufficient number of steps the

system relaxes to its equilibrium state. It is the Metropolis criterion which takes care

of correct sampling by weighing each configuration with its Boltzmann probability. In

order to capture the equilibrium characteristics correctly it is important to average

over uncorrelated measurements, either by starting from different initial configurations

or, alternatively, by running a number of steps much greater than the one needed for

relaxation. Another comment is that a Monte Carlo simulation does not represent the

real dynamic behavior of the system, and the number of steps taken is not necessarily

proportional to real time.

Monte Carlo Models of Polymers

A common off-lattice method to simulate polymer statistics is the rigid-links model

[21], which considers the polymer links to be of fixed length. In a possible Monte

Carlo step a monomer is repositioned, but since it is attached to two other monomers

by rigid rods of length l, its new position is limited to the perimeter of a circle on the

midplane between its two neighbors. (For a polymer confined to 2D, this circle turns

into just two possible positions as can be seen in Fig. 3.4.) As a consequence of this

rigidity and due to the small configurational space available at each Monte Carlo step,

simulations become inefficient, and the number of steps needed to reach relaxation,

or alternatively, to produce an uncorrelated configuration, is relatively high. Another
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possible step is the repositioning of a whole section of the polymer between monomers

i and j, simply by rotating this section around the axis that connects monomers i and

j. This is sometime referred to as a pivot step [24].

A different model is the bead-and-tether one [21], where the monomers are repre-

sented by beads of radius a and the links by tethers with a maximum length l, i.e., link

lengths are not fixed. The simplest potential between monomers i and j describing

this model is

Vij =

0 2a < rij < l

∞ elsewhere,

(1.11)

where rij is the intermonomer distance. A possible Monte Carlo step is to move a

randomly chosen node by some displacement in an arbitrary direction. The absence

of the rigidity constraint allows this model to reach the equilibrium state in a substan-

tially smaller number of steps. Another feature of this model is the ability to impose

self-avoidance, by setting a > 0. (See, e.g., Ref. [25].)

Two other common models are the lattice-constrained polymer (which was briefly

mentioned above) and the bead-and-spring model, where harmonic springs are used

instead of tethers of maximum length. (See more on these models in [21].) Extending

any of these simulations to take into account polymer semiflexibility is rather simply

achieved by summing over all adjacent links the energy term κ
∑

(1− l̂i · l̂i+1), where

l̂i is a unit vector in the direction of link i and κ is the polymer bending rigidity. (In

this thesis, however, bending rigidity will not be explicitly considered.)

Behavior Near Continuous Transitions

For systems near a critical point the correlation length becomes very large. Using

simple Monte Carlo steps of local displacements, it becomes almost impossible to

“escape” to the next uncorrelated configuration. This is called critical slowing down

of the simulation [21, 22]. In order to overcome such a difficulty it is important to

perform collective steps, for example, making several simple steps before applying

the Metropolis criterion. Another example is the pivot step suggested above for the

rigid-rod model.

A real phase transition occurs only in the thermodynamic limit, i.e., for an in-

finitely large system. Simulations, however, are performed on finite-size systems. Thus
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for continuous transitions the correlation length ξ ∼ tν , t being the control param-

eter, cannot exceed the system size L. As a consequence, the order parameter and

the compressibility, instead of obeying the simple power laws M ∼ |t|−β and χ ∼ |t|γ

follow the finite-size scaling laws [26],

M ∼ L−β/νM̃(L1/ν |t|), (1.12)

χ ∼ Lγ/νχ̃(L1/ν |t|), (1.13)

where M̃ and χ̃ are universal functions.

1.1.7 Two-Dimensional Polymeric Rings

In the context of this thesis, polymer rings constrained to a plane are a simplified,

somewhat artificial case of random manifolds. The reduced dimensionality makes

the calculation more tractable and in several cases the statistical mechanics of such

systems may be solved analytically. Even such simplified objects exhibit a variety of

shapes and shape transformations, as will be seen in Chapter 3.

Nevertheless, treating such rings is not purely academic. Polymeric rings exist

in nature, for example, the denaturation of a section in the double stranded DNA

forms a ring (DNA bubble), composed of single stranded DNA [27]. These rings

may be constrained to two-dimensions, either by making them adsorb on a surface

or by trapping them at the interface between two phases. For example, single-wall

carbon nanotubes can be deposited in a ring shape on hydrophilic surfaces as part

of a nanodevice [28], and DNA plasmids were deposited on mica surfaces to reveal

a swelling exponent of ν = 3/4 [29], as expected for self-avoiding polymers D = 2.

Experiments of polymer rings which are relevant to this thesis (Chapters 3 and 4)

were conducted by Rabe and coworkers [30]. In these studies, DNA plasmids were

embedded in an ultrathin liquid film. The conformations of unperturbed rings appear

crumpled but when imaged by scanning force microscopy (SFM) in a tapping mode,

the rings swell into smooth 2D bubbles. It is believed that the SFM tapping exerts

pressure on the liquid film which causes this inflation.
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1.2 Membranes and Vesicles

Biological membranes are complex structures, composed mainly of a lipid bilayer, but

also of proteins and sterols. The lipid molecules, forming the bilayer, are amphipathic,

that is, they contain both a hydrophilic (water soluble) headgroup, which is either po-

lar or charged, and a hydrophobic (water insoluble) tail, composed of fatty acids. Their

self-assembly into a bilayer is one of the many possible phases they form in aqueous

solution [31, 32]. The other components of the membrane are either hydrophobic or

contain a hydrophobic region which, is buried in the core of the membrane. Note that

the membrane as an object is stabilized only by weak forces due to the hydrophobic

effect rather than covalent bonds.

Small enclosures, of up to tens of microns in diameter, bounded by a lipid bilayer

are generally termed vesicles. (In some cases, but not throughout this work, this term

is used to describe also objects enclosed by several membranes — a multilamellar

vesicle.) Into this classification fall natural components—small organelles (e.g., lyso-

somes), transport vesicles, and signal transmitters such as synaptic vesicles [33, 34],

as well as artificially made liposomes, which are used, for example, in pharmaceutical

and cosmetic applications [35]. The size of artificial vesicles may range from a few tens

of nanometers to tens of microns in diameter, depending mainly on the preparation

method [36].

A membranal envelope is an essential feature for the existence and functionality of

all living cells and their internal organelles. The outer membrane of the cell is referred

to as the plasma membrane and is composed mainly of phospholipids. One of its many

roles is to regulate transport of molecules into or out of the cell. Due to its hydropho-

bic core, small non-ionic molecules can permeate and diffuse through the membrane,

while the translocation of larger or ionic ones depends on protein mediation, such as

ion channels. Water, for example, are polar, and thus their permeation rate is slow

compared to molecular time but still physically relevant (of order 10−5–10−4 s per

molecule for a bare lipid bilayer [37]). Another relevant biological membrane is that

of the nucleus, which is filled with nuclear pore complexes [38]. This huge proteinic

channel has a diameter of ' 50nm and allows the free diffusion of small molecules (up

to 40 kDa) into and out of the nucleus, while the transport of larger molecule such
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as proteins and mRNA is regulated [38]. Essentially, the nuclear membrane functions

in a similar manner to the plasma one, allowing some of the molecules to permeate

freely and hindering the permeation of others.

In this thesis and in similar theoretical studies, however, the whole envelope is in

frame and the membrane is described using coarse-grained parameters such as bending

rigidity, the total area of the envelope, pressure difference across the two faces and so

on. The characteristics of individual components of the membrane are only implicitly

included in the phenomenological parameters of the membrane itself. As an illustra-

tion, for example, the bending rigidity of a single-component membrane depends on

the molecular length of the hydrophobic tail nC (alkyl carbon number) as κ ∼ nPC
C ,

where PC ' 3 [39, 40]. Another example is the incorporating cholesterol molecules

into the hydrophobic core, which increases the bending rigidity by up to a factor of

3 [41, 42] and reduces the membrane fluidity [36]. More relevant to this thesis is

the membrane permeability to various solutes, which increases with the concentration

of unsaturated phospholipids in the membrane [36]. Permeation of water molecules

can also be dramatically increased by incorporating proteinic water channels named

Aquaporins [43, 44].

Two interesting features of vesicles arise from the semipermeability of their mem-

branes. The first is that the vesicle volume is not fixed due to the permeation of

solvent molecules in and out of the vesicle. The second stems from the fact that large

molecules cannot escape the envelope of the vesicle and thus lead to osmotic swelling.

We call such a system a particle-encapsulating vesicle.

Concentration differences across biological membranes, which are manifest in pres-

sure and/or voltage differentials, are essential for the activity and vitality of the cell

by providing a driving force for Adenosine triphosphate (ATP) synthesis, reception of

outer signals, expulsion of waste and so on [34]. Furthermore, pressure gradients affect

the shape of the cell. Concentration differences are maintained by proteinic pumps

and are energy-consuming [34].

1.2.1 Smooth Membranes and the Helfrich Hamiltonian

The membrane encapsulating a cell or vesicle is only two molecules thick (about 4nm)

while its lateral size may be of the order of microns. Having the whole cell in frame,



16 General Introduction

the membrane is tremendously thin and may be represented by a two-dimensional

surface. Such a surface has two internal coordinates, t1 and t2, and its conformation

is characterized by the spatial function R(t1, t2). This function defines two principal

(normal) curvatures, c1 and c2 (which are the smallest and largest local curvatures,

see e.g., Refs. [45, 46]).

For a vesicle whose energy is dominated by the bending energy, one may write the

free energy as an integral over the whole vesicle surface,

F =

∮
dA

[
κ

2

(
c1 + c2

2
− c0

)2

+ κGc1c2

]
, (1.14)

where κ and κG are the bending modulus and Gaussian modulus, respectively, and

c0 is the spontaneous curvature, which vanishes if the two faces of the bilayer are

symmetrical. (The two can differ, for example, due to a different composition or

integral proteins, which cause a distortion on one leaflet.) Although a simpler form of

the free energy with κG = 0 and c0 = 0 had been used a few years earlier by Canham

[47], the formalism of Eq. (1.14) was first devised by Helfrich [48] and is termed either

the Helfrich or Canham-Evans-Helfrich Hamiltonian.

While the bending rigidity κ of polymers is measured in units of length times en-

ergy, and thus leads to a typical length scale, lp = κ/(kBT ) (see Section 1.1.2), the

one for surfaces has units of energy, and the Helfrich Hamiltonian is scale-invariant.

Nevertheless, taking into consideration a molecular cutoff a, comparable to the mem-

brane thickness (a few nm), leads to a persistence length lp ∼ a exp[2πκ/(kBT )] [49, 9].

Typical values of κ for a bilayer membrane is between a few kBT to tens of kBT , which

leads to a persistence length ranging between a micron and tens of meters and even

more.

According to the Gauss-Bonnet theorem, the integration over the second term in

Eq. (1.14) yields
∮
dAc1c2 = 4π(1−G), where G is the genus of the surface, i.e., the

number of handles [45, 46]. For vesicles which do not change their topology, this term

is constant and is thus omitted in many theoretical works. Nevertheless, if one studies

surfaces with a changing topology, such as cell splitting, budding or phagocytosis, this

term must be taken into account.

For a given volume-to-surface-area ratio v = V/A3/2, minimizing Eq. (1.14) with
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respect to the contour of the vesicle (e.g., by solving the corresponding Euler-Lagrange

equations while assuming axisymmetry), yields the most probable shape. This simple

form of the free energy gives rise to a variety of shapes (stomatocyte, oblate, and

prolate) and to transitions between them [50]. Since the bending rigidity is a prefactor

of the Hamiltonian it does not affect the most probable configuration and enters only

when vesicle fluctuations are considered. Those studies, however, address the case

where the lateral size of the vesicle, L, is much smaller than the persistence length,

lp, and so thermal fluctuations around this minimum energy state are small.

Simple improvement to this minimalistic model is achieved by adding terms to the

Helfrich Hamiltonian. For example, terms which take into account the area difference

between the two layers in the bilayer give rise to a pear shape as well as a budding

transition (see, e.g., Ref. [51]). Other possible improvements are taking into account

the inhomogeneity of the system, e.g., taking a nonuniform spontaneous curvature, or

considering non-axisymmetric shapes (e.g., Ref. [52]).

Pressurized Vesicles

Since vesicles are almost always immersed in a solution which includes large molecules

or particles that cannot permeate the membrane, a more realistic approach to char-

acterize the behavior of vesicles is achieved by introducing another term, pV , to the

Helfrich Hamiltonian, where p is the pressure difference between the interior and exte-

rior of the envelope. To be more specific, and using a simple ideal solution description,

one may write p = kBT (Q/V − c), where Q is the number of particles trapped in the

vesicle, and c is the concentration of particles in the embedding solution (outside the

vesicle).

First, let us note, that this pressure difference term leads to another characteristic

length, Lp = |kBT/p|1/d, where d is the embedding dimension [25, 76]. Vesicles with

L � Lp are crumpled and random, while those with L � Lp are smooth due to the

pressure difference. Recall that bending rigidity causes smoothness for L � lp. For

real vesicles, i.e., for relevant values of κ ∼ 10kBT and L ∼ 1µm, the energy related

with the term pV exceeds that of the bending rigidity κ for concentration differences

as small as 10−7M, which is orders of magnitude smaller than the concentration of

typical solutions. As a result, when the free energy of the vesicle is minimized with
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respect to the its volume, V , κ plays a negligible role, and the volume is selected such

that the pressure difference is practically zero. For an ideal solution this is obtained

for V = Q/c. Thus, the vesicle adjusts its volume through water permeation in order

to achieve a vanishingly small pressure difference.

1.2.2 The Fractal Nature of Manifolds

Using the perspective discussed in Section 1.1.4 one may refer to random surfaces as

statistical fractal objects. Studies regarding properties of random manifolds, usually

discretize the surface and consider a set of nodes connected by tethers (e.g., Ref. [53]),

or alternatively, a set of plaquettes, attached to one another (see [54]). However,

it was shown that the swelling exponent of these objects depends on the manner one

constructs them. For example, for a given topology the radius of gyration of a phantom

surface (i.e., without self-avoidance), obeys

Rg
2 ∼ log(L), (1.15)

where L is the lateral size of the surface [55, 56, 57, 58]. Since this scaling is weaker

than a power law the fractal dimension is D → ∞. On the other hand, if the surface

is constructed by adding plaquettes at a given chemical potential, one gets a finite

fractal dimension which depends on the connectivity of the surface [54].

Before continuing, we note that the simple relation between ν and D presented for

polymers in Section 1.1.4 can be generalized to D-dimensional manifolds as follows:

the radius of gyration is related to the lateral size of the manifold by Rg ∼ Lν , while

the fractal dimension is related to the mass of the manifold (which is proportional to

LD) by Rg
D ∼ LD. Thus, for a general D-dimensional manifold one has D = D/ν.

The anomaly of phantom surfaces with a diverging fractal dimension is removed

when the bending rigidity κ increases beyond a critical value κc ' kBT/3, where the

surface undergoes a continuous transition into smooth statistics with Rg ∼ L. This

transition is referred to as the crumpling transition [57, 58]. 3 Alternatively, the

phantom manifold anomaly is removed when self-avoidance is introduced. A simple

Flory argument as in the case of polymers (see Section 1.1.3) gives a qualitatively

3We will see along this thesis, that smoothening of closed random surfaces can also be achieved
by swelling, i.e., the introduction of an inflating pressure difference
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correct picture [59]. In such an approach, the free energy of the manifold is given by

F = Fel + Fv,

Fel ∼ kBTR
2LD−2, Fv ∼ kBTvL

2D/Rd, (1.16)

where, again, Fel is the energy related with stretching a Gaussian manifold to a lateral

distance R, and the second term is proportional to the number of exclusion interac-

tions, with v being the excluded volume. Minimizing Eq. (1.16) with respect to R,

one gets,

R ∼ Lν , ν = (D + 2)/(d+ 2), (1.17)

and thus a fractal dimension D = D(d + 2)/(D + 2). For a polymer, D = 1 and

the swelling exponent coincides with the one already found in Eq. (1.7). For a two-

dimensional surface embedded in d = 3, this prediction yields ν = 4/5, which was

verified by Monte Carlo simulations of fixed-connectivity triangulated surfaces as ex-

plained below [53, 60].

1.2.3 Monte Carlo Simulations of Surfaces

The bead-and-tether model presented for polymers in Section 1.1.6 is easily extended

to the case of two-dimensional manifolds by considering a triangulated tethered surface

(e.g., Ref. [53]) with a given topology (connectivity). A visual example is presented

in Fig. 1.6. This model is sometimes referred to as a polymerized membrane. The

logarithmic collapse of phantom manifolds, Eq. (1.15), was verified using simulations

of such a model. Self-avoidance is easily introduced using the same potential used

for polymers, Eq. (1.11), and a proper choice of a, l, and the maximum step size.

Such a treatment leads to a swelling exponent similar to that obtained by the Flory

argument, Eq. (1.17). (See further discussion of this issue in Ref. [60].)

However, due to the fixed-connectivity constraint, these Monte Carlo simulations

cannot capture correctly the ensemble of all surfaces with a given surface area. A vivid

example of this deficiency arises when one imagines a glove. It is possible to move its

palm and fingers, deflate them, and even turn a right-hand glove into a left-hand one,

but due to the original shape it would never turn into a sphere! Such a transformation

requires relaxation of local strains, i.e., fluidity. Fluidity can be introduced to Monte
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Figure 1.6: A triangulated tethered surface. The figure on the right depicts the topology
(connectivity) of the (flattened) surface, while the one on the left is a typical crumpled
conformation. Figure taken from Ref. [53].

Carlo simulations by allowing vertices to move on the surface. One way is to randomly

break a tether, which has formed the common side of two triangles, and rebuild it

between the two other corners of those triangles (provided that the required tether

length does not exceed l). See illustration in Fig. 5.1. This scheme was first introduced

by Kazakov et al. [61]. For a self avoiding random manifold, the fluidity scheme leads

to deflation of the surface, such that it behaves like a self-avoiding branched polymer

[62, 63]. After such fluidity is introduced the set of configurations is presumed to

capture all possible conformations of a fluid surface having a given maximum area.

We will use this scheme in Chapter 5 to simulate the behavior of three-dimensional

fluid vesicles.

Surfaces Constrained to a Lattice

In a similar manner to polymers, surfaces can also be constrained to a lattice, which

in most studies is a cubic one. In such a representation a surface is a set of square

plaquettes, i.e., faces of the elementary cells, where each edge on the surface is shared

by exactly two plaquettes. Using this representation one can investigate the statistics

of fixed-connectivity surfaces as well as random-connectivity ones. In the case of self-

avoiding random connectivity, the branched-polymer-like behavior mentioned above

is obtained (e.g., Ref. [64]).
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Finally, let us mention a curious distinction between the simulations of on- and

off-lattice rings and vesicles. We have seen in Section 1.1.2 that the overall statis-

tics of polymers is not affected by constraining them to a lattice (see also Fig. 1.1).

Nevertheless, while a fully swollen off-lattice two-dimensional ring attains a circular

shape, a similar ring constrained to a lattice will become square. The same occurs for

three-dimensional vesicles, i.e., an off-lattice swollen vesicle becomes spherical, while a

lattice-constrained one swells into a cube [65, 66]. Thus, since a high degree of swelling

suppresses the fluctuations of a random closed manifold, the equivalence of off- and

on-lattice models eventually breaks down.

Coarse-Grained Model of Membranes and Vesicles

The artificial representation of surfaces presented above addresses a statistical me-

chanical system rather than a biologicaly relevant one. There are, however, other

simulation techniques which address the behavior of real membranes. One of them

is molecular dynamics, in which all the atoms within a system (including those of

the solvent molecules) are represented and are allowed to interact with one another

[67, 68]. Obviously such a simulation requires strong computing power. Current tech-

nological advances allow simulations of small membranal systems, consisting of a few

hundreds of amphiphiles, and can simulate a limited time scale, which does not ex-

ceed microseconds [68]. Another simulation technique is the coarse-grained models, in

which the building blocks of the membrane, i.e., the surfactants, are represented by

3 to 5 monomers, thus reducing the number of interacting particles by two orders of

magnitude. These models, although less realistic, provide a more efficient simulation

methodology for large membranes (a few thousands of amphiphiles) [69].

1.3 Thesis Overview

We have seen above two approaches to address the behavior of surfaces. The first

(Section 1.2.1) uses the Helfrich Hamiltonian and considers smooth surfaces. This

description holds in the regime of low temperature, where the lateral size of the surface

is much smaller than the persistence lengths arising from bending rigidity and pressure

difference, L � lp, Lp. The second approach (Section 1.2.2) depicts the surface as a
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fractal random manifold and aims at the high temperature regime, L� lp, Lp. In this

thesis we will mainly focus on the second description of random surfaces, investigating

how such strongly fluctuating envelopes respond to a pressure difference or the effective

osmotic pressure exerted by trapped particles.

We start in Chapter 2 with a general scaling analysis for the swelling of closed

random manifolds. Two scenarios are considered — that of pressurized vesicles and

that of particle-encapsulating ones. The resulting scaling laws are then verified in three

model systems: two-dimensional, freely jointed and self-avoiding rings (Chapters 3 and

4), and a three-dimensional self-avoiding fluid vesicle (Chapter 5). In Chapter 6 we

aim at the more realistic, low temperature regime and study the behavior of highly

swollen particle-encapsulating vesicles immersed in a solution of given concentration.

Finally, all the results are summarized and discussed in Chapter 7.



Chapter 2

Scaling of Swollen Closed Random
Manifolds

In this chapter we present general scaling analyses for the swelling of

closed random manifolds subject to either a fixed pressure difference or

a fixed number of trapped particles. It is shown that the two swelling

scenarios are not always thermodynamically equivalent. While in the first

scenario the swelling may exhibit a criticality, the swelling of particle-

encapsulating random manifolds is gradual with the number of trapped

particles. The resulting scaling laws serve as guidelines for the rest of the

thesis.1

2.1 Introduction

As has been presented in Chapter 1, there has been considerable interest in the past

few decades in the statistical mechanics of membranes and surfaces [71]. This has been

partly motivated by the ubiquity of bilayer membrane vesicles [72] in various natural

and industrial systems. The lateral dimension L of these envelopes is much larger than

their thickness and, therefore, they can be treated to a good approximation as purely

(d−1)-dimensional objects, where d is the embedding dimension. Another consequence

of the small thickness is that the membrane resists stretching much stronger than

bending. Hence, the surface area of the manifold is usually taken as fixed. The

statistical mechanics of such a manifold involves an interplay between conformational

fluctuations and bending elasticity, leading to a characteristic persistence length, lp

1The results presented in this chapter were published in Ref. [70].
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[49]2 — over distances smaller than lp the manifold is essentially smooth, whereas

beyond it the surface becomes random. When the manifold is closed (a vesicle), its

smoothness is affected not only by the elastic lp but also by its degree of swelling (e.g.,

volume-to-area ratio).

The various studies of vesicle thermodynamics can be classified in two groups

according to the volume constraint that they impose for a given surface area A. One

body of works, e.g., Refs. [51, 47, 48, 50], considered the ensemble of fixed volume

V . These studies, aimed at actual bilayer vesicles, assume the “low-temperature”

limit, lp > L, in which the vesicle is represented by a continuous closed surface in

d = 3. The various equilibrium shapes are derived as ground states of the elastic

Helfrich Hamiltonian (see Section 1.2.1), which depend on the dimensionless volume-

to-area ratio, V/A3/2. Another body of works considered the ensemble of fixed pressure

difference p across the manifold. These include Gaussian [75] freely jointed [76] and

self-avoiding rings [25, 73, 74] in d = 2, as well as model fluid vesicles in d = 3

[77, 78, 79, 80, 81, 59, 82, 65]. Most works assumed the random, high-temperature

limit (lp � L), yet the crossover to lp > L was addressed as well [25, 76, 80, 81, 59].

As far as equilibrium averages are concerned, the ensembles of fixed V and fixed p

are equivalent, i.e., related via a smooth, single-valued (Legendre) transform. We focus

here on another swelling scenario, where the manifold encapsulates a fixed numberQ of

particles while its volume is unconstrained. The interest in such particle-encapsulating

vesicles is not only academic, since most actual vesicles are immersed in solution

and their membrane, over sufficiently long time, is semipermeable, allowing solvent

to permeate while keeping the solute trapped inside [83, 84]. (See Section 1.2 and

Chapter 6.) Knowing the particle number Q does not imply, a priori, a certain osmotic

pressure, because the manifold is free to select its mean volume and, thus, the mean

concentration. Since the mean volume and pressure should monotonously increase

with Q, one expects to establish equivalence between this fixed-Q ensemble and the

other two. However, we will show along this thesis that this is not always true.

In this chapter we present a general scaling analysis in order to create a unified

description for a (d − 1)-dimensional random manifold in d dimensions swollen by

2See also Section 1.2.1.
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either a fixed pressure or a fixed number of trapped particles. We thereby clarify

when these two ensembles are inequivalent. In the following chapters (Chapters 3–5)

we will check this unified description in detail in several model systems.

2.2 Scaling Analysis

We begin our investigation performing a general scaling analysis [4, 73] for a closed

(d − 1)-dimensional random manifold, composed of N nodes and embedded in d di-

mensions. A schematic representation of the system is given in Fig. 2.1. In response

to perturbation (pressure difference p or Q trapped particles), the system is assumed

to be divided into subunits, or blobs, containing g nodes each. The blobs are defined

such that each of them stores a tensile energy equal to the thermal energy kBT ≡ 1

(Section 1.1.5),

σξd−1 ∼ kBT ≡ 1, (2.1)

where σ is the surface tension induced in the manifold by the perturbation, and ξd−1

is the projected area of a blob. At distances smaller than the blob size ξ the manifold

is unaffected by the perturbation and assumed to obey the power law,

gν ∼ ξd−1, (2.2)

where ν is a swelling exponent characterizing the unperturbed manifold statistics. At

distances larger than ξ the perturbation stretches the manifold. The total projected

area is given by the number of blobs times the projected area per blob,

Rd−1 ∼ N

g
ξd−1. (2.3)

So far, the relations, Eqs. (2.1)–(2.3), have been independent of the nature of the

perturbation (p or Q). The difference between the two swelling scenarios enters via

the Laplace law, taking the following forms in the fixed-p and fixed-Q ensembles,

respectively:

σ/R ∼ p, (2.4a)

σ/R ∼ Q/Rd. (2.4b)
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ξ

R

Q  or  p

Figure 2.1: A schematic representation of a closed manifold subject to a fixed-p or fixed-Q
perturbation. Due to the perturbation the manifold, containing a total of N nodes and
having a radius of gyration R, can be divided into N/g subunits (blobs), each containing g
nodes and having radius ξ.

Solving the set of relations for the fixed-p ensemble, Eqs. (2.1)–(2.4a), one arrives

at the following power laws:

〈V 〉 ∼ Rd ∼ Nd/(d−1)(pd−1N)d(1−ν)/[(d−1)(dν−1)],

σ ∼ (pd−1N)ν/(dν−1). (2.5a)

(This result, in a slightly different form, has been already obtained in Ref. [77].) Two

observations readily follow from Eq. (2.5a). First, the characteristic pressure difference

required to appreciably swell the manifold scales as p ∼ N−1/(d−1) regardless of ν. This

characteristic value reflects the interplay between the mechanical work of swelling

an object of volume ∼ Nd/(d−1), and the surface entropy of N degrees of freedom,

pNd/(d−1) ∼ N . Second, in cases where dν = 1 the exponents diverge and one expects

criticality [73]. Both conclusions are borne out by previously studied models. The

mean volume of Gaussian rings [75], having d = 2 and ν = 1/2, (i.e., dν = 1,)

diverges at a critical pressure pc ∼ N−1. By contrast, self-avoiding rings, with d = 2

and ν = 3/4, swell gradually with p [25, 73].

Turning to the fixed-Q case, which is the focus of this study, and solving the
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relations Eqs. (2.1)–(2.4b), we find the power laws,

〈V 〉 ∼ Nd/(d−1)(Q/N)d(1−ν)/(d−1),

σ ∼ (Q/N)ν . (2.5b)

The two corresponding observations in this case are as follows. First, appreciable

swelling occurs for Q ∼ N regardless of ν and d. Thus, the number of encapsulated

particles required to swell the envelope scales with the area only, rather than the

volume. This is a consequence of considering here a vanishing external pressure.3 In

such a case the particle entropy (∼ Q) has to compete only with the surface one (∼ N).

Second, there is no divergence of exponents, i.e., no criticality. Both conclusions will

be verified in Chapters 3–5.

The two blob analyses, along with the resulting power laws [Eqs. (2.5a) and (2.5b)],

should hold so long as 1 < g < N . This corresponds to the restrictions, N−dν/(d−1) <

p < N−1/(d−1) and 1 < Q < N . At larger swelling, nonetheless, we expect smooth

manifolds with 〈V 〉 ∼ Nd/(d−1). According to the Laplace law this leads to a surface

tension σ ∼ pN1/(d−1) and σ ∼ Q/N . Combining these large-swelling results with

Eqs. (2.5a) and (2.5b), and provided there is no criticality (dν 6= 1), we conjecture the

following scaling relations, expected to hold for all values of p and Q:

〈V 〉 = Nd/(d−1)fp(pN
1/(d−1)),

σ = hp(pN
1/(d−1)), (2.6a)

〈V 〉 = Nd/(d−1)fQ(Q/N),

σ = hQ(Q/N). (2.6b)

The scaling functions for the mean volume, fp and fQ, should cross over from the

power laws of Eqs. (2.5a) and (2.5b) for small arguments to constant values for large

arguments. The scaling functions for the surface tension, hp and hQ, are expected to

cross over from the power laws of Eqs. (2.5a) and (2.5b) to linear ones. Equations

(2.5) and (2.6) are the central predictions of the scaling theory, and will be verified

3The case of fixed number of encapsulated particles and fixed outer pressure will be addressed in
Chapter 6.
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for three model systems in the following chapters.

2.3 Discussion

The scaling analysis presented in Section 2.2 yields a unified account of the swelling

of random manifolds with increasing pressure difference or number of encapsulated

particles. Similar scaling analyses for the case of fixed p have been already presented

in Refs. [73, 77]. Those analyses and ours coincide in the power-law regime, Eq. (2.5a).

However, while the analyses of Refs. [73, 77] are focused on the weak-swelling regime

and constructed to include the random, unperturbed state of the manifold, the one

presented here is aimed at including the highly swollen state. Thus, on the one hand,

our scaling relations, Eqs. (2.6a) and (2.6b), cannot account for the unperturbed state

and give a vanishing mean volume in the limit of vanishing perturbation. The range of

p (or Q) where this deficiency is relevant vanishes, nonetheless, in the thermodynamic

limit.4 On the other hand, whereas the earlier analyses assumed that scaling broke

down at sufficiently large swelling [73, 77], we claim that Eqs. (2.6a) and (2.6b) should

hold for the entire range of p or Q. Although there is a priori no reason why the

scaling behavior should have this broad range, we will show in Chapters 3–5 that it

does. Hence, provided that the swelling exhibits no criticality, the scaling relations

Eqs. (2.6a) and (2.6b) will be shown to be applicable for a broad range of systems.

According to Eq. (2.5a) a criticality emerges in the fixed-p ensemble if dν = 1.

This leads, according to Eq. (2.5b) for particle-encapsulating manifolds, to a linear

dependence of 〈V 〉 on Q. Alternatively, for a general scaling behavior of particle-

encapsulating vesicles, which follows a power-law dependence, 〈V 〉 ∼ Qα, changing

variables to p = Q/V we get in the fixed-p ensemble that the mean volume follows

〈V 〉 ∼ pα/(1−α), that is, a criticality emerges if α = 1. We will see further on, in

Chapters 3 and 5, model systems which exhibit this criticality. This point will be

further clarified in Chapter 7.

According to the scaling analysis, to get a criticality during the swelling of pres-

surized vesicles one should consider objects with an unperturbed swelling exponent

4The range in the fixed-p ensemble is pN1/(d−1) < N (1−dν)/(d−1), which vanishes as N → ∞ for
dν > 1, i.e., so long as there is no criticality. In the fixed-Q case the range is Q/N < 1/N , which is
irrelevant regardless of ν.
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ν = 1/d. For objects embedded in d = 2, ν = 1/2 corresponds to Gaussian rings, and

indeed, the mean area of such rings diverges at a critical pressure [75, 85, 86]. The

same swelling exponent characterizes freely-jointed rings as well. It will be shown in

Chapter 3 that the inflation of these objects undergoes a phase transition. However,

if the blob analysis holds, this also implies that for d ≥ 3 criticality will emerge only

when the fractal dimension of the objects is D = D/ν = (d−1)d (see Section 1.1.4 and

Section 1.2.2), which is larger than the upper bound set by compact objects, D = d.

Obviously, such a scenario is physically impossible.

We have seen in these analyses that a criticality may appear during the swelling

of pressurized vesicles, while for particle-encapsulating ones, the swelling is always

gradual. These two ensembles, therefore, may be thermodynamically inequivalent.

Practically, this analysis gives rise to inequivalence only for the single case of d = 2

and ν = 1/2. The rest of the cases, as far as this analysis goes, should not involve

criticality and should be able to move from one representation to the other using a

one-to-one smooth transform. Nonetheless, as will be shown in Chapter 5, there could

be exceptional cases where the blob analysis is invalid, and a phase transition with

increasing p appears in d = 3.
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Chapter 3

Swelling of 2D Freely Jointed Rings

As a first example for the realization of the scaling analyses of Chapter

2 we study a two-dimensional model of a freely jointed ring. For this model,

the scaling analyses predict criticality in the swelling with increasing pres-

sure difference p and gradual swelling with increasing number Q of trapped

particles. In this chapter we study both scenarios. For the fixed-p ensem-

ble, inextensible chains of N monomers are considered. Using a Flory ar-

gument, mean-field calculation and Monte Carlo simulations, we show that

at a critical pressure, pc ∼ N−1, the ring undergoes a second-order phase

transition from a crumpled, random-walk state, where its mean area (two-

dimensional volume) scales as 〈V 〉 ∼ N , to a smooth state with 〈V 〉 ∼ N2.

The transition belongs to the mean-field universality class. At the critical

point a new state of polymer statistics is found, in which 〈V 〉 ∼ N3/2. For

p � pc we use the transfer-matrix technique to derive exact asymptotic

expressions for the thermodynamic properties of the smooth state. For

the fixed-Q scenario, both Gaussian and inextensible freely jointed rings

are studied. The Gaussian model is solved exactly, and the freely jointed

one is treated using a Flory argument, mean-field theory, and Monte Carlo

simulations. In the two models the swelling is gradual with Q and no

criticality is observed. In agreement with the scaling analysis, the mean

volume follows a single scaling law in the fixed-Q case. By contrast, when

the particles are in contact with a reservoir of fixed chemical potential, the
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criticality of the fixed-p ensemble is retained.1

3.1 Introduction

Considerable theoretical efforts were directed during the 1980s and 1990s at random

polymer rings constrained to a plane, both as a fundamental problem of statistical

mechanics [89, 90, 91, 92, 93, 94] and as a highly idealized model for membrane

vesicles [25, 73, 74, 75, 85, 86, 95, 96, 97]. The statistics of 2D chains have been

studied also experimentally, using polymers adsorbed at liquid interfaces [98, 99] or

membranes [100], as well as vibrated granular chains [101, 102] and rings [103, 104]. In

those experimental systems both random-walk and self-avoiding-walk statistics were

observed.

Pressurized 2D rings were theoretically investigated in a number of works [25,

73, 74, 75, 85, 86, 95, 96]. In the Rudnick-Gaspari model [75, 85, 86] the ring is

represented by a closed Gaussian chain of N springs of fixed elastic constant, subject

to an inflating pressure differential p. At a critical pressure pc ∼ N−1 the mean area

was found to diverge (the ring inflates to infinity). This divergence, obviously, is made

possible by the extensibility of the chain, i.e., the ability of the springs in this model to

be infinitely stretched. For these Gaussian chains the embedding dimension is d = 2

and the swelling exponent is ν = 1/2. Hence, the reported criticality is in line with

the scaling analysis of the previous chapter, Eq. (2.5a). In addition, according to

this analysis the criticality should be removed for particle-encapsulating vesicles — a

prediction which we are going to check below. Two dimensional Gaussian rings are

unique in the sense that both contributions to the free energy (stretching and pressure

related one) are proportional to the mean-square link length. That is, any addition

to the free energy which is not proportional to the mean-square link length will most

probably remove this criticality.

In the current chapter we revisit the Rudnick-Gaspari model while imposing inex-

tensibility of the chain as is actually appropriate for real polymers or vesicles. This

1The results presented in this chapter were published in Refs. [87, 88]. Since this investigation of
freely-jointed rings had been conducted long before the scaling analysis of Chapter 2 was devised,
it is done in more mathematical detail than the investigations presented in the following chapters
(Chapters 4 and 5).
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constraint does not change the swelling exponent of the unperturbed chain and, hence,

according to our scaling analysis, the criticality should remain. However, it changes

the infinite inflation at p = pc into a second-order phase transition between a crumpled,

random-walk state and a smooth one. In the second part of this chapter we extend

the models of pressurized Gaussian and inextensible freely jointed rings in d = 2 to

the case where the swelling is caused by a trapped ideal gas of particles. We examine

both the canonical and grand-canonical ensembles, in which the particle number Q

or the particle fugacity z are fixed, respectively. The chapter is thus divided into two

parts. The first (Section 3.2) concerns pressurized rings and the second (Section 3.3)

concerns particle-encapsulating rings. Results specific to each scenario are discussed in

the corresponding section, while the overall picture of two-dimensional freely jointed

rings is summarized in Section 3.4.

3.2 Swelling of Pressurized Rings

We start the investigation with the scenario of pressurized rings and define the studied

model in Section 3.2.1. Several analytical approaches are used (Sections 3.2.2–3.2.4)

as well as Monte Carlo Simulations (Section 3.2.5) in order to study the swelling of

such a system. Results concerning this specific system are summarized and discussed

in Section 3.2.6.

3.2.1 Model

The system under consideration is illustrated in Fig. 3.1. A closed, two-dimensional,

freely jointed chain of N monomers is subject to an inflating 2D pressure differential

p > 0 between its interior and exterior. The monomers are connected by rigid links

of length l. We define l ≡ 1 as the unit of length and the thermal energy kBT ≡ 1

as the unit of energy. (Thus, p is measured in units of kBT/l
2.) The chain is ideal,

i.e., there are no interactions between monomers. (Effects related to self-avoidance

will be briefly discussed in Sections 3.2.2 and 3.2.6, and will be studied in detail in

Chapter 4.) In addition, no bending rigidity is taken into account, i.e., the chain is

freely jointed. A configuration of the ring is defined by a set of 2D vectors {rj}j=0...N

specifying the positions of the monomers. The condition that the chain be closed is
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expressed by r0 = rN .

l

rj+1

rj

O

Figure 3.1: Schematic illustration of the ring and its parameters.

The probability of a specific configuration is

P ({rj}, p) ∝ epV [{rj}]
N∏

j=1

δ(|rj − rj−1| − 1), (3.1)

where V is the area (two-dimensional volume) enclosed by the ring. As in previ-

ous works [75, 85, 86, 90, 91, 92], we take V as the algebraic area rather than the

geometrical one,

V [{rj}] =
1

2

N∑
j=1

(rj−1 × rj) · ẑ, (3.2)

where ẑ is a unit vector perpendicular to the 2D plane of the ring. This area may take

both positive and negative values. At zero pressure both signs are equally favorable

and the mean area must vanish. At high pressures the probability of configurations

with negative V is exponentially small in p|V |, and whether one takes the algebraic or

geometrical area will become statistically insignificant. (We shall further discuss this

assumption in Section 3.2.6.)

Using Eqs. (3.1) and (3.2), we write the partition function of the ring as

Z(p,N) =

∫ N∏
j=1

drje
1
2
p(rj−1×rj)·ẑδ(|rj − rj−1| − 1). (3.3)
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3.2.2 Flory Argument

We begin the analysis with a simple Flory argument (see Section 1.1.3) which captures

most of the physics to be more rigorously treated in the following sections. The free

energy of the ring (in units of kBT ) is expressed as a function of R, the radius of the

statistical cloud of monomers (i.e., the mean radius of gyration). We divide it into

three terms,

F (R) = Fel + Finext + Fp

Fel ∼ R2/N, Finext ∼ R4/N3 Fp ∼ −pR2. (3.4)

The elastic term, Fel, is the usual entropic-spring free energy of a Gaussian chain [1].

The second term is the leading non-Gaussian correction due to the inextensibility of

the chain [see Appendix A, Eq. (A.5)], needed here to stabilize the ring against infinite

expansion. The last term is the pressure contribution, where the mean volume of the

ring is taken as proportional to R2 [93, 94].

Equation (3.4) has the form of a Landau free energy, describing a second-order

transition at p = pc ∼ N−1. Since the critical pressure depends so strongly on system

size, we use hereafter the rescaled pressure p̂ ≡ p/pc ∼ pN , and define the ther-

modynamic limit as N → ∞ and p → 0 such that p̂ is finite. For p̂ < 1 Finext is

negligible, and R has a Gaussian distribution with 〈R2〉 ∼ N(1− p̂)−1. For p̂ > 1 we

have R2 ∼ N2(p̂ − 1). Thus, defining an order parameter M = R/N , we find in the

thermodynamic limit

M ∼

0 p̂ < 1

(p̂− 1)β, β = 1/2 p̂ > 1.

(3.5)

At the critical point itself F = Finext ∼ R4/N3, and R has a non-Gaussian distribution

with

〈R2(p̂ = 1)〉 ∼ N2νc , νc = 3/4. (3.6)

Note that the competition between Fel and Fp, leading to the second-order tran-

sition, is unique to 2D. In addition, when an excluded-volume term, Fv ∼ N2/R2, is

added to the free energy, Eq. (3.4), the transition is removed. This agrees with previ-
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ous studies of self-avoiding rings [25, 73, 74], which did not report any phase transition

upon increasing pressure, and will be further discussed in the following chapter.

3.2.3 Mean-Field Theory

In this section we calculate the partition function of the freely jointed ring, Eq. (3.3), by

relaxing the rigid delta-function constraints on link lengths into harmonic potentials.

The spring constant λ of the links is chosen so as to make the root-mean-square

length of a link equal to l = 1. This type of approximation, first suggested by Harris

and Hearst [105], was successfully employed in studies of the Karatky-Porod worm-

like-chain model [105, 106, 107], where it was shown to be equivalent to a mean-field

assumption (for the field conjugate to the rigid link-length constraints) [106, 107]. The

partition function contains now only Gaussian terms and, therefore, can be calculated

exactly,

Z(p,N, λ) =

∫ N∏
j=1

drje
1
2
prj−1×rj−λ(rj−rj−1)2

=
1

λN

Np

4λ sin (Np
4λ

)
.

(3.7)

(The spring constant λ is in units of kBT/l
2.) Details of the calculation can be found

in Ref. [75]. This result can be obtained also by analogy to the quantum propagator

of a charged particle in a magnetic field [108]. The mean volume is obtained by

differentiation with respect to p,

〈V (p,N, λ)〉 =
∂ lnZ

∂p
=

1

p
−
N cot (Np

4λ
)

4λ
. (3.8)

For λ = 1 Eq. (3.8) is the same as the result obtained by Rudnick and Gaspari

[75, 85, 86], exhibiting a divergence at

pc = 4π/N. (3.9)

Yet, in our case λ is not fixed but is to be determined self-consistently to ensure

the softened inextensibility constraint. It is clear that, as the pressure increases, the

springs must become stiffer to satisfy this constraint. To impose the constraint, we
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calculate the mean-square link length and set it to 1,

〈(rj − rj−1)
2〉 = − 1

N

∂ lnZ

∂λ
=

1

λ
+

p

Nλ

(
1

p
−
N cot (Np

4λ
)

4λ

)
= 1, (3.10)

thus obtaining a transcendental equation for λ(p,N). We combine Eqs. (3.8) and

(3.10) to get a simpler expression for 〈V 〉 as a function of λ,

〈V (p,N, λ)〉 =
N(λ− 1)

p
. (3.11)

Numerical solution of Eq. (3.10) for λ [in the range λ > Np/(4π)] and substitution of

the result in Eq. (3.11) yield the mean volume as a function of p and N . (See dashed

curves in Fig. 3.2.)

0 5 10 15 20
^p = p / pc
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Figure 3.2: The mean volume in units of Vmax ∼ N2 as a function of the rescaled pressure
(in units of pc ∼ N−1) as obtained from the mean-field approximation. The dashed curves
are calculated numerically using Eqs. (3.10) and (3.11), whereas the solid curves (calculated
only for p̂ ≥ 1) present the approximation given by Eq. (3.15). Calculations were performed
for N = 10 (thin curves) and N = 105 (thick curves).

For very low pressures, p� pc, we expand Eq. (3.8) to first order in p to get

〈V (p� pc, N)〉 =
1

48
N2p, (3.12)

i.e., a linear dependence on p as expected from linear response. (Recall that at p = 0

the mean algebraic area vanishes.)
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For higher pressure we obtain a good approximation for λ(p,N) in the limit N � 1

by substituting in Eq. (3.10) cot[Np/(4λ)] ' [Np/(4λ)− π]−1. This gives

λ(p̂, N � 1) '
p̂+ 1 + 1

N
+
√

(p̂− 1)2 + 2
N

(p̂+ 1) + 1
N2

2
, (3.13)

where p̂ ≡ p/pc = pN/(4π) is the rescaled pressure. In the thermodynamic limit Eq.

(3.13) reduces to the continuous but nonanalytic function,

λ(p̂, N →∞) =

1 p̂ < 1

p̂ p̂ > 1.

(3.14)

Equation (3.13) should be regarded as an asymptotic expression in the limitNp/(4λ) →

π, which turns out to be valid for any p 6� pc. (A Taylor expansion around this point

fails because of the nonanalyticity inferred above.) Substituting Eq. (3.13) in Eq.

(3.11) yields an approximate expression for 〈V 〉 as a function of p̂ and N,

〈V (p̂ 6� 1, N � 1)〉 ' N2

4π

p̂− 1 + 1
N

+
√

(p̂− 1)2 + 2
N

(p̂+ 1) + 1
N2

2p̂
. (3.15)

In the thermodynamic limit, the behavior of 〈V 〉 around and above the critical

pressure is obtained from Eq. (3.15) as

〈V 〉 =


N
4π

1
p̂(1−p̂)

p̂→1−−−−→ N
4π

1
1−p̂

1− p̂� N−1/2

N3/2

4π
|1− p̂| � N−1/2

N2

4π
p̂−1

p̂

p̂→1+

−−−→ N2

4π
(p̂− 1) p̂− 1 � N−1/2,

(3.16)

revealing a continuous (second-order) transition. Below the transition we get the same

behavior as in the Rudnick-Gaspari model [75, 85], 〈V 〉 ∼ N(1− p̂)−1. Yet, due to the

inextensibility in our model, the increase of 〈V 〉 as p̂→ 1− breaks at |1−p̂| ∼ N−1/2. In

the transition region, |1− p̂| � N−1/2, which shrinks to a point in the thermodynamic

limit, we find 〈V 〉 ∼ N2νc , νc = 3/4. Above the transition the ring reaches a smooth

state with 〈V 〉 ∼ N2(p̂− 1)/p̂. All of these results agree with the findings of the Flory

argument presented in Section 3.2.2 once we identify 〈V 〉 ∼ 〈R2〉. As p is increased to



3.2 Swelling of Pressurized Rings 39

infinity, 〈V 〉 tends, as it should, to

〈V (p̂→∞, N)〉 = Vmax =
N2

4π
, (3.17)

which is the area of a circle of perimeter N .

Figure 3.2 shows the dependence of 〈V 〉 on p̂ for N = 10 and 105 calculated both

from the numerical solution of Eqs. (3.10) and (3.11), and using the approximate

expression (3.15). For large N the critical behavior becomes apparent, with a tran-

sition between two distinct states—one in which 〈V 〉 ∼ N and, hence, in units of

Vmax ∼ N2, the mean volume vanishes for N →∞, and another with a mean volume

proportional to Vmax ∼ N2. As can be seen in Fig. 3.2, the approximate expression

(3.15) is practically indistinguishable from the numerical solution for p̂ & 1, even for

small N .

The compressibility (defined with respect to the reduced pressure p̂) is obtained

from Eq. (3.16) as

κT =
1

V

∂V

∂p̂

p̂→1±−−−→ |p̂− 1|−γ, γ = 1. (3.18)

At the critical point itself the compressibility diverges with N as

κT (p̂ = 1) =
1

2
N1/2. (3.19)

To calculate the mean-square radius of gyration, 〈R2
g〉 = N−1

∑
|rj|2 (where rj

are measured with respect to the center of mass), we add a h
∑
|rj|2 term to the

Hamiltonian of Eq. (3.7) and differentiate the resulting partition function with respect

to h. This yields

〈R2
g(p,N, λ)〉 =

1

N

∂ lnZ(p,N, λ, h)

∂h

∣∣∣∣
h=0

=
4λ−Np cot (Np

4λ
)

Np2
=

4λ

Np
〈V 〉. (3.20)

For p̂ � 1, combining this result with Eqs. (3.12) and (3.14), we get 〈R2
g〉 = N/12,

which is the well known result for the mean-square radius of gyration of a Gaussian ring

(e.g., [1]). For large pressures, p̂ ≥ 1, we have from Eq. (3.14) λ
N→∞−−−→ p̂ = pN/(4π),

thereby recovering the relation for an average circle, π〈R2
g〉 = 〈V 〉.

Figure 3.3 shows the dependence of 〈R2
g〉 on N at fixed pressure. The data were

obtained by substituting the numerical solution for λ [Eq. (3.13)] in Eq. (3.20). The
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scaling of 〈R2
g〉 changes at the critical point Nc = 4π/p. Below the critical point,

N < Nc, 〈R2
g〉 ∼ N , as in a Gaussian chain. Above it 〈R2

g〉 ∼ N2, as in a stretched

chain. As p decreases, the transition becomes sharper. At exactly N = Nc, 〈R2
g〉 scales

as N3/2. Thus, the analysis of 〈R2
g〉 yields the same scaling with N as obtained for

〈V 〉.

1 100 10000 1e+06 1e+08
N

1

1e+05

1e+10

1e+15

〈Rg
2〉

Figure 3.3: Mean-square radius of gyration as a function of N at fixed values of p =
10−5, 10−3 and 10−1 (thick, dashed and thin curves, respectively) as obtained from the
mean-field theory. For N < Nc = 4π/p (marked with arrows) 〈R2

g〉 ∼ N , while for N > Nc

〈R2
g〉 ∼ N2. At the critical point (diamonds) 〈R2

g〉 is proportional to N3/2. The dotted lines
show, from bottom to top, the dependencies for an unpressurized ring (〈R2

g〉 = N/12), for a
ring at the critical pressure [〈R2

g〉 = N3/2/(4π2)] and for a stretched circle [〈R2
g〉 = N2/(4π2)].

3.2.4 Transfer-Matrix Formulation

Since the interactions between all adjacent monomers are identical, including the one

between the first and the Nth, the partition function may be rewritten in the following

transfer-matrix form:

Z(p,N) = Tr
{rj}

∏N
j=1 T (rj−1, rj),

T (r, r′) = e
p
2
(r×r′)·ẑδ(|r− r′| − 1). (3.21)
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Solution of the associated eigenvalue problem,

µΨ(r) =

∫
dr′T (r, r′)Ψ(r′), (3.22)

(in particular, finding the two eigenvalues µ of largest absolute value) will yield the

exact solution of the model.

Two properties of the operator T are readily noticed: it is non-Hermitian, T (r, r′) 6=

T (r′, r), and it is rotational-invariant. To exploit the invariance to rotations, we change

to polar coordinates, r = (ρ, ϕ), and separate variables as Ψ(r) = Ω(ρ)eimϕ, where

m = 0,±1,±2, . . . to maintain periodicity in ϕ. Equation (3.22) can then be integrated

over angles to give

µΩ(ρ) =

∫ ρ+1

ρ−1

dρ′T̃ (ρ, ρ′)Ω(ρ′)

T̃ (ρ, ρ′) =
2 cosh

(
pρρ′

√
1−∆2/2 + im cos−1 ∆

)
ρ
√

1−∆2

∆(ρ, ρ′) =
ρ2 + ρ′2 − 1

2ρρ′
,

(3.23)

thus reducing the original operator to the one-dimensional operator T̃ .

Unfortunately, we have not been able to diagonalize T̃ for any p. For p� pc, nev-

ertheless, the ring has stretched configurations, and we can assume that the distances

of all monomers from the center of mass are much larger than the link length, ρ� 1.

We expand Ω(ρ′) around ρ to zeroth order, change variables according to ρ′ = ρ+sin θ,

and integrate over θ to get

µ(0)Ω(ρ) = 2πI0(pρ/2)Ω(ρ), (3.24)

where I0 is the zeroth-order modified Bessel function of the first kind. Thus, at this

order of approximation, the eigenfunctions have the form Ω
(0)
k (ρ) = [N/(2πρk)]

1/2δ(ρ−

ρk) with a continuous spectrum of eigenvalues. The spectrum is bounded from above

by µ
(0)
max = 2πI0(pρmax/2) = 2πI0[pN/(4π)], where ρmax = N/(2π) is the radius of

a perfect circle of perimeter N . (The value of ρmax can also be obtained from the

condition that
∫
|Ω(ρ)|2dρ ≥ 1, i.e., that going from the center of mass outward, one

must cross the ring at least once.)

Within the zeroth-order approximation, and in the thermodynamic limit, the par-
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tition function is given by

Z(0)(p,N) = [µ(0)
max]

N = [2πI0(pN/4π)]N . (3.25)

This result has a straightforward interpretation. As shown in Appendix A [Eq. (A.1)],

it is identical to the partition function of a 2D, open, freely jointed chain subject to

a tensile force f = pN/(4π). This force is just the tension associated with a Laplace

pressure p acting on a circle of radius ρmax ∼ N . The mean volume is obtained from

Eq. (3.25) as

〈V (p̂, N)〉 =
∂ lnZ

∂p
=
N2

4π

I1(p̂)

I0(p̂)
, (3.26)

which saturates, as expected, to Vmax = N2/(4π) as p→∞. The approach to satura-

tion is given by

〈V (p̂� 1)〉/Vmax ' 1− 1

2p̂
, (3.27)

which corrects the mean-field prediction, Eq. (3.16), by a factor of 2.

3.2.5 Monte Carlo Simulations

Since our Flory argument and mean-field theory may fail near the critical point, we

conducted Monte Carlo simulations to obtain the mean volume 〈V 〉, mean-square

radius of gyration 〈R2
g〉 and mean-square volume fluctuation 〈∆V 2〉 as a function of

pressure p for different ring sizes N .

Numerical Scheme

Figure 3.4: Schematic view of a section of the simulated polygon. A randomly chosen vertex
(marked by a circle) can be moved to a single position only (marked by a diamond) so as
to maintain the lengths of the two links attached to it constant. The area enclosed by the
resulting rhomb is the difference in total polygon area for the given step.
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We consider a polygon of N equal edges, defined by the 2D coordinates of its

vertices. An off-lattice simulation is used, i.e., the positions of the vertices are defined

in continuous space. At each step a random vertex is chosen and moved to the only

other position that satisfies the edge-length constraint (Fig. 3.4). The difference in

energy between the two steps is proportional to the difference in total area, which in

turn is simply given by the area of the rhomb composed of the two edges prior to and

after the move (see Fig. 3.4). This way each step takes only O(1) operations. The

move is subsequently accepted or rejected according to the Metropolis criterion. (See

Section 1.1.6.)

The initial configuration is a stretched, regular polygon. This initial condition and

the dynamics defined above imply that the polygon angles are restricted to change in

discrete quanta of ±2π/N . Thus, although the algorithm is off-lattice, the simulated

ring is a discrete variant of a freely jointed chain which strictly coincides with the

freely jointed model only for N →∞.

The simulations were performed for N between 50 and 3200, and for p between 0

and 4pc. Away from the critical point, the number of steps required for equilibration

is O(N3), but near pc the simulation length must be extended due to critical slowing

down [109]. This limited our investigation of the transition to N . 3000.

Results

Figure 3.5 shows simulation results for the mean volume as a function of pressure

for different values of N . When p is scaled by pc ∼ N−1 and 〈V 〉 by N (below pc)

or by Vmax ∼ N2 (above pc), the data below and above the transition collapse onto

two universal curves, thus confirming the predicted scaling laws (see Section 3.2.3) and

corresponding to the crumpled and smooth states. However, while the data well below

pc coincide with the scaling function obtained from the mean-field approximation, Eq.

(3.15), the data above the critical pressure collapse onto a different curve.

The simulation results for the mean volume and compressibility at p = pc as a

function of N are shown in Fig. 3.6A. The reduced compressibility, defined in Eq.

(3.18), was calculated from the measured mean-square volume fluctuation as κT =
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Figure 3.5: Mean volume as a function of pressure below (A) and above (B) the critical point.
The pressure is scaled by pc = 4π/N , and the volume by N in A and by Vmax = N2/(4π) in
B. Symbols show the results of MC simulations for different values of N . The dashed lines
show the prediction of the mean-field theory in the limit N →∞.

4π〈∆V 2〉/(〈V 〉N). We get

〈V (p = pc)〉 = (0.102± 0.007)N1.49±0.01 (3.28)

κT (p = pc) = (0.56± 0.09)N0.495±0.025. (3.29)

Hence, the mean-field exponents for the scaling with N , Eqs. (3.16) and (3.19), are

confirmed. The predicted prefactor of the compressibility is within the standard error

of the fit while that of the mean volume is shifted by 4 standard errors.

We also measured from simulations the dependence of the mean-square radius of

gyration on N , as depicted in Fig. 3.6B. As predicted, below the critical pressure we

find 〈R2
g〉 ∼ N1.01±0.02, and above it 〈R2

g〉 ∼ N1.985±0.011. At p = pc we get

〈R2
g(p = pc)〉 = (0.043± 0.025)N1.46±0.13. (3.30)

For illustration we show in Fig. 3.7 four randomly chosen conformations of an

1600-segment ring at the critical pressure. The shapes vary in size significantly due

to critical fluctuations.

The simulation results for the smooth state, p > pc, are shown in Fig. 3.8, where

they can be compared with the transfer-matrix calculation, Eq. (3.26), and the mean-

field results, Eqs. (3.10) and (3.11). On the one hand, there is good agreement with

the transfer-matrix calculation for p̂ & 5, particularly compared to the mean-field
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Figure 3.6: (A) Mean volume and compressibility at p = pc as a function of N obtained
by MC simulations. The fits 〈V (pc)〉 = (0.102 ± 0.007)N1.49±0.01 and κT (pc) = (0.56 ±
0.09)N0.495±0.025 are given by the solid lines. (B) Mean-square radius of gyration as a
function of N at different values of p = 1

2pc, pc and 2pc with best fits (solid lines) 〈R2
g(

1
2pc)〉 =

(0.12 ± 0.01)N1.01±0.02, 〈R2
g(pc)〉 = (0.043 ± 0.025)N1.46±0.13, and 〈R2

g(2pc)〉 = (0.019 ±
0.001)N1.985±0.011.

result. On the other hand, the mean-field theory succeeds in reproducing the phase

transition, whereas the zeroth-order transfer-matrix calculation is invalid for these low

pressures.

Critical Exponents

We have confirmed the predicted exponents relating 〈V 〉, 〈R2
g〉 and κT at p = pc with

the system size N . We now turn to the exponents characterizing the divergence with

|p̂ − 1|. As in any continuous phase transition, the critical fluctuations make it hard

to accurately measure these critical exponents. Instead, we choose the more reliable

route of finite-size scaling to obtain the relations between them. (See Section 1.1.6.)

Let us divide the ring at the critical state into Pincus correlation blobs [19] (see also

Section 1.1.5) of g monomers and diameter ξ each, such that within a blob the polymer

behaves as an unperturbed random chain, i.e., g ∼ ξ2, whereas the chain of blobs is

stretched by the pressure. The perimeter of the ring is R ∼ (N/g)ξ ∼ N/ξ. We have

already established that the perimeter of the ring at p = pc scales as R ∼ N3/4. (See

Fig. 3.6B.) Thus, for a finite-size system, we get a correlation length which diverges

at p = pc as

ξ(p = pc) ∼ N1/4. (3.31)
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Figure 3.7: Four random conformations of a ring with N = 1600 at the critical state as
obtained by MC simulations, demonstrating the critical fluctuations. (The positions of the
rings have no significance.) The spacing between gridlines is ten times the link length. The
dotted circle, shown for reference, has an area (2D volume) equal to the mean area of the
ring at this state.

On the other hand, close to the critical point the correlation length diverges as ξ ∼

|p̂− 1|−ν , the compressibility as κT ∼ |p̂− 1|−γ, and the order parameter increases as

M ∼ |p̂− 1|β. Using Eq. (3.31) and the numerically established results, M = R/N ∼

N−1/4 and κT ∼ N1/2, we obtain the relations

β = ν, γ = 2ν, (3.32)

which hold for the mean-field universality class. (Note that the exponents α and

δ are irrelevant for this system, since both the ordering field and temperature are

incorporated in the single parameter p.)

3.2.6 Discussion

We have demonstrated that the swelling of a 2D freely jointed ring due to a pressure

differential exhibits a second-order smoothening transition of the mean-field univer-

sality class. Below the critical pressure the ring behaves as a random walk, with both

the mean volume 〈V 〉 and mean-square radius of gyration 〈R2
g〉 proportional to N . In
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Figure 3.8: Mean volume (scaled by Vmax) as a function of pressure (scaled by pc), as
obtained by the zeroth-order transfer-matrix calculation (solid curve), mean-field approxi-
mation (dashed curve), and MC simulations for N = 1600 (error bars).

this crumpled state the mean volume obeys the scaling 〈V 〉 = Nf<
p (p/pc). Mean-field

theory accurately captures the scaling law as well as the scaling function f<
p . (See

Fig. 3.5A.) This lies in the fact that, for an unstretched chain, the Gaussian-spring

description in the mean-field calculation and the actual freely jointed model coincide

as N →∞.

Above the critical pressure 〈V 〉 and 〈R2
g〉 are proportional to N2. For this smooth

state, the scaling conjecture of Chapter 2 holds and a single scaling law exists 〈V 〉 =

N2f>
p (p/pc) (Fig. 3.5B). This scaling law is also obtained from the mean-field theory,

yet this theory fails to predict the correct scaling function f>
p . This is because in a

stretched state the entropy of a chain of Gaussian, variable springs is much larger than

that of a freely jointed chain of rigid links. For p� pc we have calculated f>
p exactly

[Eq. (3.26) and Fig. 3.8].

At the transition point itself a new state of polymer chains has been discovered,

with 〈V 〉 and 〈R2
g〉 proportional to N2νc , νc = 3/4. The swelling exponent νc turns out

to be identical to that of a 2D self-avoiding walk, although the physical origins of the

two exponents are unrelated; the freely jointed ring in this intermediate state between
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crumpled and smooth behaviors contains numerous intersections, as is clearly seen in

Fig. 3.7.

One of the strongest assumptions underlying our analysis, as well as those of Refs.

[75, 85, 86], is the replacement of the actual geometrical area of the ring with its alge-

braic area. An important issue is how this assumption affects our results concerning

the transition. It is clear that negative contributions to the algebraic area are signif-

icant in the crumpled, random-walk state and insignificant in the smooth state. The

key question, therefore, is whether they are statistically significant at the transition.

Returning to Fig. 3.7 and the blob analysis presented in Section 3.2.5, we infer that the

negative area contributions lie only within the correlation blobs. We have shown that

each blob contains g ∼ ξ2 ∼ N1/2 monomers. The deviation of the geometrical area of

a blob from its algebraic area is 〈δV 2〉1/2 ∼ ξ2 ∼ N1/2. (Recall that the blob contains

an unperturbed chain with zero mean algebraic area.) The ring contains N/g ∼ N1/2

such blobs. Hence, the total deviation of the geometrical area from the algebraic one

is (N〈δV 2〉/g)1/2 ∼ N3/4. In the limit N →∞ this is negligible compared to the mean

area (2D volume) of the ring at the critical state, 〈V 〉 ∼ N3/2. Thus, we conjecture

that the same smoothening transition as the one reported here will be found also in a

model which considers the geometrical area rather than the algebraic one.

An extension of this model including a non-vanishing bending rigidity was treated

by others in a follow-up work [76] and essentially leads to a redefinition of the link

length and the number of monomers. (See also Section 1.1.2.) Bending rigidity, thus,

is not a relevant parameter and the transition is not removed.

3.3 Swelling of Particle-Encapsulating Rings

We now continue to the second studied scenario of this chapter — that of particle-

encapsulating rings, where both Gaussian and inextensible freely jointed rings are

treated. We define the model in Section 3.3.1, and in Section 3.3.2 we derive exact

results for a Gaussian ring swollen by trapped particles. We then treat the swelling

of a freely jointed ring in Section 3.3.3 by employing a Flory argument, mean-field

calculation and Monte Carlo simulations. In addition, we derive exact asymptotes

for the large-swelling regime. Finally, the results for particle-encapsulating rings are
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discussed in Section 3.3.4.

3.3.1 Model

We model a 2D polymer ring as a closed ideal chain of N monomers and no bending

rigidity. The ring encapsulates an ideal gas of particles. We shall consider separately

the two cases of a Gaussian and a freely jointed chain. The monomer–monomer link

length is taken as the unit length, l ≡ 1. For a freely jointed chain this length remains

fixed under swelling. For a Gaussian chain, however, the link length has a statistical

distribution that varies with swelling; l is then defined as the unperturbed root-mean-

square link length.

In a canonical ensemble, where the number Q of particles is fixed, the partition

function is given, up to a constant prefactor, by

Z(N,Q) =

∫ ∞

0

dV P0(N, V )V Q/Q!, (3.33)

where V is the 2D volume (i.e., area) bounded by the ring, and P0(N, V ) is the

probability distribution function of the volume for an unpressurized N -monomer ring

(for either a Gaussian or a freely jointed chain). From Eq. (3.33) the mean volume of

the ring is given by

〈V (N,Q)〉 = Z−1

∫
dV V P0(N, V )V Q/Q! = (Q+ 1)Z(N,Q+ 1)/Z(N,Q). (3.34)

In a grand-canonical ensemble, where the particles are in contact with a reservoir

of fixed fugacity z, we use Eq. (3.33) to write the grand partition function as

Z(N, z) =
∞∑

Q=0

Z(N,Q)zQ =

∫ ∞

0

dV P0(N, V )ezV . (3.35)

The mean volume in this ensemble is given, therefore, by

〈V (N, z)〉 = ∂lnZ/∂z, (3.36)

and the mean particle number by

〈Q(N, z)〉 = ∂lnZ/∂ln z = z〈V 〉. (3.37)

Equation (3.36) arises from the fact that the gas of particles is ideal and, hence, their
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pressure is equal to their fugacity. According to Eq. (3.37) the mean particle density,

c = 〈Q〉/〈V 〉, is also equal to the fugacity z, as it should for an ideal gas.

In the grand-canonical ensemble fluctuations in particle number and in ring volume

are correlated. The correlation is characterized by the following covariance,

CQV (N, z) =
〈QV 〉 − 〈Q〉〈V 〉

〈Q〉〈V 〉
. (3.38)

From Eq. (3.35) we find

〈QV 〉 =
1

Z
∂2Z

∂(ln z)∂z
= z〈V 2〉, (3.39)

which, combined with Eq. (3.37), yields

CQV (N, z) =
〈∆V 2〉
〈V 〉2

, (3.40)

where 〈∆V 2〉 = 〈V 2〉 − 〈V 〉2 is the mean-square volume fluctuation. Hence, interest-

ingly, in the grand-canonical ensemble the cross-correlation of Q and V is identical to

the relative mean-square fluctuation in the ring volume.

Several complications related to the definition of the ring volume in the model

should be mentioned. In principle the V appearing in Eq. (3.33) should be the geo-

metrical area Vg of the ring, since it is Vg that determines the translational entropy of

the particles. As in Section 3.2 and previous works [75, 85, 86], however, we are tech-

nically bound to use the algebraic area V instead. This area (2D volume) may contain

both positive and negative contributions, V+ and V−. In an unperturbed ring positive

and negative areas are equally favorable, and the mean algebraic area then vanishes.

(The algebraic area may also “count” a certain geometrical-area contribution more

than once due to chain winding.) On the one hand, particle entropy forces us to use

only the positive-area part of P0 (hence the integration from 0 to ∞ in Eq. (3.33)).

Consequently, the mean algebraic area of an unperturbed ring, 〈V 〉, does not vanish.

This is the definition used in the analytical parts of this work. In the simulations, on

the other hand, we follow changes in the actual algebraic area of the ring, allowing the

total area to become negative. Thus, in the numerical parts of this work 〈V 〉 of an un-

perturbed ring does vanish. In addition, the simulated particles are placed only inside

positive parts of the ring area, i.e., their entropy-relevant area is V+ 6= V . Finally, in
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Eq. (3.35) one notices a direct analogy between the problem of fixed particle fugacity

studied here and that of an empty ring subject to a fixed pressure, as studied in Sec-

tion 3.2 and in Ref. [85]. The mapping is not exact, however, since in the current case

V is restricted to positive values, whereas in the previous section and [85] it was not.

All these subtleties are significant only in the weak-swelling regime of small volumes.

As the inner pressure exerted by the particles increases, the distinction between the

various volume definitions becomes negligible and does not affect our main results, as

will be demonstrated below.

3.3.2 Gaussian Ring

In this section we consider a 2D Gaussian ring swollen by trapped particles, for which

exact results can be derived. The chain consists of a set of N springs with fixed spring

constant, λ = 1, in units of kBT/l
2 (to yield an unperturbed root-mean-square spring

length of l = 1). For the sake of the following sections, in which the spring constant

is allowed to change, we keep the results dependent on λ without substituting λ = 1.

Canonical Ensemble

The probability distribution function of the algebraic area for a 2D Gaussian ring was

calculated by Khandekar and Wiegel [90, 91, 92],2

PG
0 (N, V ) =

1

λN

2πλ

N cosh2(2πλV/N)
. (3.41)

Substituting Eq. (3.41) in Eq. (3.33), we obtain the exact partition function,

ZG(N,Q) =
2

λN

(
N

4πλ

)Q

(1− 21−Q)ζ(Q), (3.42)

where ζ is the Riemann zeta function. The mean volume is then given, according to

Eq. (3.34), by

〈V G(N,Q)〉 =
N(Q+ 1)

4πλ

1− 2−Q

1− 21−Q

ζ(Q+ 1)

ζ(Q)
, (3.43)

2Equation (3.41) differs from the original Khandekar-Wiegel expression by a factor of 2, since the
particle translational entropy in the current model restricts our analysis to positive volumes (Eq.
(3.33)).
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which turns, in the limit of large Q, to

〈V G(N,Q� 1)〉 = [N2/(4πλ)](Q/N). (3.44)

In the current case of fixed λ, we thus get that the ring swells gradually (linearly)

with Q. This is qualitatively different from the Rudnick-Gaspari result for the swelling

as a function of fixed pressure [75, 85, 86], where the mean volume diverges at a finite

critical pressure, pc = 4π/N (in units of kBT/l
2). The ability of the Gaussian ring to

swell indefinitely stems, as in the Rudnick-Gaspari model, from its extensibility.

Since the mean volume is proportional to Q, we obtain in this ensemble the peculiar

result that the particle density is independent of particle number,

cG(N) = Q/〈V G〉 = 4πλ/N. (3.45)

The same holds for the particle fugacity,

zG(N) = exp(−∂ lnZG/∂Q) = 4πλ/N, (3.46)

which is equal to the density of Eq. (3.45), as expected for an ideal gas. The mean

pressure of the gas, in our dimensionless units, is p = c = 4π/N . (Recall that λ = 1.)

Thus, for any Q the ring swells to such an extent that the pressure exerted on it by

the gas is always at the Rudnick-Gaspari pc, yet without the associated criticality.

Grand-Canonical Ensemble

The grand partition function is obtained from Eqs. (3.35) and (3.41) as

ZG(N, z) =
1

λN+1
[−λ+ ψ(−x)− ψ(1/2− x)] , (3.47)

where x ≡ zN/(8πλ), and ψ is the digamma function (the logarithmic derivative of

the gamma function). The mean volume is calculated according to Eq. (3.36), yielding

〈V G(N, z)〉 =
1

λNZG

N

4πλ
{ψ(−x)− ψ(1/2− x)− x [ψ′(−x)− ψ′(1/2− x)]} , (3.48)

where a prime denotes a first derivative. The mean number of trapped particles,

according to Eq. (3.37), is simply given by 〈QG〉 = z〈V G〉.

The digamma function and its derivative diverge for small arguments as ψ(x) '
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−x−1 and ψ′(x) ' x−2, respectively. Thus, the expressions for ZG, 〈V G〉, and 〈QG〉

diverge at a critical fugacity (with λ = 1),

zc = 4π/N. (3.49)

Since for the ideal gas p = c = z, this divergence is analogous to that of the Rudnick-

Gaspari model at pc = 4π/N .

3.3.3 Freely Jointed Ring

We now turn to the case of a freely jointed chain, i.e., an inextensible ring whose link

lengths are fixed.

Canonical Ensemble

Flory Argument

We begin by examining a simple Flory argument, as demonstrated above (Section

3.2.2). The free energy of the ring (in units of kBT ) is expressed as a function of R,

the radius of the statistical cloud of monomers (i.e., the radius of gyration). As in

Section 3.2.2 we divide it into three terms,

F (R,Q) = Fel + Finext + Fen, (3.50)

Fel ∼ R2/N, Finext ∼ R4/N3, Fen ∼ Q[ln(Q/R2)− 1].

The first two terms are identical to those used under fixed pressure in Eq. (3.4), the

first being the usual entropic-spring free energy of a Gaussian chain [1], and the second

— the leading non-Gaussian correction due to inextensibility (see Appendix A). The

last term comes from the translational entropy of the ideal gas, where the mean 2D

volume of the ring is taken (as in Section 3.2.2) to be proportional to R2 [93, 94].

Unlike the case of fixed pressure of Section 3.2, the free energy of Eq. (3.50) exhibits

no phase transition with increasing Q. Upon minimization with respect to R we get

the following scaling law:

R2 ∼ N2fQ(Q/N), (3.51)

which, despite the crudeness of the Flory argument, is equivalent to the one predicted

from the general scaling theory [Chapter 2, Eq. (2.6b)], and will be confirmed below.
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Mean-Field Approximation

We proceed to study the freely jointed model by relaxing the strict constraints

of fixed link lengths into harmonic potentials, as performed in Section 3.2.3. The

calculation is identical to that for a Gaussian chain (Section 3.3.2), except that the

spring constant λ is not fixed but determined self-consistently to maintain the root-

mean-square link length equal to l = 1.

To impose the relaxed inextensibility constraint we differentiate ZG of Eq. (3.42)

with respect to λ to get the mean-square link length, and then set it to 1,

−N−1∂ lnZG/∂λ = (1 + Q̂)/λ = 1, (3.52)

where Q̂ ≡ Q/N is the rescaled particle number. For Q̂→ 0 we get λ = 1, as expected,

but as the number of trapped particles increases, the springs get stiffer according to

λ = 1 + Q̂. (3.53)

This value is substituted in Eq. (3.44) to obtain

〈V FJ(N, Q̂)〉 = VmaxQ̂/(Q̂+ 1). (3.54)

As Q̂→∞ the mean area appropriately tends to its maximum value, Vmax = N2/(4π),

which is the area of a circle with perimeter N . Equation (3.54) shows that the swelling

of the ring with increasing Q is gradual, without any phase transition.

The particle density is given by

cFJ(N, Q̂) = Q/〈V FJ〉 = 4π(Q̂+ 1)/N. (3.55)

The fugacity is found from Eqs. (3.46) and (3.53) as

zFJ(N, Q̂) = 4π(Q̂+ 1)/N, (3.56)

which is equal to cFJ, as it should for an ideal gas. The pressure is p = z = (4π/N)(Q̂+

1), which is larger than pc = 4π/N for any Q.

Exact Asymptote for Strong Swelling

In the limit of large particle number, Q̂� 1, the partition function can be calcu-
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lated exactly. In this limit the chain is highly swollen and its statistics is governed by

large-volume conformations. Thus, to apply Eq. (3.33), we merely need to know how

the volume probability distribution function for a 2D freely jointed ring, PFJ
0 (N, V ),

decays to zero as V approaches Vmax. This calculation is presented in Appendix B.

The result is

PFJ
0 (N, V . Vmax) ∼ (Vmax − V )N/2. (3.57)

Substituting Eq. (3.57) in Eq. (3.33), we get

ZFJ(N,Q� N) = (Vmax)
Q+N/2 Γ(1 +N/2)

Γ(1 +N/2 +Q)
, (3.58)

where Γ is the gamma function. The mean volume is then obtained from Eq. (3.34)

as

〈V FJ(N, Q̂� 1)〉 ' Vmax
Q̂

Q̂+ 1/2
' Vmax

(
1− 1

2Q̂

)
. (3.59)

Thus, the exact approach of the mean volume to its maximum value differs from the

mean-field result, Eq. (3.54), by a factor of 1/2.

Monte Carlo Simulations

We performed Monte Carlo simulations to obtain the mean volume 〈V 〉 of a freely

jointed ring as a function of the number Q of trapped ideal-gas particles for various

ring sizes N . The algorithm combines an off-lattice scheme for the polymer, as was

used in Section 3.2.5, with a lattice model for the particles. The simulated system

is schematically shown in Fig. 3.9. The ring is represented by a polygon of N equal

edges of length l = 1. The 2D coordinates of the vertices take continuous values. The

coordinates of the particles are defined on a 2D square lattice with lattice constant of

either l or l/5, depending on the required precision.

The initial configuration is a fully stretched, regular polygon of purely positive

algebraic area, V = V+. During the simulation we keep track of positive and negative

contributions to V and place particles only on lattice sites belonging to V+. Each step

of the simulation is composed of two actions. In the first, each particle is moved to

a randomly chosen juxtaposed lattice site, unless this site is outside the positive-area

part of the polygon. In the second action, a randomly chosen chain vertex is moved

to the only other position that satisfies the edge-length constraint (see Fig. 3.9). This
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Figure 3.9: Schematic view of a section of the simulated system. Point particles (marked by
+) are located on lattice sites confined inside the ring. On each step each particle is moved
to a randomly chosen neighboring site. In the second part of the step a single randomly
chosen chain vertex (marked by a circle) is moved to the only other position (marked by a
diamond) that maintains the lengths of the two links attached to it.

action is automatically rejected if it makes a particle leave the positive-area part of the

ring. These dynamics involve O(Q) operations per step. The number of operations

required for equilibration is O(N3Q), limiting our investigation to N . 500. The

simulations were performed for N between 50 and 400 and Q between 0 and 4N .

Figure 3.10 shows the simulation results for the mean volume (scaled by Vmax ∼ N2)

as a function of the rescaled particle number Q̂ = Q/N . All data for different values of

N collapse onto a single universal curve, in accord with the scaling law obtained from

the Flory argument and mean-field calculation (Eqs. (3.51) and (3.54)). Yet, only for

small Q̂ does this curve coincide with the mean-field scaling function. For such small

Q̂ it coincides also with the Gaussian result, (Eq. (3.44) with λ = 1).

To confirm the highly swollen behavior derived in the preceding section we simu-

lated rings of N = 50 with Q between 0 and 50N . The results are presented in Fig.

3.11, showing good agreement for large Q̂ with the exact asymptote, Eq. (3.59).

Grand-Canonical Ensemble

Flory Argument

To account for contact of the particles with a reservoir of fixed fugacity z we add

a −Q ln z term to the Flory free energy, Eq. (3.50). Minimization with respect to Q
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Figure 3.10: Mean volume of a freely jointed ring, scaled by Vmax ∼ N2, as a function of
the rescaled number of particles. Monte Carlo simulation results for various values of N are
represented by symbols with error bars. The dashed line shows the mean-field result (Eq.
(3.54)). The result for a Gaussian ring (Eq. (3.44)) is given for reference (dotted line). The
inset focuses on the small Q̂ region using a logarithmic scale.

yields the following grand potential:

F(R, z) = Fel + Finext + Fres, (3.60)

Fel ∼ R2/N, Finext ∼ R4/N3, Fres ∼ −zR2.

This Landau-like free energy has a second-order phase transition at zc ∼ N−1, similar

to the one obtained for fixed pressure in Eq. (3.4). For z < zc Finext is negligible,

and R has a Gaussian distribution with 〈R2〉 ∼ N(1 − z/zc)
−1. For z > zc we have

R2 ∼ N2(z/zc − 1).

Mean-Field Approximation

We apply a relaxed inextensibility constraint (similar to the one applied in the

canonical case) by determining the spring constant λ so that the root-mean-square

link length should be l = 1. In the current grand-canonical case this is done by
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Figure 3.11: Mean volume of a freely jointed ring, scaled by Vmax, as a function of the
rescaled particle number, as obtained by Monte Carlo simulations for N = 50 (symbols with
error bars). The solid line shows the exact asymptote for a highly swollen ring (Eq. (3.59)).
The dashed line presents the mean-field result (Eq. (3.54)).

differentiating ZG of Eq. (3.47) with respect to λ,

−N−1∂ lnZG/∂λ

=
1

λ
+

2

λN+1NZG
x {ψ(−x)− ψ(1/2− x)− x [ψ′(−x)− ψ′(1/2− x)]} = 1,

(3.61)

thus obtaining a transcendental equation for λ(z,N). Equation (3.61) can be combined

with Eq. (3.48) to get a simpler expression for 〈V 〉 as a function of λ,

〈V FJ(N, z, λ)〉 = N(λ− 1)/z. (3.62)

Numerical solution of Eq. (3.61) for λ and substitution of the result in Eq. (3.62) yield

the mean volume as a function of z and N .

We can get a good approximation for λ(z,N) by substituting for the diverging

terms in Eq. (3.61) ψ(x) ' −x−1 and ψ′(x) ' x−2. This gives

λ(ẑ, N � 1) '
ẑ + 1 + 1

N
+
√

(ẑ − 1)2 + 2
N

(ẑ + 1) + 1
N2

2
, (3.63)

where ẑ ≡ zN/(4π) is the rescaled fugacity. This result for λ is the same as the one
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obtained for fixed pressure p with p = z. In the thermodynamic limit, defined here

as N → ∞ and z → 0 such that ẑ is finite, Eq. (3.63) reduces to the continuous but

nonanalytic function,

λ(ẑ, N →∞) =

1 ẑ < 1

ẑ ẑ > 1.

(3.64)

Substituting Eq. (3.63) in Eq. (3.62) yields an approximate expression for 〈V 〉 as

a function of ẑ and N ,

〈V FJ(ẑ 6� 1, N � 1)〉 ' N2

4π

ẑ − 1 + 1
N

+
√

(ẑ − 1)2 + 2
N

(ẑ + 1) + 1
N2

2ẑ
, (3.65)

which in the thermodynamic limit becomes

〈V FJ〉 =


N
4π

1
ẑ(1−ẑ)

ẑ→1−−−−→ N
4π

1
1−ẑ

1− ẑ � N−1/2

N3/2

4π
|ẑ − 1| � N−1/2

N2

4π
ẑ−1

ẑ

ẑ→1+

−−−→ N2

4π
(ẑ − 1) ẑ − 1 � N−1/2,

(3.66)

thus exhibiting a continuous phase transition at ẑc = 1, analogous to the one found

for fixed pressure, Eq. (3.16). As shown in Eq. (3.37), the mean number of trapped

particles is given by 〈QFJ〉 = z〈V FJ〉 and, therefore, undergoes the same transition at

ẑc.

Exact Asymptote for Strong Swelling

As demonstrated above, and also confirmed by simulations in the next section,

fixing the fugacity in the grand-canonical ensemble is analogous to fixing the pressure

in an empty ring. Thus, to get the asymptotic swelling at high fugacity we can readily

use the exact asymptote for high pressure, Eq. (3.26) and replace p→ z. This yields

〈V (ẑ � 1, N)〉 ' Vmax
I1(ẑ)

I0(ẑ)
' Vmax

(
1− 1

2ẑ

)
, (3.67)

where In are modified Bessel functions of the first kind.

Monte Carlo Simulations

We performed grand-canonical Monte Carlo simulations to check the results of the

preceding sections. To each step of the algorithm described above (for the canonical
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case) a third action is added as follows. Either a randomly chosen particle is removed

with probability Q/(zV+), or a particle is added at a randomly chosen site within the

positive-area part of the ring with probability zV+/(Q+ 1).

Fig. 3.12 shows simulation results for different values of N in the crumpled and

smooth states, ẑ < 1 and ẑ > 1, respectively. The data collapse onto a single uni-

versal curve in each state. In the weak-swelling state (Fig. 3.12A) the mean volume

scales as 〈V 〉 = Nf<
z (ẑ), whereas in the strong-swelling state (Fig. 3.12B) it scales as

〈V 〉 = N2f>
z (ẑ). These results confirm the scaling laws predicted by the Flory argu-

ment and mean-field theory, albeit with different scaling functions. The discrepancy

in Fig. 3.12A between the simulation results and the mean-field expression stems from

the different definitions of the ring volume discussed in Section 3.3.1. In the simulation

we measure the actual algebraic area, which vanishes at z = 0. The calculation, how-

ever, considers only positive algebraic areas (cf. Eq. (3.33)) and, hence, yields a finite

mean volume at zero fugacity, 〈V (0)〉 = N(ln 2)/(2π). When this value of 〈V (0)〉 is

subtracted from the mean-field result (dotted line in Fig. 3.12A), the agreement with

the simulations is excellent, indicating that the mean-field theory does accurately cap-

ture the swelling for z < zc. On the other hand, the disagreement between simulation

and theory in Fig. 3.12B arises from the inadequacy of the mean-field approximation

for stretched freely jointed chains, as was observed also in the fixed-p ensemble in

Section 3.2. In Fig. 3.12B we compare the data from Section 3.2.5 for a freely jointed

chain subject to a pressure p > pc with those for fixed fugacity z > zc. The two data

sets are practically indistinguishable once one identifies p with z.

Due to computation limitations we have not directly confirmed the asymptotic

strong-swelling behavior at large ẑ as given by Eq. (3.67); nevertheless, the equivalent

asymptote for high pressure was confirmed above (see Fig. 3.8).

To test Eq. (3.40) for the cross-correlation of particle number and ring volume

we measured from the simulations the covariance CQV = (〈QV 〉 − 〈Q〉〈V 〉)/(〈Q〉〈V 〉)

for N = 50 and varying z. The results are presented in Fig. 3.13 alongside the

relative mean-square volume fluctuations. The two data sets are indistinguishable, in

agreement with Eq. (3.40). (In these measurements the volume was taken as V+.) As

expected, the correlation is appreciable in the crumpled, unpressurized state (small z)

and decays to zero as the ring swells into a smooth circle (large z).
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Figure 3.12: Mean volume of a freely jointed ring as a function of particle fugacity below
(A) and above (B) the critical point. The fugacity is scaled by zc = 4π/N , and the volume
by N in A and by Vmax = N2/(4π) in B. Symbols with error bars show the results of grand-
canonical Monte Carlo simulations for different values of ring sizes N . The dashed lines show
the mean-field prediction in the limit N →∞. The dotted line in A presents the mean-field
result shifted down by 〈V (0)〉/N = (ln 2)/(2π). Panel B shows also simulation results from
Section 3.2.5 for the swelling of a freely jointed ring with pressure p, for which the horizontal
axis represents p̂ = p/pc.

3.3.4 Discussion

As suggested by the scaling analysis of Chapter 2, when the number Q of trapped

particles is prescribed, we find that the critical behavior, observed for pressurized

rings, disappears. The mechanism is qualitatively different from ordinary ones, where

criticality is removed by disorder or fluctuations. It lies here in the absence of a volume

constraint, i.e., in the freedom of these systems to select their mean volume so as to

maximize the total entropy. For a Gaussian ring we have found that the mean volume

is 〈V 〉 = NQ/(4π), implying that the particles exert an effective pressure just equal to

pc = 4π/N for any Q > 0. The volume never diverges, as it does for fixed p, but grows

gradually, indefinitely, with increasing Q. For a freely jointed ring, by contrast, the

mean volume is such that the exerted pressure remains above pc for any Q > 0. As a

result, the swollen ring always obeys the smooth-state scaling law, 〈V 〉 ∼ N2fQ(Q/N).

We will return to this point in Chapter 7.

When the particle fugacity z is prescribed, the criticality of the Gaussian and

freely-jointed rings is retained. In this case the system does not have the freedom
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Figure 3.13: Correlation between particle number and ring volume as a function of parti-
cle fugacity, compared to the relative mean-square volume fluctuations. Simulations were
performed for an N = 50 ring, and the ring volume was taken as V+.

to select the pressure exerted on its boundary, since p is determined by z through

the equation of state of the gas (p = z for an ideal gas). The models then become

analogous to the fixed-pressure ones, as studied in Section 3.2 and in Ref. [85]. Thus,

the canonical and grand-canonical ensembles are inequivalent in these systems. A

vivid example is seen in the Gaussian model, where the canonical mean fugacity z is

found to be independent of Q [Eq. (3.46)], whereas the grand-canonical mean particle

number does vary with z [Eqs. (3.37) and (3.48)] and even diverges at zc. The former

result of a fugacity independent of particle number is clearly a consequence of the

unconstrained volume. We infer, therefore, that this unusual property also underlies

the ensemble inequivalence.

In the grand-canonical case we have derived, and confirmed in simulations, an

identity relating the correlation between particle number and ring volume with the

volume fluctuations [Eq. (3.40) and Fig. 3.13]. The only assumption entering this

derivation is the consideration of the particles as an ideal gas. Thus, the same identity

should hold for any fluctuating envelope with unconstrained volume, enclosing an ideal

gas of particles.
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3.4 Summary

In this chapter we have seen a first example where the two swelling scenarios — pres-

surized and particle-encapsulating manifolds — are inequivalent. This inequivalence

stems already from the scaling analysis of Chapter 2, which predicts for this model

system, i.e., for d = 2 and ν = 1/2, criticality in the fixed-p scenario and gradual

swelling with number of trapped particles.

Both Gaussian rings and freely-jointed ones exhibit criticality with fixed-p. While

the former explodes at pc due to the extensibility of the links [75, 85], the latter

undergoes a continuous transition from crumpled random-walk statistics to a smooth

state. For any p > pc the swelling obeys a single scaling law, 〈V 〉 = N2f>
p (pN), as

predicted by Eq. (2.6a) for d = 2 (cf. Fig. 3.5B).

The swelling withQ is gradual in both Gaussian and freely-jointed rings and follows

the scaling conjecture, Eq. (2.6b) with d = 2, i.e., 〈V 〉 ∼ N2fQ(Q/N). For Gaussian

rings this is verified analytically [see Eq. (3.44)]. For freely jointed rings, mean-field

approximation produces the correct scaling law, Eq. (3.54), yet fails to predict an

accurate scaling function fQ (see Fig. 3.10).

This study has been restricted to self-intersecting rings. When a self-avoidance

term is added to the Flory grand potential, Eq. (3.60), the second-order transition

disappears, as in the case of fixed pressure (see Section 3.2.2). This stems out from

the form of Eq. (3.60), in which the two terms Fel ∼ R2 and Fres ∼ R2 may cancel

each other regardless of the value of R. Thus, any slight change in the form of the

free-energy (which is not ∼ R2) will remove this pathological behavior. We note,

however, that the Flory argument does not reproduce the correct scaling regimes for

pressurized self-avoiding rings as derived in Refs. [25, 73, 74]. We now proceed to test

this model system in more detail.
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Chapter 4

Swelling of 2D Self-Avoiding Rings

In this chapter we continue to another two-dimensional example—that

of self-avoiding rings. According to the scaling analyses of Chapter 2 both

pressurized and particle-encapsulating vesicles should swell gradually with-

out criticality. We test this prediction using Monte Carlo simulations of

closed self-avoiding chains subject to either a fixed pressure difference or

a fixed number of trapped particles. In accordance with the scaling pre-

dictions these two model systems swell gradually, following a single scaling

law in each case, and are shown to be thermodynamically equivalent.1

4.1 Introduction

In the previous chapter we have demonstrated that a two-dimensional freely-jointed

ring subject to a pressure difference undergoes a second-order phase transition. It

was also noted, based on a Flory argument, that when self-avoidance is introduced,

this criticality is removed. Studies of self-avoiding two-dimensional rings subject to a

pressure difference p were conducted by Fisher et al. , who studied two-dimensional

self-avoiding closed chains using tether-and-bead Monte Carlo simulations and scal-

ing analysis [25, 73, 74, 110, 111]. When no perturbation is considered, the rings

obey self-avoiding-walk statistics with a mean area (two-dimensional volume) 〈V 〉 ∼

N2ν , ν = 3/4. For a deflating pressure p < 0 the ring is in a deflated crumpled

configuration whose statistics resembles that of branched polymers. For an inflating

pressure difference, p > 0, three regimes were found:

1The results presented in this chapter were published in Ref. [70].
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(i) a weak-inflation crumpled regime for 0 < pN2ν . 1, where the mean volume

scales as 〈V 〉 ∼ N2νfp(pN
2ν);

(ii) a strong-inflation crumpled regime for 1 . pN2ν � N2ν−1, where the same

scaling holds but the scaling function fp becomes linear, 〈V 〉 ∼ N2ν(pN2ν); and

(iii) a smooth regime for pN2ν & N2ν−1, where 〈V 〉 ∼ N2.

The crossovers between these regimes are gradual with no phase transitions. More

rigorous works on 2D lattice rings confirm most of these findings [112, 113]. In the

thermodynamic limit, defined as N →∞ and p→ 0 such that pN2ν is finite, the range

of the scaling regime (ii) in the case of self-avoiding walks (ν = 3/4) occupies the entire

relevant swelling regime, pN2ν ∈ (1,∞). Note, however, that in the random-walk case

(ν = 1/2) regime (ii) shrinks to a point pN2ν ∼ 1. We demonstrated in Chapter 3

that for random walks regime (ii) turns, in fact, into a second-order phase transition

between regimes (i) and (iii). Thus, we infer that self-avoidance acts as a relevant

parameter for the critical point discussed in Section 3.2.

According to the scaling analysis presented in Chapter 2, for a two-dimensional

self-avoiding ring we have the scaling law conjecture [Eq. (2.6a)],

〈V 〉 ∼ N2fp(pN). (4.1a)

This is not in contradiction with the results presented above, since we consider a

different thermodynamic limit, N → ∞ and p → 0 such that pN is finite. Hence, in

this description the first regime (i) shrinks into the point p = 0. The second regime (ii)

coincides with the power law dependence given by Eq. (2.5a) for d = 2 and ν = 3/4,

〈V 〉 ∼ N2(pN). We will show below that the third regime (iii) also scales according

to Eq. (4.1a), and so this scaling relation holds throughout the swelling.

For a particle-encapsulating self-avoiding ring, which is considered for the first time

in this work, the scaling conjecture, Eq. (2.6b), predicts gradual swelling,

〈V 〉 ∼ N2fQ(Q/N), (4.1b)

with a power-law dependence, 〈V 〉 ∼ N3/2Q1/2, for small Q. Since no criticality exists

in both ensembles, there is supposedly a smooth transform relating the two. This is
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shown below to be correct.

In this chapter we perform Monte Carlo simulations of self-avoiding rings in d = 2

to verify the scaling laws, Eqs. (4.1a) and (4.1b). We start in Section 4.2 with the

case of pressurized rings and then continue to the case of particle-encapsulating rings

in Section 4.3. Results of the simulations and their relation to the analysis by Fisher

et al. is discussed in Section 4.4.

4.2 Swelling of Pressurized Rings

In order to test the scaling conjecture, Eq. (4.1a), we follow the model and Monte Carlo

scheme presented by Fisher and coworkers for a 2D self-avoiding envelope subject to

an inflating pressure difference p [25, 73, 74]. The manifold is represented by a closed

chain of N self-avoiding circles (beads) of diameter 2a = (5/9)l, linked by tethers of

maximum length l ≡ 1. In each MC step every bead is moved to a random position

within a square of (−0.4a, 0.4a)2 about its former position. These values of a, l, and

maximum step size ensure that self-intersection of the ring cannot occur. The move is

weighted by W = ep∆V , where ∆V is the difference in (2D) volume of the ring due to

the move, and is accepted provided that (i) self-avoidance is fulfilled; (ii) tethers do

not exceed their maximum length; and (iii) W exceeds a random number in the range

[0,1]. Simulations were performed for N = 50 to 800.

The mean volume of the ring as a function of pressure difference is presented in

Fig. 4.1. The different data sets collapse onto a single curve once the mean volume

is rescaled by the maximum volume of the ring, Vmax = N2/(4π), and the pressure

by N−1, in accord with Eq. (4.1a). The scaling law, however, yields a vanishing

mean volume for p = 0, whereas the unperturbed ring has a finite mean volume,

V0 ∼ N2ν , ν = 3/4. In the thermodynamic limit (N →∞) the correction is negligible,

V0/Vmax ∼ N−1/2 → 0, but for finite rings the scaling of Eq. (4.1a) must break down

for sufficiently small p, as seen in Fig. 4.1. (The value of V0 was directly measured

from the simulations.) Therefore, to capture the linear dependence of 〈V 〉 on p, as

predicted by Eq. (2.5a) for d = 2 and ν = 3/4, we replot the data for 〈V 〉 − V0 in the

inset of Fig. 4.1. The initial increase of 〈V 〉 − V0 with p seems to be consistent with a

linear law, although we cannot claim to have clearly confirmed it.



68 Swelling of 2D Self-Avoiding Rings

0 50 100 150 200 250
pN

0

0.2

0.4

0.6

0.8

1

〈V
〉/V

m
ax

N = 50
N = 100
N = 200
N = 400
N = 800

10 100

0.2

1

(〈V
〉-V

0)/V
m

ax

Figure 4.1: Mean volume of 2D self-avoiding rings as a function of pressure difference. Data
were obtained by MC simulations for different ring sizes N , and rescaled according to Eq.
(4.1a), Vmax = N2/(4π) being the maximum volume of the ring. Inset shows the same data
on a log-log scale after the mean volume of the unperturbed ring, V0 ∼ N3/2, has been
subtracted from 〈V 〉. A solid line of slope 1 is shown for reference.

4.3 Swelling of Particle-Encapsulating Rings

We proceed to the scenario of particle-encapsulating manifolds by setting p = 0 and

introducing Q ideal particles at random positions within the vesicle. Avoidance is

imposed between the particles and envelope beads (but not between the particles

themselves), with particle–bead minimum distance of 2a. The MC step is extended

to include repositioning of each particle within a square of (−0.4a, 0.4a)2 about its

former position. This maximum step size, together with avoidance between particles

and envelope beads, and maximum tether length, ensure that particles are forever

trapped in the ring. Rings of N = 50 to 800 have been simulated, with Q ranging

between 0 and 20N .

In Fig. 4.2 we present the mean volume as a function of Q. In accordance with

Eq. (4.1b) all data collapse onto a single curve once 〈V 〉 is rescaled by N2 and Q by

N . Here, as in the case of fixed p discussed above, scaling breaks as Q → 0, when

〈V 〉 becomes affected by the finite volume of the unperturbed state. The power law

predicted by Eq. (2.5b) for 2D self-avoiding rings, 〈V 〉 ∼ Vmax(Q/N)1/2, is nevertheless
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Figure 4.2: Mean volume of 2D self-avoiding rings as a function of number of encapsulated
particles. Data were obtained by MC simulations for different ring sizes N , and rescaled
according to Eq. (4.1b), Vmax = N2/(4π) being the maximum volume of the ring. Also
plotted are the data points from the fixed-p simulation (Fig. 4.1), whose horizontal coordinate
is calculated as p〈V (p)〉/N . Inset shows the same data on a log-log scale after the mean
volume of the unperturbed ring, V0 ∼ N3/2, has been subtracted from 〈V 〉. A solid line of
slope 1/2 is shown for reference.

verified after subtracting V0 from the mean volume (Fig. 4.2 inset).

To check the equivalence of the fixed-p and fixed-Q scenarios for this system we

transform the data for pressurized rings (Fig. 4.1) according to Q(p) = p〈V (p)〉, as

is appropriate for an ideal gas (recall that kBT ≡ 1), and present them in Fig. 4.2

alongside the data for fixed Q. The data sets of the two scenarios match nicely over

the entire ranges of p and Q.

4.4 Discussion

We have seen in this chapter an example of a model vesicle which shows gradual

swelling in both the fixed-p and fixed-Q ensembles. In accord with the blob analyses

of Chapter 2, for the current values of d and ν the scaling laws Eqs. (2.6a) and (2.6b)

(or, alternatively, Eqs. (4.1a) and (4.1b)) hold throughout the swelling (i.e., for all

values of p or Q) with no criticality. In this case there is a single-valued smooth

transform from one ensemble to the other, which is obtained by replacing p with
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Q/〈V 〉 (for an ideal gas). This is indeed verified in Fig. 4.2 where the mean volume of

pressurized rings is plotted as a function of p〈V (p)〉/N . The data collapse convincingly

on the simulations of the fixed-Q ensemble.

Unlike the analysis of Fisher et al., which holds also for the unperturbed state but

does not capture the smooth state, our scaling conjecture breaks when the pertur-

bation vanishes, but holds for highly swollen vesicles. Nevertheless, in the selected

thermodynamic limit, i.e., p→ 0 and N →∞ such that pN is finite, our scaling holds

throughout the swelling and breaks only for pN . N−1/2 → 0.

Obviously, the swelling of 2D envelopes studied here and in the preceding chapter is

of idealized systems. Our goal has been to demonstrate the validity and power of the

scaling predictions and examine the fundamental issue of ensemble (in)equivalence.

Possible implications for more realistic systems of unconstrained volume, e.g., a three-

dimensional fluid vesicle, are presented in the following chapters.



Chapter 5

Swelling of 3D Fluid Vesicles

Having considered in Chapters 3 and 4 somewhat artificial two-dimensional

random manifolds, we turn in this chapter to a more realistic model sys-

tem — that of a three-dimensional fluid vesicle. According to the general

scaling analysis of Chapter 2 no criticality emerges for d > 2, neither

for pressurized nor for particle-encapsulating vesicles. Nevertheless, the

statistics of the specific model treated below is inconsistent with the scal-

ing analysis assumptions. Here we present a different analysis appropriate

for this model. It is shown that for weakly swollen particle-encapsulating

vesicles the mean volume is linearly dependent on the number of trapped

particles, implying (according to Section 2.3) a criticality of pressurized

vesicles. Both results are confirmed by Monte Carlo simulations of 3D

fluid manifolds. For pressurized vesicles a first-order transition from de-

flated branched-polymer-like phase to a swollen one is found, as previously

reported [78]. Above the transition point, our simulation data scale ac-

cording to Eq. (2.6a). For particle-encapsulating vesicles the simulations

reveal, for small number of particles, a linear dependence of the volume on

particle number. The data throughout the swelling follow a single scaling

law in agreement with Eq. (2.6b).1

1The results presented in this chapter were published in Ref. [70].
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5.1 Introduction

In this chapter we turn to a slightly more realistic three-dimensional model of a fluid

vesicle. The model was extensively studied by MC simulations under fixed pressure

difference p [77, 78, 79, 80, 81, 59, 82]. reduce cites The vesicle is represented by a

closed, triangulated, off-lattice network of N nodes (self-avoiding spheres) of diameter

2a = l/
√

2, interconnected by a fixed number N of tethers of maximum length l ≡ 1.

(See Section 1.2.3.) Membrane fluidity is mimicked by constantly varying the network

connectivity. The MC step comprises two parts. (i) Each bead is moved randomly

within a cube of (−0.2a, 0.2a)3 about its former position (self-avoidance permitting).

The move is weighted by a Boltzmann factor of ep∆V , where ∆V is the change in

volume caused by the move. (ii) N attempts are performed to break a randomly

chosen tether, which has formed the common side of two triangles, and rebuild it

between the two other corners of those triangles (provided that the required tether

length does not exceed l). See visual example in Fig. 5.1. This move is weighted as

well by a factor of ep∆V , where ∆V is the volume change due to this construction.

The choice of a, l, passing through another part of the network, making the manifold

self-avoiding.

Figure 5.1: Changing the envelope connectivity. A tether that is common to two
triangles is cut and reattached to the other two nodes.

The swelling of this model vesicle as a function of p follows three regimes [77]:

(i) At low pressures the vesicle is in a collapsed state, having branched-polymer

statistics, where the mean volume and mean-square radius of gyration scale as

〈V 〉 ∼ R2 ∼ N , with negligible dependence on p [77, 63, 114, 115].

(ii) At a critical pressure, p = p∗(N), the vesicle undergoes a first-order transition
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to a swollen state, whose mean volume gradually increases with p as 〈V 〉 ∼

p0.47N1.73 [77].

(iii) At sufficiently large p the power-law behavior of (ii) crosses over to asymptotic

swelling toward the maximum volume.

The scaling conjectures of Chapter 2 [Eqs. (2.6a) and (2.6b)] predict continuous

swelling in both the fixed-p and fixed-Q cases with

〈V 〉 = N3/2fp(pN
1/2), (5.1a)

〈V 〉 = N3/2fQ(Q/N). (5.1b)

Yet, the blob analysis presented in Section 2.2 obviously fails in regime (i) of low

swelling, since the volume enclosed in such collapsed manifolds does not follow the

standard relation 〈V 〉 ∼ Rd. In this chapter we introduce, therefore, an alternative

scaling analysis for this regime and further investigate the swelling as a function of

p and Q using Monte Carlo simulations (Secs. 5.2 and 5.3 respectively). Conclusions

reached throughout the investigation are further discussed in Section 5.4.

5.2 Swelling of Pressurized Vesicles

In this section we investigate the swelling of the model system described above due to

an inflating pressure difference. We begin by introducing an alternative blob analysis

to that presented in Chapter 2 for the low swelling regime. In this collapsed state the

ratio between the cross-section (frame) area of the manifold and its real surface area

is vanishingly small. Such a manifold has a constant surface tension [116], σ ∼ 1 (in

units of kBT/l
2). Applying Laplace’s law, p ∼ σ/R ∼ N−1/2, we find that regime (i)

occurs for p . N−1/2, i.e.,

p . N−1/2 : 〈V 〉 ' V0 ∼ N. (5.2a)

In regime (ii) the scaling analysis of Chapter 2 should hold. Comparison of the previ-

ously obtained power law, 〈V 〉 ∼ p0.47N1.73, with Eq. (2.5a) for d = 3, gives a swelling

exponent ν = 0.787 [77].

We note that the scaling analysis as previously presented for this model [78, 80, 82]
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was inconclusive as to how p should scale with N . For example, the dependence of the

critical pressure p∗ on N has been controversial [59], ranging between N−0.5 [78] and

N−0.69 [82].2 Our modified scaling analysis [Eqs. (2.5a) and (2.6a), resulting in Eq.

(5.1a)] indicates that p scales with N−1/2. The scaling argument for p > p∗, together

with Eq. (5.2a) for p < p∗, strongly suggest that p∗ ∼ N−1/2.3 This will be supported

by MC simulations below.

We have repeated the MC simulations for fixed p, as presented in Ref. [77], while

extending them to larger vesicles and higher pressure values. The results are shown

in Fig. 5.2, scaled according to Eq. (5.1a). The first-order transition at p∗ ∼ N−1/2

is clearly reproduced, and the predicted scaling for the entire range of p > p∗ is

confirmed. The scaling for p & p∗ is not inconsistent with the power law of Ref. [77]

and Eq. (2.5a) with ν between 0.7 and 0.8 (Fig. 5.2 inset), yet this power-law regime

is too narrow to be clearly resolved.

5.3 Swelling of Particle-Encapsulating Vesicles

We now turn to particle-encapsulating vesicles. Repeating the aforementioned argu-

ment for the deflated state of regime (i), p ∼ Q/〈V 〉 ∼ σ/R ∼ N−1/2, we find

Q/〈V 〉 . N−1/2 : 〈V 〉 ∼ N3/2(Q/N). (5.2b)

(We have seen in Section 2.3 that such a linear dependence of 〈V 〉 on Q is intimately

related to the phase transition observed as a function of p.) The scaling law of Eq.

(5.2b) for the low-swelling regime turns out to be in line with that of Eq. (2.5b).

Hence, despite the inadequacy of the blob analysis in regime (i), we expect the scaling

conjecture, Eq. (5.1b), to hold for all values of Q in this model as well.

To check these predictions we modified the MC scheme presented above by setting

p = 0 and adding Q ideal particles of radius a, randomly positioned inside the vesicle.

The particles do not interact with each other but have a hard-core repulsion with the

network nodes, thus keeping them trapped inside the vesicle. The MC step is extended

2Plaquette models (see Section 1.2.3) of closed surfaces subject to a pressure difference reveal a
similar phase transition [65, 117]. However, the transition occurs at p∗ ∼ N−1 [65].

3Similarly, the critical pressure in 2D Gaussian and freely jointed rings was analytically found in
Chapter 3 to scale as N−1/(d−1) ∼ N−1.
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Figure 5.2: Mean volume of 3D self-avoiding fluid vesicles as a function of pressure
difference, as obtained by MC simulations for different vesicle sizes N . Data is scaled
according to Eq. (5.1a), exhibiting a discontinuous transition at p∗ ∼ N−1/2. For
p > p∗ the data collapse onto a single curve. Inset presents the same data for p > p∗

on a log–log scale, the solid line having a slope of 0.6 (corresponding to ν = 0.75).

to include random repositioning of each particle within a cube of (−0.2a, 0.2a)3 about

its former position. Vesicles with N ranging between 162 and 642 and Q up to 10N

(for the smallest vesicle) have been simulated.

Results for the mean volume as a function of Q for various vesicle sizes are shown

in Fig. 5.3. Once the volume V0 of the unperturbed (branched) state [Eq. (5.2a)],

which is inaccessible to the particles due to their excluded-volume interaction with

the manifold, is subtracted from 〈V 〉, the data collapse according to Eq. (5.1b). Two

power-law regimes are seen in Fig. 5.3 (inset). At low swelling 〈V 〉 increases linearly

with Q, in agreement with Eq. (5.2b).4 At about Q ' 0.08N the swelling crosses over

to a different power law which, when fitted to Eq. (2.5b), yields ν = 0.75(2). This

value is close to that found in fixed-p simulations, ν = 0.787 [77].5 For larger values

4Artificially attempting to extract ν for the low-swelling regime by fitting these results to Eq.
(2.5b), one gets the unphysical value of ν = 1/3, which is smaller than the lower bound of 2/3 set
by a fully collapsed, compact manifold. This highlights the necessity of a different scaling analysis in
this regime, as presented above.

5We note that this value of ν is also suspiciously close to the one known for self-avoiding poly-
merized (i.e., solid) 3D manifolds, ν ' 0.8. (See, e.g., Section 1.2.2 and Ref. [60].) This suggests
that the configurations of the variable-connectivity (fluid) manifold studied here, when it is suffi-
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of Q this power-law regime should cross over to the asymptotic saturation toward

maximum volume. Because of computer limitations we could sample only the lowest

edge of this regime (Fig. 5.3 inset).
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Figure 5.3: Mean volume of 3D self-avoiding fluid vesicles as a function of the number
of trapped particles, as obtained by MC simulations for different vesicle sizes N . Data
collapse according to Eq. (5.1b) once the volume of the unperturbed vesicle, V0 ∼ N , is
subtracted from 〈V 〉. Inset represents the same data on a log-log scale, exhibiting a linear
regime for Q � N , (〈V 〉−V0)/N3/2 ∼ (Q/N)1.02(3) (dotted line), followed by a more swollen
regime with (〈V 〉−V0)/N3/2 ∼ (Q/N)0.38(3) (dashed line). The arrow indicates the crossover
between the two regimes at Q ' 0.08N .

Unlike the case of fixed p, the vesicle gradually swells with Q, exhibiting no phase

transition. To further verify the absence of a first-order transition we have measured

the probability distribution function of the volume, P (V ), as a function of Q. Whereas

under fixed p, at p = p∗, one finds a bimodal distribution ([77] and Fig. 5.4A), i.e., co-

existence of collapsed and swollen states, for particle-encapsulating vesicles we obtain

unimodal distributions for all values of Q (Fig. 5.4B).

Finally, let us consider the effective pressure exerted by the encapsulated ideal

particles, p = Q/〈V 〉. From Eq. (5.1b) we have

p = N−1/2ψ(Q/N), ψ(x) = x/fQ(x). (5.3)

ciently swollen, may become statistically equivalent to those of polymerized membranes. However,
we currently cannot prove this suggestion.
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Figure 5.4: Volume distribution functions of a 362-nodes vesicle. In panel A the bimodal
distribution obtained in the fixed-p case at the transition point [77] is plotted for reference.
In panel B a unimodal distributions appears for all values of Q.

In the low-swelling regime we have found a linear behavior, fQ(x � 1) ∼ x, [Eq.

(5.2b) and Fig. 5.3 inset]. Thus, ψ(x � 1) = const, i.e., the effective pressure does

not change with Q throughout this regime! Figure 5.5 demonstrates the data collapse

according to Eq. (5.3), as well as the finite, constant pressure pmin at low swelling even

for the smallest values of Q. (In calculating the concentration or pressure from the

simulations we have considered the particle-accessible volume, V − V0.) One expects

pmin to coincide with the transition value under fixed pressure, p∗. (Compare also Fig.

5.4A, plotted for p = p∗, with Fig. 5.4B, where the effective pressure stays essentially

constant at pmin for all curves.) We find, however, p∗ ' 1.8pmin. This discrepancy may

stem from the interaction of the particles with the vesicle, making them deviate from

the ideal-gas behavior, particularly in the deflated state.

5.4 Discussion

In this chapter we have investigated a model of three-dimensional fluid vesicles. As

predicted by the scaling analysis of Chapter 2, the swelling of particle-encapsulating

vesicles is continuous with no criticality and obeys a single scaling law, Eq. (5.1b)

(see Fig. 5.3). By contrast, the swelling of pressurized vesicles undergoes a first-order

transition from a deflated branched-polymer-like phase to a more swollen one. Unlike

the criticality of 2D freely-jointed, pressurized rings, as studied in Chapter 3, the
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Figure 5.5: Effective pressure of encapsulated particles as a function of particle num-
ber. Data have been obtained from MC simulations for vesicles of various sizes N and
rescaled according to Eq. (5.3). The arrow indicates the crossover between the two
swelling regimes at Q ' 0.08N .

one described in this chapter for 3D pressurized vesicles could not be foreseen by the

general blob analysis of Chapter 2. This criticality stems from the unusual (collapsed)

behavior of this model in the low-swelling regime. Nevertheless, taking into account

this behavior, we have reached a modified scaling argument for the weak-swelling

regime, which is linear in Q, implying, indeed, a criticality with p. Furthermore, for p

larger than the critical pressure p∗, the swelling obeys a single scaling law, Eq. (5.1a),

as predicted by the general scaling analysis of Chapter 2 (see Fig. 5.2).

As a final comment on an issue that has not been addressed in this work, we note

that extending the fixed-p scenario to include a surface bending rigidity κ leads to the

removal of the first-order transition above a certain value of κ [81].



Chapter 6

Critical Behavior of Highly Swollen
Particle-Encapsulating Vesicles

In Chapters 3–5 we have considered the effect of pressure difference and

trapped particles on strongly fluctuating, random manifolds. By contrast,

in this chapter we consider a realistic, ubiquitous scenario where a smooth

semipermeable vesicle is embedded in solution while enclosing a fixed num-

ber of solute particles. Assuming that the vesicle has a maximum volume,

we show that its swelling with increasing number of trapped particles (or

decreasing concentration of the outer solution) exhibits a continuous phase

transition from a fluctuating state to the maximum-volume configuration.

Beyond the transition vesicle fluctuations are suppressed and appreciable

pressure difference and surface tension build up. This criticality is unique

to particle-encapsulating vesicles, whose volume and inner pressure both

fluctuate, and is absent when the swelling is caused by a controlled pres-

sure difference. In practice, the transition is expected to be followed by

membrane rupture (lysis). The criticality implies a universal swelling be-

havior of vesicles as they approach their limiting volume and osmotic lysis.

The chapter deals with the system on a general thermodynamic level, and

the results are insensitive to the particular microscopic description of the

vesicle and the encapsulated solution.1

1The results presented in this chapter were published in Ref. [118].
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6.1 Introduction

In Chapter 1 we have described the nature of membrane vesicles as well as several

approaches to study them (Sections 1.2.1 and 1.2.2). Using these approaches the

elasticity and statistical mechanics of the membrane were addressed under various

constraints, such as area and enclosed volume (e.g., Refs. [48, 51, 119, 120]), or area

and pressure difference across the membrane [121, 122, 59], yielding various shapes

and shape transformations. Actual vesicles are always immersed in solution and thus

contain solvent (water) as well as solute. Since the bilayer membrane contains a

hydrophobic core, the permeation of both water and solute molecules is hindered, and

over sufficiently short time, therefore, the vesicle volume is fixed. Yet, since permeation

rates of solute molecules are orders of magnitude lower than that of water (see, e.g.,

Section 1.2 or Ref. [37]), at sufficiently long times, typically a few seconds, most

vesicles are found in a wide semipermeable regime, where water can be considered as

exchanged between the interior and exterior, while the solute remains trapped inside.

As a result, it has been assumed that the exterior solution concentration and num-

ber of encapsulated particles determine the vesicle volume in practice [48, 51, 119] —

the mean volume adjusts through water permeation so as to annul the osmotic pres-

sure difference across the membrane, thus avoiding an extensive free energy penalty.

This scenario has been experimentally verified [83] and utilized to measure membrane

permeabilities of various solutes [37] and create osmotic motors [84]. Volume fluctu-

ations around the osmotically determined mean value have been considered as well

[123]. However, at high swelling, as the vesicle approaches its maximum volume, this

volume-adjustment description must break down, and appreciable pressure difference

and surface tension will begin to build up. Further swelling eventually leads to pore

formation and osmotic lysis [34, 124, 125]. The change in swelling behavior from small

to appreciable pressure difference and surface tension, in particular, whether it is a

smooth crossover or a sharp transition, is the focus of the current chapter.

6.2 Model

We describe the vesicle as a closed surface composed of N molecules and having max-

imum volume Vmax ∼ N3/2. It is assumed that at Vmax the vesicle has a nonextensive
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number of configurations. The vesicle encloses Q solute particles, which do not di-

rectly interact with the surface other than being trapped inside it. The vesicle is

immersed in a solution of fixed concentration and temperature, which exerts an outer

osmotic pressure po on the membrane. Since solvent molecules are exchanged between

the interior and exterior, the vesicle volume is not specified and, hence, neither are its

inner particle concentration and pressure. Thus, the partition function of the system

involves integration over all possible volumes,

Z(T, po, Q,N) =

∫
dV Zv(T, V,N)Zs(T, V,Q)e−poV/(kBT ), (6.1)

where Zv and Zs are the canonical partition functions of the vesicle and solute particles,

respectively, for a given volume V . The thermal energy kBT is hereafter set to unity.

For the solute we write

Zs = e−QFQ(Q/V ), (6.2)

where FQ is the canonical free energy per solute molecule.

A key issue for the highly swollen vesicles studied here is how Zv behaves as V

approaches Vmax. It is shown below that, quite generally,

Zv(V . Vmax) ∼ (Vmax − V )ηN , (6.3)

where η is a coefficient of order unity. This result readily follows from the two require-

ments, that (i) the vesicle free energy be extensive in N for V < Vmax, and (ii) the

probability density function of vesicle volumes vanish at Vmax.

A more detailed argument goes as follows. To find Zv we should integrate over

all surface configurations the factor e−H[R]δ(V − V [R]), where V [R] is the volume

of configuration R, and H[R] its energy (including, e.g., contributions from bending

rigidity and surface interactions). For V ' Vmax one can generally represent the

configurations by the amplitudes {un} of N normal modes. (For example, in the case

of nearly spherical vesicles these modes are spherical harmonics [51, 127, 128]; see also

Appendix C.) One then expands V [R] to second order around the maximum volume,

V [R] ' Vmax −
∑

n

Cn|un|2. (6.4)

Assuming that H is nonsingular at Vmax, and using the integral representation of the
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delta function, we get

Zv ∼ e−H(Vmax)

∫
d[un]dp exp[ip(Vmax − V −

∑
Cn|un|2)]. (6.5)

Integration over the amplitudes gives a factor of p−1/2 per mode which, upon integra-

tion over p, yields Eq. (6.3) with η = 1/2. Thus, provided that N is the number of

independent modes, we always have η = 1/2. Since accurately relating the number of

molecules with the number of modes while considering all constraints may not always

be straightforward, we keep a general value of η in the formulation.

We have rigorously derived the partition function Zv for two specific cases — 2D

freely-jointed rings and nearly spherical 3D vesicles. In the 2D case we present two

different derivations in Appendices B and D, and the calculation for the 3D case

is given in Appendix C. All these results are in agreement with the aforementioned

general prediction, i.e., Eq. (6.3) with η = 1/2.

6.3 Results

Substituting Eqs. (6.2) and (6.3) in Eq. (6.1) while specifying the solute free energy

FQ, one can perform the integration over V for given Q, po, and N . In Fig. 6.1 we

present the resulting mean volume, 〈V 〉 = −∂ lnZ/∂po, as a function of Q for the

case of an ideal solution, FQ(Q/V ) = ln(Q/V )− 1. As N is increased, 〈V 〉 is seen to

approach a critical behavior (a discontinuous first derivative) at Qc = poVmax.

We now proceed to investigate this criticality analytically for a general (nonideal)

solution. The partition function can be rewritten as Z ∼
∫
dV e−F , with

F = −ηN ln(Vmax − V ) +QFQ(Q/V ) + poV. (6.6)

Minimizing F with respect to V and applying a first-order saddle-point approxima-

tion for the integral (which is equivalent to a mean-field assumption), we obtain the

following equation for 〈V 〉:

Q2F ′
Q(Q/〈V 〉)/〈V 〉 − po〈V 〉 = ηN〈V 〉/(Vmax − 〈V 〉). (6.7)
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Figure 6.1: Order parameter M as a function of control parameter t for the case of an ideal
solution encapsulated in vesicles of various sizes. Solid curves show the mean-field results
[Eq. (6.8)], while dotted curves are obtained from numerical integration of the full partition
function [Eq. (6.1)]. Datasets from top to bottom (bottom to top in the inset), correspond to
po = 1, N = 30 (green); po = 1, N = 103 (blue); po = 5, N = 103 (indigo); po = 1, N = 105

(red); and the N →∞ limit [Eq. (6.9), black]. Only for the smallest vesicle size (N = 30) are
the mean-field and numerical results distinguishable. Inset shows rescaled data according to
Eq. (6.11), where the uppermost curve (solid black) is the theoretical scaling function. The
values η = 1/2 and Vmax = N3/2a3 have been used in all datasets, and po is given in units
of kBT/a3, a being an arbitrary unit length.

Expansion in Vmax − 〈V 〉 yields for our order parameter, M = 1− 〈V 〉/Vmax,

M =
[√

[s− t(q)]2 + 4sg(q)− s− t(q)
]
/(2g(q)) (6.8)

N→∞−−−→ (|t| − t)/(2g), (6.9)

where q = Q/Vmax is the solute concentration at V = Vmax, t(ρ) = [ρ2F ′
Q(ρ)/po − 1]

is the rescaled difference between the solute pressure at concentration ρ and the

outer pressure [t(ρ = q) acting as the control parameter of the transition], s =

ηN/(poVmax) ∼ N−1/2, and g(q) = q2[2F ′
Q(q) + qF ′′

Q(q)]/po > 0.2

Equations (6.8) and (6.9) describe a continuous phase transition at q = qc which

solves the equation t(qc) = 0, i.e., for which the inner pressure would just balance the

2The function g(ρ) is proportional to the derivative of the solute chemical potential with respect
to Q, which is strictly positive (assuming a solution far from condensation).
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outer one if the volume were equal to Vmax. The parameter t(ρ = q) is related to the

actual control parameter, Q or q, via the solute equation of state, i.e., the specific

choice of FQ. In the simple example of an ideal solution, FQ(Q/V ) = ln(Q/V )−1, the

critical point is at qc = po (i.e., Qc = poVmax), and we have t = Q/Qc − 1 and g = 1.

The transition occurs in the region |t| . ∆ = (4sg)1/2 ∼ p
−1/2
o N−1/4, along which M

crosses over from finite values to very small ones,

M =


−t/g ∼ N0|t|1 t� −∆

∆/(2g) ∼ N−1/4|t|0 |t| � ∆

∆2/(4gt) ∼ N−1/2t−1 t� ∆.

(6.10)

In the thermodynamic limit, N → ∞, this crossover turns into a sharp corner [Eq.

(6.9)], i.e., a discontinuity in the first derivative of M with respect to t. From Eq.

(6.8) we find also that M follows a scaling law within the transition region,

M/∆ = g−1M̃(t/∆), M̃(x) = (
√
x2 + 1− x)/2, (6.11)

which is verified in Fig. 6.1 (inset). In addition, we calculate from Eq. (6.11) the

compressibility, χ = ∂M/∂po,

χ = (gpo)
−1χ̃(t/∆), χ̃(x) = (1− x/

√
x2 + 1)/2. (6.12)

Performing the next-order saddle-point calculation (i.e., including fluctuations beyond

mean field) yields negligible corrections to M , of order N−3/2, N−5/4, and N−1, re-

spectively, in the three domains of Eq. (6.10). Thus, the mean-field description is

accurate, as is also confirmed by numerical integration of the partition function (Fig.

6.1).

Equation (6.7) (upon division by 〈V 〉) is just the Laplace law, balancing the pres-

sure difference across the membrane (left-hand side) with a surface term (right-hand

side). We therefore identify the pressure difference and surface tension as

∆p = (ηN/Vmax)M
−1 ∼ N−1/2M−1,

σ ∼ R∆p ∼M−1, (6.13)

where R ∼ N1/2 is the vesicle radius. Thus, ∆p and σ change from negligible values
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below the transition to appreciable ones above it. Specifically, ∆p is of order N−1/2,

N−1/4, and 1, while σ ∼ 1, N1/4, and N1/2, below, at, and above the critical point,

respectively.

6.4 Discussion

Since Eqs. (6.1)–(6.3), which underly the entire analysis, contain no microscopic infor-

mation, the model is purely thermodynamic, in the sense that any specific microscopic

model for the vesicle and encapsulated solution (so long as the vesicle has a state of

maximum volume and negligible entropy) should lead to the same results. This implies

also that the continuous transition does not necessarily involve a divergent correlation

length.3

We have checked these statements for the specific example of a nearly spherical

envelope of N nodes and fixed total area 4πR2
0, enclosing an ideal solution. See Ap-

pendix C. (The two-dimensional analogue is considered in Appendix D.) The vesicle

shape is defined in this case by R(θ, ϕ), the distance of the membrane from the center

as a function of solid angle, whose deviation from R0 can be decomposed into spher-

ical harmonics, R(θ, ϕ) = R0[1 +
∑lmax

l=0

∑l
m=−l ulmYlm(θ, ϕ)], where (lmax + 1)2 = N .

Integration of the resulting partition function over the amplitudes ulm within a saddle-

point approximation recovers Eqs. (6.8)–(6.12). In addition, we have calculated for

this case the correlation function [Eq. (C.12)],

〈ulmul(−m)〉 ∼
M

N

1

l(l + 1)− 2
, l > 1, (6.14)

which exhibits a critical suppression of amplitude but no divergent correlation length.

Expectedly, this fluctuation spectrum is identical to that of a spherical membrane with

surface tension σ ∼M−1, in accord with Eq. (6.13).

Equations (6.11) and (6.12) characterize the sharpening of the transition with

increasing system size. If we recast them in the form of finite-size scaling using the

conventional critical exponents [26], M ∼ R−β/ν∗M̃(R1/ν∗t) and χ ∼ Rγ/ν∗χ̃(R1/ν∗t),

we readily extract β = 1, γ = 0, and ν∗ = 2. The values of β and γ are consistent with

3Criticality without a divergent correlation length has been found in other mean-field transitions,
e.g., Ref. [129].
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the linear increase of M below the transition [Eq. (6.9) and Fig. 6.1]. Notwithstanding

the absence of a divergent correlation length, one can use ν∗ to define a length scale,

ξ ∼ |t|−ν∗ , such that the system lies in the critical domain if R < ξ. The divergent

ξ does not relate to correlations but to the competition between surface degrees of

freedom (∼ N) and three-dimensional ones (∼ N3/2). This competition determines

the width of the transition, ∆ ∼ [N/(poVmax)]
1/2, making it shrink with increasing

N . Repeating the analysis for a ring in two dimensions yields a similar mean-field

transition with identical exponents. We are not aware of another transition whose

mean-field limit has the exponents found above.4

The phase transition just characterized is a unique feature of particle-encapsulating

vesicles. Specifically, it is a consequence of the effective inner pressure being dependent

on the volume (through FQ(Q/V ) for fixed Q), while the latter fluctuates. This leads

to pressure difference and surface tension which are nonanalytic in Q [Eq. (6.13)]

and a consequent breaking of the equivalence between the fixed-pressure (or fixed-

tension) scenario and that of fixed Q. Indeed, if the enclosed solution is replaced

with a given inner pressure pi (i.e., upon substituting in Eq. (6.1) Zs = epiV/T ), it is

straightforward to show that M = ηN [(pi− po)Vmax]
−1, in agreement with Eq. (6.13).

(We have obtained the same result in Chapter 3 as an exact asymptote for highly

swollen freely-jointed ring; see Eq. (3.27).) Therefore, in the case of a given pressure

difference (or tension) the vesicle swells gradually with pi (or σ) without criticality.

Furthermore, the introduction of a diffusive contact with a particle reservoir,5 i.e.,

replacing the particle-number constraint with a chemical potential, is equivalent (via

the solute equation of state) to specifying the inner pressure. Hence, there is no

criticality in the grand-canonical case either, and the two ensembles are manifestly

not equivalent. (One may refer to Section 3.3 for the case of 2D freely-jointed rings

in the grand-canonical ensemble. In this case we have explicitly demonstrated that

fixing the chemical potential is thermodynamically equivalent to fixing pi, and both

4 Note that the exponents violate the hyperscaling relation, 2β + γ = dν∗ (d being the dimen-
sionality). This so-called breakdown of finite-size scaling, known in other mean-field transitions, is
related to the appearance of the divergent length ξ, which is not a correlation length. See e.g., Refs.
[130, 131].

5We do not consider here diffusion of particles across the membrane, because this will entail a
vanishing pressure difference. One may envisage instead a diffusive contact with a distant buffer.
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scenarios are inequivalent to the case where the number of trapped particles is fixed.)

Another noteworthy limit is that of a pure solvent outside the vesicle, po → 0.

The current analysis yields in this limit Qc → 0 and ∆ → ∞, i.e., the transition

disappears. What physically happens in this case, as was derived and obtained in

Chapters 2–5, is that the swelling of the vesicle toward its maximum volume occurs

already for much smaller particle numbers Q, scaling with the area N rather than the

volume. (See, e.g., the discussion in Chapter 2 after Eq. (2.5b).)

We have found that membrane vesicles, under rather general conditions, should

behave critically as the number of solute particles encapsulated in them is increased

or, equivalently, the outer osmotic pressure is decreased. It should be possible to

experimentally observe this new phase transition, for example, by creating vesicles and

subsequently diluting the outer solution in a controlled manner, or by using isotonic

solutions of molecules with different membrane permeabilities [125, 126].

We mention three points relating to such an experiment. First, it should cover

such time scales that the vesicle could be considered permeable to water. This can

be sensitively controlled if water (aquaporin) channels [43, 44] are incorporated in

the membrane, yet common lipid vesicles are also found in this regime over readily

accessible time scales of a few seconds [83, 84, 125, 126].

Next we examine the assumption of a sharply defined maximum volume. One defi-

nition of Vmax would be the volume enclosed by an unstretchable vesicle of a given area

once out-of-plane fluctuations have been completely suppressed.6 This assumption

should be relaxed when the magnitude of in-plane (stretching) fluctuations becomes

comparable to that of transverse ones. Since, for a tense membrane, the mean-square

fluctuations of both modes have the same (quadratic) dependence on wavenumber,

this crossover will occur simply when the surface tension, σ ∼ (kBT/a
2)M−1 (Eq.

(6.13), a being a molecular size), becomes comparable to the membrane stretching

modulus, which is typically of order 102 dyne/cm [41]. For a ∼ 1 nm this happens

when M . 10−2, i.e., when the mean volume deviates from Vmax by less than 1%.

6The general derivation of Eq. (6.3) does not depend on specific normal modes. Hence, in principle,
the analysis still holds in the case of combined transverse and in-plane fluctuations. One may define
Vmax then as the volume at which nonlinear-elastic or plastic terms set in. However, since the
membrane is expected to rupture close to this point, such an extended description does not seem
experimentally useful.
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Thus, we expect the transition from appreciable to small values of M , along with the

corresponding scaling behavior, to be manifest well before stretching becomes impor-

tant. Moreover, since lipid membranes can sustain an in-plane strain of only a few

percent before rupturing [124], the crossover to stretching-dominated dynamics will

be shortly followed by vesicle lysis [125, 126].

Third, because of the weak dependence of the predicted transition width on N ,

∆ ∼ p−1
o N−1/4, the observed behavior is not expected to be very sharp. A typical

micron-sized vesicle has about N ∼ 108 molecules in its membrane, leading, for a

0.1M solution, to ∆ ∼ 10−1 only. The criticality could be verified, nonetheless, by

checking data collapse according to the universal scaling law, Eq. (6.11).

Thus, our assumptions concerning semipermeability, maximum volume, and large

number of molecules do not rule out an experiment aimed at the predicted critical

swelling. (The suppression of small fluctuations near the transition, however, may

be hard to measure.) More generally, this study highlights the qualitatively different

behavior of semipermeable, particle-encapsulating vesicles as compared to those having

fixed volume or pressure as studied previously. Since most natural and industrial

vesicles belong to this class of systems, their different behavior should be taken into

account, particularly in cases of high swelling and osmotic lysis.
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Summary and Conclusions

In this dissertation we have studied the thermodynamics of particle-encapsulating

vesicles — a system which is abundant in nature as well as in industry. While former

studies concentrated on vesicles of either fixed volume or a given pressure difference

across their envelope, we address a different thermodynamic class defined by the sur-

face area, temperature, number of encapsulated particles, and outer pressure, while no

constraint is imposed on the volume. This new ensemble is suitable for describing vesi-

cles encapsulating solute molecules, which cannot permeate out of the compartment,

while solvent molecules can diffuse more rapidly through the membranal envelope.

Thus, the vesicle has an unconstrained volume. This class, although it is the one

most commonly encountered in practice, has not been studied in the past and, more

importantly, is not necessarily equivalent to the other known ensembles. Throughout

this thesis we have examined the swelling of vesicles subject to either a fixed pressure

difference p or a fixed number Q of trapped particles, and clarified when the swelling

scenarios are thermodynamically equivalent and when they are not.

The difference in swelling behavior of these two ensembles stems already from a

general scaling analysis, presented in Chapter 2. This analysis indicates that the

swelling of random manifolds due to a fixed pressure difference might exhibit a phase

transition while that of particle encapsulating vesicles is always gradual. A closer

examination of this analysis shows, however, that inequivalence occurs only for a 2D

manifold whose unperturbed statistics is Gaussian or freely jointed (random-walk-

like). These predictions of criticality and ensemble inequivalence are indeed confirmed

in Chapter 3 for freely jointed rings. Another model system of fluid vesicles in 3D,

which cannot be properly described by the general scaling analysis. of Chapter 2 also
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shows inequivalence between the fixed-p and fixed-Q scenarios (Chapter 5).

Let us now extend the discussion of Chapter 2 by considering a general power-law

swelling response to particle number, 〈V 〉 ∼ Qα. Transforming to the fixed-p ensemble

(for an ideal solution) we get p(Q) = Q/〈V 〉 ∼ Q1−α, and 〈V 〉 ∼ pα/(1−α). Several ob-

servations readily follow from these relations. First, thermodynamic stability dictates

that 〈V 〉 increase with p, i.e., α ≤ 1. We are left with two different cases. (i) If α < 1,

there is no criticality and arbitrarily small values of Q correspond to arbitrarily small

values of p. Hence, in this case there is equivalence. (ii) If α = 1, we expect both

criticality under fixed p and inaccessibility of small-pressure states for fixed Q, i.e.,

inequivalence of the two swelling scenarios. In this limit of maximum α, the manifold

volume is maximally susceptible to changes in Q (linear in Q), to the extent that the

concentration and pressure do not change (cf. Fig. 5.5). Thus, criticality and inequiv-

alent phase spaces come hand in hand. In the standard case where the blob analysis

of Chapter 2 holds, we get from Eq. (2.5b) α = d(1 − ν)/(d − 1), and the condition

α ≤ 1 is equivalent to dν ≥ 1. In addition, we have a geometrical lower bound for the

swelling exponent, which cannot be smaller than that of a folded, compact manifold,

ν ≥ (d − 1)/d. This leads to the restriction α ≤ 1/(d − 1), which is consistent with,

and stricter than, the thermodynamic one, α ≤ 1. Hence, we conclude that for most

systems, which obey the analysis of Chapter 2, case (ii) above, involving criticality

and inequivalence, can occur only in 2D, i.e., for d = 2 and ν = 1/2. (Model systems

corresponding to this case were studied in Chapter 3.)

All of these general conclusions are supported by the specific studied examples.

A 2D self-avoiding ring (Chapter 4) is an example of case (i) above. It obeys the

scaling analysis of Chapter 2 with d = 2, ν = 3/4, i.e., α = 1/2. (The value of α

has been confirmed by simulations; see Fig. 4.2.) This system exhibits no criticality

under fixed p, and the two ensembles have been shown to be equivalent (Fig. 4.2). The

more interesting case (ii) has been encountered in three systems. Two examples are

provided by Gaussian and freely jointed rings in 2D (Chapter 3). For both examples

the blob analysis holds, and d = 2, ν = 1/2 (i.e., dν = 1). The third example of the

anomalous case (ii) is a 3D fluid vesicle (Chapter 5), for which the blob analysis of

Chapter 2 fails, yet a linear dependence of 〈V 〉 on Q has been found, i.e., α = 1 [Eq.

(5.2b) and Fig. 5.3]. Indeed, under fixed p ([75, 77] and Chapter 3) all three manifolds
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undergo phase transitions.

The host of examples leads to the expectation that the picture described here,

including the scaling relations and possible phase transitions, should hold for any

random manifold swollen by either a pressure difference or encapsulated particles.

In the standard case, where the blob analysis of Chapter 2 is valid, one needs to

know merely the dimensionality d and the statistics of the unperturbed manifold (the

swelling exponent ν) to predict the qualitative swelling behavior. In other, exceptional

cases (e.g., the 3D fluid vesicle of Chapter 5) it suffices to know the response of the

unperturbed manifold to a small number of encapsulated particles (i.e., α).

The thermodynamic inequivalence between the fixed-p and fixed-Q scenarios, re-

ported above for certain systems, also implies inequivalence between the canonical

and grand-canonical ensembles in those systems. This is because fixing the chemical

potential µ of the encapsulated particles inevitably fixes also the pressure p that they

exert on the manifold, as these two intensive variables are related via the particles’

equation of state. (For example, in the case of ideal particles one simply has µ = ln p.)

The inequivalence of the fixed-Q and fixed-µ ensembles has been directly proven for

freely jointed 2D rings (Chapter 3).

Finally, in Chapter 6 we have studied a realistic, general model of a particle-

encapsulating vesicle, which is immersed in solution, i.e., is subject to an external

osmotic pressure. Considering a finite surface area we have identified a new contin-

uous phase transition in which the vesicle changes from a fluctuating state to that

of maximum volume. This result is general regardless of the microscopic model used

for the vesicle or the solution. The criticality is removed when the constraint of fixed

number of particles is replaced by a fixed internal pressure. The vesicle then reaches

its maximum-volume configuration only asymptotically at p → ∞. The continuous

phase transition implies a universal behavior of particle-encapsulating vesicles as they

swell toward their maximum volume and osmotic lysis.

In this thesis, a coherent unified theory of particle-encapsulating vesicles is pre-

sented. We have allowed ourselves to treat highly idealized manifolds at high tem-

peratures, i.e., lp � L, in order to infer and demonstrate the unique properties of

this ubiquitous thermodynamic ensemble. In Chapter 6, by contrast, we have reached

rather general and surprising predictions relevant to realistic, smooth (lp > L), highly
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swollen particle-encapsulating vesicles. These predictions can be directly checked in

experiments, which will hopefully be motivated by this work.

A possible extension to this work may treat semiflexible particle-encapsulating

manifolds, i.e., incorporating a bending rigidity κ to the studied model systems. For

the case of fixed p, assuming a finite κ has already been considered [25, 80, 59, 76]. In

the 2D case, introducing κ merely rescales the number of monomers and link length,

and thus, does not change our qualitative results [76]. In particular, the criticality of

the freely jointed case, described in Chapter 3, remains. However, for 3D fluid vesicles

studied in Chapter 5, the criticality with p seems to disappear above some value of κ

[80, 59]. The behavior of particle-encapsulating vesicles with a non-vanishing bending

rigidity is yet to be explored. In particular, it will be interesting to check whether the

highly universal picture achieved here (i.e., a single scaling law for swelling with Q),

will remain so after the addition of bending rigidity.

Another important extension may be to address the shapes of such vesicles. This

issue was already considered for pressurized vesicles. In the case of the 2D Gaussian

model, the asphericity was calculated directly as well as measured by simulations

[75, 85, 86], revealing anisotropic shapes below the phase transition and circular ones

above it. In the three-dimensional case of fluid surfaces the asphericity was measured

by Monte Carlo simulations as a function of p [77]. For particle-encapsulating vesicles,

we do not suspect a conceptually different behavior. Nevertheless, this issue is yet to

be addressed.
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Appendix A:

2D Freely Jointed Chain under Tension

In this Appendix we recall the results for the partition function of a 2D, open, freely

jointed chain subject to a tensile force. These results are used in Sections 3.2.2 and

3.2.4.

Consider a 2D freely jointed chain composed of N links of length l ≡ 1. A chain

configuration is defined by N 2D unit vectors, {uj}j=1,...,N , specifying the orientations

of the links. One end of the chain is held fixed while the other is pulled by a force f

(measured in units of kBT/l). The partition function of the chain is

Z(f , N) =

∫ N∏
j=1

duje
f ·uj =

(∫ 2π

0

dθef cos θ

)N

= [2πI0(f)]N . (A.1)

The mean end-to-end vector is obtained from Eq. (A.1) as

R = ∇f lnZ = N
I1(f)

I0(f)
f̂ . (A.2)

The mean end-to-end distance in the limit of weak force, to two leading orders, is

R/N ' f/2− f 3/16, (A.3)

leading, upon inversion, to

f ' 2R/N + (R/N)3. (A.4)

Finally, the free energy for fixed end-to-end distance (to two leading orders in small

R/N) is

F (R) = − lnZ[f(R)] + f ·R ' R2

N
+

R4

4N3
. (A.5)

This yields the usual Gaussian term, Fel, and the first correction due to inextensibility,
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Finext, used in Eq. (3.4).
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Appendix B: Area Probability Distribution Func-

tion of Highly Swollen Freely Jointed Rings

Unlike the probability distribution function of the area for a Gaussian ring, PG
0 (N, V )

of Eq. (3.41), its counterpart for a freely jointed ring, PFJ
0 (N, V ), is not known ana-

lytically. The asymptote of PFJ
0 as V → Vmax, nonetheless, can be calculated, which

is the aim of this Appendix.

A configuration of the ring is defined by a set of N 2D vectors specifying the

monomer positions, {rj}j=0,...,N with r0 = rN to make the chain closed. The partition

function for a fixed area V is given by

ZFJ(N, V ) =

∫ N∏
j=1

drjδ(|rj − rj−1| − 1)δ(V ′[{rj}]− V )

=

∫
dp

∫ N∏
j=1

drje
ip(V ′[{rj}]−V )δ(|rj − rj−1| − 1),

(B.1)

where V ′[{rj}] is the area of the configuration {rj}.

When the ring statistics is governed by highly swollen configurations, the integra-

tion over {rj} can be performed analytically using the transfer-matrix technique (see

Section 3.2.4). This leads to

ZFJ(N, V . Vmax) =

∫
dpe−ipA

[
2πI0

(
ipN

4π

)]N

, (B.2)

where I0 is the zeroth-order modified Bessel function of the first kind. The asymptotic

expansion of I0 for large arguments,

I0

(
ipN

4π

)
'
(

2

ipN

)1/2

e
ipN
4π , (B.3)

is substituted in Eq. (B.2). This yields, up to a constant prefactor,

ZFJ(N, V . Vmax) ∼
∫
dpeip(Vmax−V )(pN)−N/2, (B.4)

which, upon a simple change of variables (or, alternatively, a stationary-phase approx-

imation) leads to

ZFJ(N, V . Vmax) ∼ (Vmax − V )N/2. (B.5)

Thus, the area probability distribution function, which is proportional to ZFJ, is
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given to leading order in (Vmax − V ) by

PFJ
0 (N, V . Vmax) ∼ (Vmax − V )N/2. (B.6)

This result is used in Section 3.3.3 to calculate the mean area of a freely jointed ring in

the strong-swelling regime. In Chapter 6 we show that this expression is an example

of a more general result for highly swollen envelopes.
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Appendix C:

Microscopic Model of Nearly Spherical Vesicles

In Chapter 6 we present a general thermodynamic treatment of any closed particle-

encapsulating compartment regardless of its microscopic description. The results,

of course, should be valid for any specific model. Here we consider a specific case of

nearly spherical vesicles with a fixed surface area A and, thus, a maximum volume. We

will first derive the volume probability distribution function and then the correlation

function of shape fluctuations.

The shape of such swollen objects can be parameterized by the distance of the

envelope from its center of mass as a function of solid angle, R(θ, ϕ). This radial

coordinate can be expanded around that of a sphere, RA, as a series of spherical

harmonics,

R(θ, ϕ) = RA

[
1 +

lmax∑
l≥0

l∑
m=−l

ulmYlm(θ, ϕ)

]
, (C.1)

where RA =
√
A/(4π) and ulm = (−1)mulm

∗. The total number of degrees of freedom

is N +4 ≡ lmax(lmax +2) ∼ A. In such a representation the volume is given, to second

order in ulm, by

V ({ulm}) = R3
A

{
4π

3

[
1 +

u00√
4π

]3

+
lmax∑
l≥1

l∑
m=−l

|ulm|2
}
, (C.2)

and the area by

A({ulm}) = R2
A

{
4π

[
1 +

u00√
4π

]2

+
lmax∑
l≥1

l∑
m=−l

|ulm|2[1 + l(l + 1)/2]

}
. (C.3)

Applying the constraint of fixed area, A({ulm}) = A, is equivalent, up to O(ulm
2), to

fixing

u00 = −

{
lmax∑
l≥1

l∑
m=−l

|ulm|2[1 + l(l + 1)/2]

}
/
√

16π. (C.4)

Substituting Eq. (C.4) in Eq. (C.2) yields, up to O(ulm
2),

V ({ulm}) = Vmax −
R3

A

4

[
lmax∑
l≥1

l∑
m=−l

|ulm|2(l + 2)(l − 1)

]
≡ Vmax −

∑
l,m

|ulm|2Wl, (C.5)

where Vmax = 4πR3
A/3 is the maximum volume of the vesicle, and we define Wl ≡
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3(l+ 2)(l− 1)Vmax/(16π). The harmonics with l = 1 represent pure translations [132]

and are thus omitted. From here onwards summation over l and m implies summing

over l > 1 and −l ≤ m ≤ l, i.e., a total of N modes.

We now calculate the probability distribution function of volumes for this model,

PA(V ) =

∫
Dulmδ(V − V [{ulm}]) =

∫
Dulm

∫
dp√
2π
eip(V−V [{ulm}])

=

∫
dp√
2π
eip(Vmax−V )

∫
Dulme

−ip
P

l,m |ulm|2Wl

=
∏
l,m

[
π

Wl

]1/2
KN

√
2π

∫
dp
eip(Vmax−V )

(ip)N/2

=
∏
l,m

[
4π

R3
A(l + 2)(l − 1)

]1/2
KN

√
2π

(Vmax − V )N/2−1

∫
dxeix

(ix)N/2

∼ (Vmax − V )N/2−1,

(C.6)

where K ≡
∫
dxe−ix2

. This result is similar to the one obtained for a highly swollen

freely jointed ring in Appendix B, Eq. (B.6).

For vesicles such as those studied in Chapter 6, i.e., encapsulating an ideal solute

and subject to an external pressure difference po, the partition function is given by

Z(Q, po, N) =

∫
Dulme

−poV ({ulm})+Q log V ({ulm}), (C.7)

where Q is the number of trapped particles. This may also be written as

Z(Q, po, N) =

∫
dV

∫
Dulme

−poV ({ulm})+Q log V ({ulm})δ(V − V [{ulm}])

=

∫
dV e−poV +Q log V

∫
dp√
2π
e−ip(Vmax−V )

∫
Dulme

ip
P

l,m |ulm|2Wl ,
(C.8)

where we have used Eq. (C.5). Calculating this integral, in a procedure similar to that

described in Eq. (C.6), leads to the following partition function:

Z(Q, po, N) =
∏
l,m

[
πK2

Wl

]1/2
1√
2π

(∫
dxeix

(ix)N/2

)∫
dV (Vmax − V )N/2−1e−poV +Q log V .

(C.9)

This expression is substituted for Zv in Eq. (6.1).

We proceed to calculate the shape correlation function 〈ulmul′m′〉. This is done by
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adding a dummy variable λlm,

Z(Q, po, N) =

∫
dV e−poV +Q log V

∫
dp√
2π
eip(Vmax−V )

∫
Dulme

−ip
P

l,m |ulm|2Wl+
P

λlmulm

∣∣∣∣
λlm=0

=
∏
l,m

[
πK2

Wl

]1/2 ∫
dV e−poV +Q log V

∫
dp
eip(Vmax−V )+i

P
λlm

2/(4pWl)

√
2π(ip)N/2

∣∣∣∣∣
λlm=0

.

(C.10)

To obtain the correlataion function one needs to differentiate Z with respect to λlm

(prior to the substitution of λlm = 0),

Z〈ulmul′m′〉 =
∂2Z

∂λlm∂λl′m′

= δll′δm,−m′

∏
l,m

1√
2π

[
πK2

Wl

]1/2 ∫
dV e−poV +Q log V −2

4Wl

∫
dp
eip(Vmax−V )

(ip)N/2+1

=
∏
l,m

[
πK2

Wl

]1/2 −1

2Wl

√
2π

(∫
dxeix

(ix)N/2+1

)∫
dV e−poV +Q log V (Vmax − V )N/2.

(C.11)

This may be written as

〈ulmul,−m〉 =
−1

2Wl

〈Vmax − V 〉
(∫

dxeix

(ix)N/2+1

)
/

(∫
dxeix

(ix)N/2

)
=

16π

3N(l + 2)(l − 1)

Vmax − 〈V 〉
Vmax

, l > 1.

(C.12)

Equation (C.12) decribes how fluctuations are supressed as 〈V 〉 approaches Vmax.

Let us compare this result with the one for a flat membrane under surface tension

σ and no bending rigodity. In this case the mean square height fluctuation is given by

〈h2
q〉 =

1

L2σq2
, (C.13)

where q is the wavevector, and L is the lateral dimension of the membrane. The

spherical representation coincides with the flat one in the limit RA →∞ and l →∞

such that q2 = l(l + 1)/R2
A is finite and L2 = 4πR2

A. Comparison of Eqs. (C.12) and

(C.13) reveals that they are equivalent once we identify the surface tension as

σ ∼ RAN

Vmax

Vmax

Vmax − 〈V 〉
. (C.14)

This result for the surface tension coincides with the one obtained more generally in
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Chapter 6, Eq. (6.13).
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Appendix D:

Microscopic Model of Nearly Circular Rings

Here we present another microscopic description of the more general system discussed

in Chapter 6 — that of nearly circular two-dimensional rings. The mathematical

treatment is almost identical to the more complex three-dimensional system discussed

in the preceding appendix.

We consider a ring with a given perimeter A. Its contour is defined by the distance

R from the ring’s center of mass as a function of the polar angle ϕ. For swollen rings,

R(ϕ) is expanded around the radius of a circle RA as a series of N eigenmodes,

R(ϕ) = RA

1 +

N/2∑
m=−N/2

ume
imϕ

 , (D.1)

where RA ≡
√
A/(2π) and um = (−1)mu−m.

In this representation the area (two-dimensional volume) and perimeter are given

to second order in um by

V ({um}) ' πR2
A

[
(1 + u0)

2 +
∑
m6=0

u2
m

]
, (D.2)

A({um}) ' 2πRA(1 + u0) + πRA

∑
m6=0

m2u2
m. (D.3)

Applying the fixed perimeter constraint A({um}) = A is equivalent, up to O(u2
m), to

fixing

u0 = −1

2

∑
m6=0

m2u2
m. (D.4)

Substituting Eq. (D.4) in Eq. (D.2) gives, up to O(u2
m),

V ({um}) = Vmax

[
1 +

∑
m6=0

(1−m2)u2
m

]
≡ Vmax −

∑
m6=0

Wmu
2
m, (D.5)

where Vmax = A2/(4π) and we denote

Wm ≡ Vmax(m
2 − 1). (D.6)

Note that the contributionis of the m = ±1 modes vanish. This result is analogous to

Eq. (C.5) of Appendix C and since further calculations in the previous appendix were
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performed for a general weight function Wm they hold also for this two-dimensional

case.

For example, the distribution function of volumes for a 2D ring is given, according

to Eqs. (C.6) and (D.6), by

PA(V ) =
∏
|m|>1

[
π

Wm

]1/2
KN

√
2π

∫
dp
eip(Vmax−V )

(ip)N/2

=
∏
|m|>1

[
π

Vmax(m2 − 1)

]1/2
KN

√
2π

(Vmax − V )N/2−1

∫
dxeix

(ix)N/2

∼ (Vmax − V )N/2−1,

(D.7)

where K was defined already in Appendix C as K ≡
∫
dxe−ix2

. This result was

obtained in a different manner in Appendix B, Eq. (B.6).

The partition function of a ring, encapsulating a fixed number Q of ideal particles

and subject to an external pressure difference is given, according to Eq. (C.9), by

Z(Q, po, N) =
∏
|m|>1

[
πK2

Wm

]1/2
1√
2π

(∫
dxeix

(ix)N/2

)∫
dV (Vmax − V )N/2−1e−poV +Q log V ,

(D.8)

and, thus, the correlation function of the shape fluctuations 〈umu−m〉 is given according

to Eqs. (C.12) and (D.6) by

〈umu−m〉 =
1

N(m2 − 1)

Vmax − 〈V 〉
Vmax

, |m| > 1. (D.9)

Equation (D.9) describes how fluctuations are suppressed as the ring approaches a

circular shape.
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