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At the glass transition, aliquid transforms into an amorphous solid.
Despite minimal structural rearrangements, this transition is accompanied

by adramatic dynamical slowdown. These features render the

transition’s experimental determination and theoretical understanding
challenging. Here we introduce a new framework that uses two-particle
correlations and amodel-free theoretical description to investigate the
dynamics of glass-forming colloidal suspensions indirectly. Using the
fluctuation-dissipation theorem, we relate equilibrium thermal fluctuations
of pairs of tracer particles to the underlying response properties of the
system. We measure the correlated motion of tracer particles caused by

the solvent at short timescales and find three distinct signatures signalling
the onset of the glass transition. The correlations in the thermal motions

of tracer pairs exhibit a changing decay behaviour with their relative
distance; alength scale related to this decay steeply increases; and a notable
sign reversal is observed in specific correlations. Our findings establish
aconnection between the colloidal glass transition and the breaking of

the translational symmetry in the dispersion medium, thereby revealing
fundamental aspects of the glass transitions.

How does a liquid transform into a glass*? When examining the glass
transition, two fundamental questions arise in comparison with clas-
sical phase transitions: Does the relaxation time 7, truly diverge at a
critical temperature or density, and is this divergence associated with
an emergent increasing length scale? Moreover, does the transition
involve symmetry breaking, making the glass a distinct state of matter,
evenifnotnecessarily anequilibrium state? Concerning the relaxation
time (7,), thereis a general consensus that it effectively diverges, sup-
ported by experimental and computational evidence showing that
itincreases dramatically near the glass transition, fitting well with
divergent functions"’. However, evidence for a diverging length scale
remains less definitive. Although increasingly large domains of coop-
eratively moving particles (‘dynamic heterogeneities’) are observed
near the transition’, their growth remains modest, typically limited
to afew particle diameters"**. Regarding symmetry breaking, several

studies suggest a critical behaviour and subtle symmetry breaking at
theglass transition®®. Awidely accepted and predictive theory® strongly
supports the notion that the glass transitionis a critical phenomenon
associated withsymmetry breaking and adivergent correlation length.
Yet, this mean-field theory is exact only in high dimensions, and it
remains uncertain whether the predicted critical behaviour persists
or is substantially altered in three-dimensional (3D) systems’. This
unresolved issue has practical implications for various applications
utilizing synthetic glassy materials composed of atoms, molecules,
polymers, colloids or granular particles®’. The challenge extends to
biological systems, where glassy behaviour can elucidate the dynam-
icsand reorganization processesin individual cells’>" and tissues'> .

Among all glassy materials, those prepared using colloidal sus-
pensions offer remarkable advantages®® . They contain nanometre-
to micrometre-sized particles that undergo thermal fluctuations
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Fig.1| Representative images of the bi-disperse colloidal suspension.
a,b, Two-channel confocal microscopy images of a suspension containing
large particles (green) and small tracer particles (red) are shown for [¢ = 0.15,

10 pm
—

¢,=0.0050] (a) and [¢ = 0.58, ¢, = 0.0058] (b). ¢,d, The corresponding
one-channelimages of the tracer particles, acquired simultaneously with the
two-channelimages.

(like atoms and molecules) inadispersion medium and can be individu-
ally resolved using optical microscopy (unlike atoms and molecules)®.
Inparticular, colloidal particles with hard-sphere-like interactions have
attracted widespread interest*** because their suspension’s thermo-
dynamic state is controlled solely by the volume fraction of the parti-
cles, ¢.Inequilibrium, hard spheres crystallize above ¢ = 0.545, but size
polydispersity or small stresses can suppress crystallization and allow
the fluid phase to remain supercooled up to ¢ = 0.58, beyond whichit is
commonly thought to solidify into aglass?>*. Inrecent decades, studies
of colloidal supercooled liquids and glasses have shed light on many
fundamental problems, including non-Newtonian flow, jamming and
ageing®. Although the structure of colloidal glasses is more accessible
than that of atomic amorphous materials, studying the dynamics near
the glass transition remains extremely challenging due to the dramatic
slowdown in the particle motion. To avoid this issue, a small fraction
of notably smaller particles canbe added to the suspension® 2, These
tracers remain mobile even when the matrix solidifies, explore the
structural voids and are carried by any large-scale flow generated
by the surrounding medium. Their motion can be tracked directly
using optical microscopy or indirectly by means of light scattering and
scattering-like techniques such as differential dynamic microscopy
(DDM)*7, In particular, at timescales sufficiently large for the trac-
ersto explore the voids, self- and collective diffusion quantities shed

light on the matrix mobility even in the absence of an explicit solvent®.
Although DDM provides access to the self-intermediate scattering func-
tion for tracer particles or the total intermediate scattering function
in concentrated systems, the two-point correlation analysis directly
resolves spatial cross-correlations in real space, explicitly capturing
the pairwise mobility tensor®.

Inthis Article, we introduce an alternative framework that exam-
ines tracer dynamics on much shorter timescales, allowing thermal
motion to reflect large-scale flow properties of the solvent through
the fluctuation-dissipation theorem. Because these flow properties
are affected by the collective motion of the glass-forming suspension,
our model-free theoretical analysis reveals previously unidentified
signatures of the glass transition. In particular, two-point correlation
functions between the displacements of the tracers separated by a
distancer (1) show different spatial decay patterns, (2) undergo asign
inversionand (3) resultina characteristic length scale thatis bound to
diverge with the square root of the viscosity of the suspension.

Experiments

The glass-forming suspensions are composed of polymethylmeth-
acrylate (PMMA) particles with diameter 2a,=3.19 pm and polydis-
persity 6, = 7% that are fluorescently labelled using monomerized
4-methyl-aminoethylmethacrylate-7-nitro-benzo-2-oxal,3-diazol (NBD).
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The particles are suspended in an index- and density-matched mix-
ture of cis-decalin and cycloheptylbromide that prevents particle
sedimentation and turbidity. In addition, the suspension behaves as
ahard-sphere-like system?***, where interactions between particles
occur only upon contact. The investigated range of volume fractions,
0.05< ¢ <0.60, includesliquid and supercooled phases. Notably smaller
PMMA particles, with diameter 2a,= 0.50 um, polydispersity &, = 7%,
monomerized rhodamine B as fluorescent label and volume fraction
@, =0.005, are added as tracers. Representative confocal images of
the binary mixture are shown in Fig. 1; the matrix particles and trac-
ers appear green and red, respectively. Using a two-channel confocal
microscopy set-up, weindependently imaged the differently dyed parti-
clespecies, as simultaneous acquisition causes signal leakage between
them (Fig. 1c,d). Therefore, for our measurements, we used only one
laser and one channel per acquisition. This approach ensures stable
image quality and enables clear, accurate visualization of the tracer par-
ticles. Asthe volume fraction of large particles increases (from Fig.1a,b
and from Fig. 1c,d), the tracers start to occupy the voids of the dense
structure. A detailed description of the experimental realization and
dataanalysisis available in the Supplementary Information.

An optical section of 0.4 pm was used without performing a 3D
scan, making boththe measurements and the analysis two-dimensional
while probing bulk properties. We characterize the dynamics of the
system by extracting the trajectories R{(t) and r(t) of each large and
small particle. The corresponding mean squared displacements aver-
aged over all particles are shown in Fig. 2a (MSD,.(7), large particles)
and Fig. 2b (MSD, (1), tracers) for increasing volume fraction of the
matrix. At ¢ > 0.57, MSD,,(7) hardly increases with time, confirming
the arrest of particle motion and thus reproducing the previously
reported colloidal glass transition of hard-sphere suspensions®>*,
By contrast, the tracer particles stay mobile up to about 10 Brownian
times (8 = 3Trr10(2as)3/k3 T ~ 1s)evenforvery high volume fractions,
before they start to become sensitive to the finite cages of the
structure. In this work, we focus on the dynamics during delay time
T =68 ms ~ 0.0778 (Fig. 2b, inset), over which each particleiis able to
explore only the area schematically indicated by the dashed circlesin
Fig.2c. Thus, the large particles hardly move (compared with their size),
whereas the small particles exhibit diffusive behaviour. Any anomalous
dynamics, for example due to caging effects, occur on much larger
timescales (7 >1s), and the motion of the tracers is determined solely
by Brownian motion or by large-scale fluid flows induced by the mobi-
lity of the matrix.

To gain insight into the glass transition of the suspension,
we consider all pairs of tracers, i and j, separated by a distance
r(t) = r(0)| = |r(t) - r,(t)] and extract the displacements of the two trac-
ers along their connecting line (Ax(t, T) = Ar,(¢, 7) - r(¢)/r(t)) and per-
pendicular to it (Ay,(t, 7)) (and correspondingly Ax (¢, 7) and Ay/(¢, 7))
(seesketchinFig. 2d). Finally, thelongitudinal, D,(r, 7), and transversal,
D, (r, 7), two-point correlation functions are obtained as

Dyr 1) = (At DAX (D) )

1)
Dy( D) = (AL DAY (D)) o

Theangular brackets (- '>(iJ), o denote anaverage over all pairsiand;
separated by the same distance r(¢) for all starting times t. D,and D,
quantify the degree to which the random thermal motions of the two
tracers are correlated along and perpendicular to their connecting
line, respectively. The longitudinal and transversal correlations are
illustrated for a liquid suspension (¢ = 0.05) and a supercooled one
(¢ =0.59) in Fig. 2e. Substantial correlations between the tracers are
observed in the liquid state, whereas the correlations are weaker but
measurablein the supercooled suspension. The decay as afunction of
the relative distance ris also qualitatively different in the two cases
(Fig. 2e, inset).

The pronounced increase in correlations for D, at separations
r <1um (Fig. 2e) originates from the local structure of tracers, as
captured by the radial distribution function (Supplementary Fig. 27)
and is consistent with previous findings for quasi-two-dimensional
concentrated systems®. This increase is also observed in computer
simulations in the absence of hydrodynamic interactions (Supple-
mentary Information), further verifying that it results purely from the
structural arrangements. We have excluded this short-distance region
from the main analysis.

This strategy of analysing pairwise correlated displacements asa
function of interparticle distance forms the basis of two-point micro-
rheology, a powerful technique used to probe the elastic and viscous
moduli of complex materials®. In purely viscous fluids, the mobility
matrixbecomes timeindependent, the two-point correlation functions
increase linearly with rand the method reveals how the strain-rate field
decays through the fluid™®.

Our framework belongs to this purely viscous category, because
over =68 ms the tracers interact solely with the surrounding fluid.
However, they still sense the matrix indirectly viaits effect on the fluid
flow. Without solvent, at 7= 68 ms, D(r, 7) and D, (r, 7) of equation (1)
would vanish (Supplementary Fig.30d). Figure 3 displays the two-point
correlations as functions of 7 for various volume fractions ¢ and par-
ticle separations r. The linearity observed around the relevant delay
time (7 = 68 ms) confirms that the mediumbehaves predominantly asa
viscous liquid within this time regime; thus, elasticity can be precluded.
Thisis further supported by the linear dependence onrof the one-point
MSD,,(7) inthe same time range (Fig. 2b).

We now focus on the r dependence of D\(r, 7) and D, (r, 7) at
=68 ms to find distinct signatures. Figure 4 presents the two-point
correlations D,(r, 7) and D, (r, 7) for various volume fractions ¢. In the
longitudinal direction (Fig. 4a), the correlations decay monotonically
forr>1pum,withthe decay rate strongly dependent on the volume frac-
tion. For dilute suspensions (low ¢), the decay follows D,(r, 7) = r " and
is consistent with long-range hydrodynamicinteractions in Newtonian
fluids. By contrast, at higher-volume fractions (supercooled states),
the decay becomes notably steeper, approaching r3, which reflects the
suppression of fluid propagation due to the dense matrix. The trans-
verse correlations D, (r, 7) (Fig. 4b,c) exhibit two additional features.
First, for ¢ > 0.45, D, (r, ) shows a non-monotonic dependence onr,
and for the highest densities it becomes negative at small separations,
indicating anticorrelated motion between nearby tracers, asignature of
mechanical constraintsinsolid environments***. Second, in the liquid
state, the amplitude of D, (r, 7) is approximately half that of D,(r, 7)
(Supplementary Fig. 24), in agreement with theoretical expectations
for isotropic hydrodynamic coupling®. To disentangle these spatial
effects caused by the matrix from changes in single-tracer mobil-
ity, we normalize both D\(r, 7) and D (r, 7) by the ¢-dependent mean
squared displacement MSD,,(7 = 68 ms) (Fig. 2b, inset). The resulting
curves (Fig. 4d-f) retain their distinct r dependence, confirming that
the observed changes in the correlations arise from hydrodynamic
interactions. This normalization removes the trivial scaling MSD «
and isolates the spatial dependence encoded in the pair-coupling
mobility tensors that enter equation (1).

Togainaquantitative understanding of the correlations as a func-
tion of ¢ and r, we fitted the decaying part of the logarithm of the lon-
gitudinal data to a linear equation with slope — a, thatis D,(r, 7) =< r"®,
over varyingintervals of separations r (Fig. 5a). Thisresolves the spatial
crossover between the two power-law decays at different values of ¢.
For 1.3 pm <r<1.8 pm, a as a function of ¢ gradually changes from
a=1atlow ¢ toavaluearound a = 3 for the supercooled suspensions.
Thus, the dynamical slowdown of the large particlesisreflected inthe
dynamics of the tracers, which, however, are never arrested (Fig. 2b).
For larger separation intervals, the increase in a begins at a higher
value of ¢ and becomes sharper. Motivated by these results and the
model described below (equation (9a)), we fit the longitudinal datatoa
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Fig. 2| Overview of particle dynamics from the bi-disperse colloidal
suspension’s one- and two-point observables. One-point dynamics of large
and tracer particles across the glass transition. a, Mean squared displacement
MSD,(7) of large particles as a function of delay time 7, for various volume
fractions ¢. b, MSD,,(7) of tracer particles for the same volume fractions. The
vertical dashed line indicates 7 = 68 ms. The inset shows MSD,,(7 = 68 ms).

¢, Schematic cross-sectionillustrating, to scale, the spatial positioning of tracer
(red) and large (green) particles for asuspension of ¢ = 0.5. Tracer particles
primarily reside in the voids formed between the larger particles. The dashed
circlesindicate the regions each particle is able to explore during the chosen
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timeinterval 7= 68 ms. d, A3D visualization of the system and the method for
measuring two-point correlations between well-separated tracers at distance
r(t). e, Flow-mediated two-point displacement correlations D, (r, 7) and D, (r, )
for liquid (blue) and supercooled (red) states at 7= 68 ms. The datainaand
erepresent the weighted mean from N,,, (>10) different areas (technical
replicates), where N,,., varied for each ¢ (Supplementary Table 3). The error bars
represent the corresponding weighted s.d. The weighting is based on the number
of displacements (one-point or two-point) and is applied consistently to both the
mean and s.d. calculation. The error bars may be smaller than the symbol size.

superposition of the two power laws, D, = 24, (r™ + £*r*). The coefficient
A,, whichdetermines the overall strength of the correlation, isexpected
to be inversely proportional to the viscosity of the suspension . The
coefficient £, in units of length squared, defines a crossover separation
length £before and after which the correlations are dominated by the

r?orr'term, respectively. Figure 5b shows the dependence of £ on
¢, exhibiting a steep increase for the supercooled suspensions. The
extraction of a and £ from the transversal correlation D, is consistent
with the analysis above but statistically more challenging due to the
non-monotonic behaviour of this correlation.
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Fig. 3| Time dependence of the two-point correlation functions.

a-d, Longitudinal D,(r, 7) (aand b) and transversal |D, (r, 7)| (cand d) as functions

of delay time t for different volume fractions ¢, shown for r=1.3 pm (aand ¢) and

r=8.7 um (b and d). These distances represent the lower and upper bounds of the
rregions analysed in this work. Solid lines indicate alinear increase with 7.
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The dataina-drepresent the weighted mean from N,,., (>10) different areas
(technical replicates), where N,,, varied for each ¢ (Supplementary Table 3). The
error bars represent the corresponding weighted s.d. The weighting is based on
the number of two-point displacements and is applied consistently to both the
mean and s.d. calculation. The error bars may be smaller than the symbol size.

Theory
The experimental results are now rationalized using a model-free
approach based on conservation laws***. A more elaborate analysis
is found in ref. 39.

We start by considering the overdamped stochastic dynamics of
a pair of tracer particles in a fluid. The dynamics are described by an

overdamped Langevin equation*®*,
d
g "ie(f0) = My,55(r1(Lo), 12(to)) [Fp(t0) + & 5(t0)] . Q)

wherei,j=(1,2) label the particles and 8, 8 = (x, ), z) denote Cartesian
coordinates. Summation over repeated indicesisimplied. The position
vector of particleiat time t has the componentr, ,(¢) inthe 9 direction;
F,,and § ,are the 9-components of the deterministic and random forces
actingonparticle i, respectively. (We have omitted the ‘spurious drift’
term appearing in the formulation*° because, in the approximation to
follow, the mobility matrix M; ,;is divergence-free.) The pair-mobility
matrix M; s depends on the instantaneous spatial configuration of the
pair, (r,(¢), r,(¢)). The matrix contains self-mobility blocks (i =j), which
relate the velocity of each particle to the force acting onitself, and
coupling-mobility blocks (i #j), which relate the velocity of each particle
to the force acting on the other (that is, the hydrodynamic interac-
tionbetween the two). For apurely viscous medium (whichis the case
in our measurements), the mobility matrix does not have an explicit

dependence on time. The dispersion medium is at equilibrium and
therefore satisfies the fluctuation-dissipation theorem, which dictates

€s(0) =0, (§s(OGp(t)) =2k TM™); 55 6(6 ~ ). (3)

Our measurements are taken over ashort time interval rsuch that the
configuration (r,, r,) remains effectively unchanged (Fig. 2c). In addi-
tion, our tracers are force-free, F;= 0. Integration of equation (2) while
using equation (3) gives the displacement correlations,

(Ar; (Lo, DA j g(Lo, 1)) = 2kp TT Mjj 55(¥1(Ep), ¥2(0)), (4)

whichrelates the measured two-point displacement correlations, equa-
tion (1), to the coupling blocks of the mobility matrix. In the limit where
the tracers’ size is much smaller than their separation, a, < r=|r,-ry,
the coupling mobility becomes independent of the particles’ proper-
ties and equal to the flow velocity response (G,,(r)) to a point force,
M,;55(r1, 15) = Gys(r). This ‘stokeslet approximation™?is similar to the
monopole-monopole limit of the electrostatic interaction between
charged particles at large separations (large-separation limit), given
simply by the Coulomb potential. Thus, the coupling mobility reflects
the properties of the surrounding medium on a large-scale r. (This is
the basis of two-point microrheology®.) Defining the x axis along the
separationvector, r = rX, equation (4) simplifiesin the large-separation
limit to
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Fig. 4| The two-point correlations between the tracers’ displacements
describe the flow of the dispersion medium in-between the matrix particles.
a-¢, Longitudinal D,(r, 7) (a) and transversal D, (r, 7) (b and ¢) correlations for
=68 msand different volume fractions (¢) of the colloidal matrix. D (r, 7) is
always positive, whereas D (r, T) can be either positive or negative. b shows the
magnitude of D, (r, 7) for all values of ¢, while c displays D, (r, 7) for the three
highest-volume fractions, for which a transition from negative to positive
transversal correlationsis observed. d-f, The corresponding correlations
normalized by the tracers’ mean squared displacement MSD, (7 = 68 ms).
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The solid lines denote the power-law decays as indicated. The datain
a-frepresent the weighted mean from N,, (=10) different areas (technical
replicates), where N,,, varied for each ¢ (Supplementary Table 3). The error bars
ina-crepresent the corresponding weighted s.d. The weighting is based on the
number of two-point displacements and is applied consistently to both the mean
ands.d. calculation. The error bars in d-frepresent the propagated uncertainty,
determined by applying the Gaussian error propagation formula, assuming
uncorrelated input parameters. The error bars may be smaller than the

symbol size.

Dy (r, ) = (Ax Ax,)(r, T) = 2kg T T G (rX), (5a)

D, (r,T) = (A Ay,)(r, T) = 2kg T T Gy, (rX). (5b)

In a neat solvent of viscosity 17, the flow response G,z reduces to the
Oseentensor®, Ggs(r) = (8mnon)™ (65 + rsrp/r?), or,inFourier space,

qs‘lﬁ)

Gop(q) = L <69ﬁ -y (6)

noq?
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and MSD,,(t = 68 ms) data represent a weighted mean from N,, (10) different
areas (technical replicates), where N,,, varied (Supplementary Table 3), with the
weighting based on the number of displacements (one- or two-point).

These D,(r, T= 68 ms) data were fitted using an unweighted nonlinear least-
squares algorithm (MATLAB Fitting Toolbox) to determine a (Supplementary
Equation 24), and A, and ¢* (Supplementary Equation 26). The error bars for
these three parameters represent the 68% confidence interval from the fit. The
viscosities 7 (Supplementary Equation 32) and 7,,. (Supplementary Equation 34)
were calculated. The error bars for 1, 1/1, fio., /Mo and A, £* represent the
propagated uncertainty, determined by applying the Gaussian error propagation
formula, assuming uncorrelated input parameters. Error bars may be smaller
than the symbol size.

The first factor has a pole at g = 0, reflecting the conservation of
momentum over large distances”, while the second factor ensures the
conservation of mass (incompressibility), gg Gsﬂ = 0.Thus, aslongas
acertainfluidisincompressible and conserves momentum, one expects
the same expression to hold at sufficiently large r (small g), with merely
a change of prefactor n, > n. This rescaled Oseen tensor is used in
two-point microrheology®.

Togeneralize equation (6) todispersion media that containinter-
nal structure asin the case of amatrix made of large particles, we con-
sider the following expansion:

1 1

1 qsqp )
no A+Bg? + Cq* + ... ’

(9"_ iz

where the coefficients A, B and C depend on the matrix’s volume
fraction ¢. This expression recovers equation (6) in the limitB=1,

Gsﬁ(‘]) =

A=C=...=0.Thismodified responseis equivalent to amodified Stokes
equation containing a term proportional to the velocity (a Brinkman
term*’) and velocity gradients higher than the Laplacian. Another
equivalent perspective is to associate with the structured medium
aspace-dependent viscosity**, equal to n,(A/q* + B+ Cq*+ ...), which
divergesatg > 0if A #0 (thatis,inasolid). We add that one can obtain
equation (7) explicitly for arandom distribution of spheres, along with
explicit expressions for the coefficients in terms of ¢ and the fraction
of immobile versus mobile spheres®. For example, if all the spheres
aremobile, wegetA=0andB=1+(5/2)¢,inagreementwith Einstein’s
famous result.

Thus, the effect of the dispersed structure manifests itself as addi-
tional polesin thefirst factor ostp(q), corresponding to corrections
atlarge, yet progressively smaller, length scales. Theincompressibility
constraintis enforced by the second factor, which remains unchanged.
The only assumptions underlying equation (7) are that the dispersion
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is rotation- and inversion-symmetric and that the medium is
incompressible.

For A =0, the expression in equation (7) has a pole at g=0,
and we recover for small g the leading-order behaviour of a
momentum-conserving liquid, equation (6), with effective viscosity
(global viscosity) n(¢) = n,B(¢).For A # 0, the poleat g = 0isremoved,
and the medium described by equation (7) does not conserve momen-
tum. Equation (7) then coincides, for small g, with the classical Brink-
mantheory of flow inside aporous solid*. Thus, A(¢) serves as an ‘order
parameter’ for the colloidal glass transition; it vanishes in the liquid
suspension and is non-zero in the solid suspension. Its departure from
zero, removing the g = 0 pole, marks the breaking of the translation
symmetry of the dispersion medium; when pushed, the fluid now flows
relative to an overall stationary structure and loses momentumto it.

More specifically, inverting equation (7) from q tor and expanding
totwoleading ordersinlarge r, we obtain

o 1 [1 rerg\ ¢ ror,
liquid (A=0):  Gop(r)= g [; (59,3+’;—2’3)— = (595—3%)],
(8a)

solid (A#0): (8b)

1 ¢ ryr,
Gop(r)=— : (59ﬂ—3i—2ﬁ),

4mng 3

In addition to the global liquid viscosity n = n,B, two dynamic lengths
emerge, £ =|2C/B|"? and ¢, = A", characterizing the liquid and solid
suspensions, respectively. Substituting equations (8) in equations (5),
we obtain the tracers’ displacement correlations,

.. . _kBTT 1 ¢ _kBTT 1 ¢
liquid4=0): D=7 (1+5), Durn=5r (1-5)
(9a)

. ) _kgTT €2 kTt 2
SO]Id(A#O). DH(r,T)— Mo r—3, Dl(r,-[)——znrlo r_3 (9b)

The spatial dependencies of the two-term correlations for aliquid, equa-
tion (9a), areshownin Supplementary Fig. 6. Equations (9) are our cen-
tral predictions. Analysis of the experimental data using equation (9a)
confirms its theoretical predictions. First, we note the crossover
betweenther>andr'termsinthe correlations, as fitted above. Second,
the positive and negative values for the coefficient of the r >termin D,
andD,, respectively, are observed (Fig. 4 and Supplementary Table 5).

Third, the viscosity () is extracted from the prefactor of the
r’ termin the correlations according to equation (9a) (Fig. 5c). The
values obtained on the basis of D, and D, are consistent (Supplemen-
tary Information). At low-to-moderate volume fractions (¢ < 0.3)
the measured viscosities (Fig. 5¢) are reasonably in agreement with
the known low-density expression®. This confirms that the tracers
reliably reproduce the global viscosity of the suspension over the
measurement time.

Figure 5b shows asteep increase of #2(¢) with ¢ in the supercooled
range. As a result, the r> correlation term becomes more important
compared with the term r, leading to the observed increase of the
exponent awith ¢ (Fig. 5a). Unlike the prefactor of thetermr™, A, < ',
the prefactor of the term r>, A > < £*/n, is found to depend much more
weakly on ¢ (Fig. 5b, inset, and Supplementary Table 5). This binds the
increase of #with that of the viscosity according to #(¢) « n(¢)"2 Thus,
if the viscosity diverges at the glass transition, so must the length ¢.
Awaytointerpretthis observationisthat the mechanismunderlying the
rtermdepends onthelocal viscosity experienced by the small tracers,
o (Whichshould have aweak dependence on ¢), and not on the sharply
increasing global viscosity of the suspension, n (refs. 36,37). To check
this, we extract n,,.(¢) from the observed mean square displacement
MSD,,(7) of a single tracer according to the Stokes-Einstein relation,

MSD, (1) = 2k Tt/(31tn,..a,) (Supplementary Information). The results
areshown, along with the global viscosity n(¢), in Fig. 5d. Although the
two viscosities coincide in the dilute suspensions, they substantially
differ atlarger ¢, with pincreasing sharply and ,,. only moderately. As
anticipated by the conjecture A, - #/n - 1/n,., for these large-volume
fractions, the ratio 1/, is found to be roughly proportional to £*
(Fig. 5d, inset).

Conclusion

We have exploited random thermal flows in a dispersion medium,
captured by displacement correlations between tracers, to gain
insightinto the dynamicarrest of colloidal suspensions. This indirect
approach yields new observables that mirror the approaching glass
transition and are based on strong signals that can be experimentally
measured. We highlighted three observables: the transversal correla-
tion D, (r, 7), the crossover length £ between the two leading contribu-
tionstoD\(r,7) or D,(r,7),and the power-law exponent a of the decay
of D,(r,7)and D, (r,7).D,(r, 7) develops a distinctive negative contribu-
tionthatbecomesincreasingly dominant towards the glass transition
(Fig.4b,cand equation (9a)). Beyond the glass transition, this contri-
bution should completely dominate the large-separation transversal
correlation (equation (9b)). As the glass transition is approached,
£(¢p) and the corresponding viscosity n(¢) steeply increase together,
as <2 (Fig.5). Thisisinline witharecent report on the power-law
increase of a differently defined structural length in colloidal sus-
pensions with the relaxation time, having an exponent of approxi-
mately 0.54 (ref. 46). The connection between £ and n established
here (8(¢) = n(¢p)"?) implies that # must diverge at the glass transition.
Finally, the decay exponent a changes at the glass transitionfroma =1,
characteristicofaliquid, toa =3, indicating asolid (Fig. 5aand equa-
tions (9)). We have tied this observation to the breaking of translation
symmetry of the dispersion medium. The experimental observations
can thus be rationalized on the basis of conservation laws without
resorting to a specific model. The price of such a generic approach
is that the predictions depend on phenomenological parameters
(A,Band C) to be determined by different methods. Our experimental
method also reveals subtle spatial features of the approach to the
glass transition. As long as ¢ is finite, the correlations consist of a
mixture of two terms, leading to ‘solid-like’ correlations (e r~3) for
r<¢mixedwith ‘liquid-like’ correlations (e r!) for r > £ (equation (9a)
andthe correspondingfits of the datain Fig. 4a,b). This resembles the
situation in continuous phase transitions. Only when the measure-
ments cover asymptotically large distances r > £ will the changes in
the symmetry-determined power a and the large separation sign of
D, be sharply located at the transition.

The spatial dependence of the pair correlations raises a question
concerningthe glassiness of the suspensions with ¢ > 0.58. If our meas-
urements were restricted to r <2 pm, we would find for these suspen-
sions a negative D, (Fig. 4c) and a =3 (Fig. 5a) and conclude that the
suspensions were solid. This would agree with the common view of
the location of colloidal glass transition for hard spheres®. Indeed,
the displacement fluctuations of single large particles show caging
at these high-volume fractions (Fig. 2c). However, once the measure-
ments are extended to larger distances, liquid-like behaviour (a =1
and positive D,) is found even for ¢ > 0.58. This is particularly evident
from the asymptotic decay of D, to zero from positive values (Fig. 4c).
Thesameholds quite clearly, albeit less robustly, for ¢ = 0.60 as shown
in Supplementary Fig. 19. Indeed, we have extracted finite values of
and ¢ for these suspensions (Fig. 5b,c). Thus, the new signatures pre-
sented hereindicate that the colloidal glass transition for hard spheres
occurs at larger volume fractions than usually expected. This finding
isin line with ref. 47, which reported fluid behaviour up to a volume
fraction of 0.597 using dynamic light scattering. While the finding of
ref. 47 required measurements over 10° s, ours has been obtained over
68 ms. The volume fraction at which the large-scale liquid behaviour
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completely disappears and the suspension can be considered solid
on all scales remains unclear. The data for 1/ (Fig. 5c, inset) does not
preclude the possibility that this might occur only at random close
packing (¢rcp = 0.64).

Wealsoleave twointeresting aspects for futureinvestigation. What
doesthe observedscaling between the crossover length and the relaxa-
tion time, £(¢) = 1,(¢)2, imply about the properties of the domains
of cooperatively moving particles associated with ¢ (refs. 3,48)?
How does the characteristic length in the solid, ¢, (equation (9b)),
change as the glass transition is approached from the solid side? The
weaker correlations between the tracers in the glass would require
particularly accurate measurements to answer the last question.
Agrowing ¢ (ref. 39), if found, might be associated with the growth of
plastic ‘soft spots’ proposed to accompany glass melting™®.

Finally, the experimental method presented here canbe applied to
any other systemthatincludes adispersion medium, for example, poly-
mer solutions that, upon cross-linking or entanglement, solidifyintoa
gel’®, or dispersed fibre networks that undergo arigidity transitionin
response to applied shear®'. Relevant systems also include biological
samples, such as actin networks**and cells or groups of cells, for which
the concept of glassiness is gaining increasing relevance.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
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Methods

Sample

We studied binary mixtures of PMMA colloidal spheres. The parti-
cles were fluorescently labelled with monomerized rhodamine B
(small particles) or NBD (large particles) and sterically stabilized with
poly(12-hydroxy-stearic acid) by covalently binding the stabilizer to the
surface of the particles™. The small particles (tracers) had a diameter
2a,=(0.50 +0.02) pmand a polydispersity 6, = 7% and the large (matrix)
particles had a diameter 2a, = (3.19 £ 0.02) um and a polydispersity
6,~ 7% as determined using confocal differential dynamic microscopy™.
The particles are suspended in anindex- and density-matched mixture
of cis-decalinand cycloheptylbromide that prevents particle sedimen-
tation and turbidity. The suspension also behaves as ahard-sphere-like
system®**>33, where interactions between particles occur only upon
contact. Assuming that the sediments were randomly close-packed
with a volume fraction ggcp = 0.65 (ref. 55), binary suspensions with
a volume fraction of large particles 0.050 < ¢ < 0.601 and of small
particles 0.005 < ¢, < 0.008 were prepared. The statistical uncertainty
of theratios of volume fractions is expected to be smaller than10™,in
agreementwith previousreports®. Details about the sample prepara-
tion can be foundin Supplementary Section1.1and the samples studied
inSupplementary Table 1.

Sample cell

The sample cells were built from a microscope slide with an area of
76 x 26 mm?, a thickness of 1 mm (631-1550, vwr), a cover glass with an
area of 20 x 20 mm? and a thickness between 0.13 mm and 0.16 mm
(Nr.1, 631-1568, vwr). In the centre of the microscope slide, a cylin-
drical cavity with a diameter of approximately 3 mm and a depth of
approximately 0.5 mmwasdrilled. The cylindrical cavity in a cleaned
microscope slide wasfilled with the sample using either a stainless-steel
spatula or amicropipette with a cut pipette tip to avoid self-filtration
effects”. Then, acleaned cover glass was placed on the cavity. The sam-
ple was sealed with glue (All Purpose Adhesive Super, UHU). The glue
was lefttodry for atleast 12 h while the cell was rotated to homogenize
the contained sample. Details about the cleaning process are givenin
Supplementary Section1.2.

Confocal microscopy

The samples were imaged using a confocal scanning unit (AIR-MP,
Nikon) mounted on aninverted microscope (Eclipse Ti, Nikon) with a
60x oilimmersion objective withanumerical aperture of 1.4 (Plan Apo
VC,MRDO01602, Nikon). Solid-state lasers with wavelengths of 561 nm
and 488 nm were used to excite the rhodamine Band NBD fluorescence
dyes from the small and large particles, respectively.

Without 3D scan, time series of images with 512 x 512 pixels, usu-
ally with an optical section of 0.42 um and a pixel pitch of 0.105 um
per pixel, were recorded at a fixed distance of 30-60 pm from the
cover glass. More details are given in Supplementary Section 1.3 and
Supplementary Table 2.

Analysis procedure

A series of time-lapse microscopy images was used to extract the 2D
trajectories R(¢) of the matrix (large) and r; ,(¢) of the tracer (small)
particles, usingias particleID, a as area (field of view) and t as starting
time. Trajectories that complied with aspecified trajectory lengthwere
used to determine one-point observables such as the MSD.

To ensure consistent dynamics from all the different areas (meas-
urements) of the tracer particles, we performed an equilibration check
ofthe variances aira(r) (MSD,,), with ras the delay time. We considered
anareaaasequilibrated when oﬁra(r)presented dynamicalinformation
equivalent tothe ones with the largest time span after filling the sample
in the sample cell. All one-point observables from equilibrated areas
awere then averaged.

The corresponding trajectories that passed the equilibration
check were used to determine the two-point correlation functions
D(r,7)and D, (r, 7) for a specific T and distances r between the tracer
particles. We first fitted the two-point correlation functions to deter-
mine the decay exponents a, (a) and a, for different rregions.Ina
subsequent fitting process, we used an analytical expression for the
two-term correlations to extract the prefactors A, A, and the crossover
lengths squared ¢2 (£%) and ¢3. We performed a consistency check by
fitting this same expression to a calculated analytical form using the
extracted quantities. Finally, we used the Stokes-Einstein relation to
determine thelocal viscosity .. and determined the global viscosities
n, (n) and n, from the prefactors A, and A, respectively. Details are
givenin Supplementary Section 2.
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