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Emergent signatures of the glass transition  
in colloidal suspensions
 

Patrick Laermann    1, Haim Diamant    2,3, Yael Roichman    2,3,4, Ivo Buttinoni    5, 
Manuel A. Escobedo-Sánchez    1   & Stefan U. Egelhaaf    1

At the glass transition, a liquid transforms into an amorphous solid. 
Despite minimal structural rearrangements, this transition is accompanied 
by a dramatic dynamical slowdown. These features render the 
transition’s experimental determination and theoretical understanding 
challenging. Here we introduce a new framework that uses two-particle 
correlations and a model-free theoretical description to investigate the 
dynamics of glass-forming colloidal suspensions indirectly. Using the 
fluctuation-dissipation theorem, we relate equilibrium thermal fluctuations 
of pairs of tracer particles to the underlying response properties of the 
system. We measure the correlated motion of tracer particles caused by 
the solvent at short timescales and find three distinct signatures signalling 
the onset of the glass transition. The correlations in the thermal motions 
of tracer pairs exhibit a changing decay behaviour with their relative 
distance; a length scale related to this decay steeply increases; and a notable 
sign reversal is observed in specific correlations. Our findings establish 
a connection between the colloidal glass transition and the breaking of 
the translational symmetry in the dispersion medium, thereby revealing 
fundamental aspects of the glass transitions.

How does a liquid transform into a glass1,2? When examining the glass 
transition, two fundamental questions arise in comparison with clas-
sical phase transitions: Does the relaxation time τr truly diverge at a 
critical temperature or density, and is this divergence associated with 
an emergent increasing length scale? Moreover, does the transition 
involve symmetry breaking, making the glass a distinct state of matter, 
even if not necessarily an equilibrium state? Concerning the relaxation 
time (τr), there is a general consensus that it effectively diverges, sup-
ported by experimental and computational evidence showing that 
it increases dramatically near the glass transition, fitting well with 
divergent functions1,2. However, evidence for a diverging length scale 
remains less definitive. Although increasingly large domains of coop-
eratively moving particles (‘dynamic heterogeneities’) are observed 
near the transition1, their growth remains modest, typically limited 
to a few particle diameters1,3,4. Regarding symmetry breaking, several 

studies suggest a critical behaviour and subtle symmetry breaking at 
the glass transition5,6. A widely accepted and predictive theory6 strongly 
supports the notion that the glass transition is a critical phenomenon 
associated with symmetry breaking and a divergent correlation length. 
Yet, this mean-field theory is exact only in high dimensions, and it 
remains uncertain whether the predicted critical behaviour persists 
or is substantially altered in three-dimensional (3D) systems7. This 
unresolved issue has practical implications for various applications 
utilizing synthetic glassy materials composed of atoms, molecules, 
polymers, colloids or granular particles8,9. The challenge extends to 
biological systems, where glassy behaviour can elucidate the dynam-
ics and reorganization processes in individual cells10,11 and tissues12–19.

Among all glassy materials, those prepared using colloidal sus-
pensions offer remarkable advantages20–23. They contain nanometre- 
to micrometre-sized particles that undergo thermal fluctuations  
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light on the matrix mobility even in the absence of an explicit solvent26. 
Although DDM provides access to the self-intermediate scattering func-
tion for tracer particles or the total intermediate scattering function 
in concentrated systems, the two-point correlation analysis directly 
resolves spatial cross-correlations in real space, explicitly capturing 
the pairwise mobility tensor32.

In this Article, we introduce an alternative framework that exam-
ines tracer dynamics on much shorter timescales, allowing thermal 
motion to reflect large-scale flow properties of the solvent through 
the fluctuation-dissipation theorem. Because these flow properties 
are affected by the collective motion of the glass-forming suspension, 
our model-free theoretical analysis reveals previously unidentified 
signatures of the glass transition. In particular, two-point correlation 
functions between the displacements of the tracers separated by a 
distance r (1) show different spatial decay patterns, (2) undergo a sign 
inversion and (3) result in a characteristic length scale that is bound to 
diverge with the square root of the viscosity of the suspension.

Experiments
The glass-forming suspensions are composed of polymethylmeth-
acrylate (PMMA) particles with diameter 2al = 3.19 μm and polydis-
persity δl ≈ 7% that are fluorescently labelled using monomerized 
4-methyl-aminoethylmethacrylate-7-nitro-benzo-2-oxal,3-diazol (NBD).  

(like atoms and molecules) in a dispersion medium and can be individu-
ally resolved using optical microscopy (unlike atoms and molecules)20. 
In particular, colloidal particles with hard-sphere-like interactions have 
attracted widespread interest22–25 because their suspension’s thermo-
dynamic state is controlled solely by the volume fraction of the parti-
cles, ϕ. In equilibrium, hard spheres crystallize above ϕ ≈ 0.545, but size 
polydispersity or small stresses can suppress crystallization and allow 
the fluid phase to remain supercooled up to ϕ ≈ 0.58, beyond which it is 
commonly thought to solidify into a glass20,22. In recent decades, studies 
of colloidal supercooled liquids and glasses have shed light on many 
fundamental problems, including non-Newtonian flow, jamming and 
ageing20. Although the structure of colloidal glasses is more accessible 
than that of atomic amorphous materials, studying the dynamics near 
the glass transition remains extremely challenging due to the dramatic 
slowdown in the particle motion. To avoid this issue, a small fraction 
of notably smaller particles can be added to the suspension26–28. These 
tracers remain mobile even when the matrix solidifies, explore the 
structural voids and are carried by any large-scale flow generated 
by the surrounding medium. Their motion can be tracked directly 
using optical microscopy or indirectly by means of light scattering and 
scattering-like techniques such as differential dynamic microscopy 
(DDM)26–31. In particular, at timescales sufficiently large for the trac-
ers to explore the voids, self- and collective diffusion quantities shed 
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Fig. 1 | Representative images of the bi-disperse colloidal suspension.  
a,b, Two-channel confocal microscopy images of a suspension containing  
large particles (green) and small tracer particles (red) are shown for [ϕ = 0.15,  

ϕs = 0.0050] (a) and [ϕ = 0.58, ϕs = 0.0058] (b). c,d, The corresponding  
one-channel images of the tracer particles, acquired simultaneously with the  
two-channel images.
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The particles are suspended in an index- and density-matched mix-
ture of cis-decalin and cycloheptylbromide that prevents particle 
sedimentation and turbidity. In addition, the suspension behaves as 
a hard-sphere-like system23,25,33, where interactions between particles 
occur only upon contact. The investigated range of volume fractions, 
0.05 ≤ ϕ ≤ 0.60, includes liquid and supercooled phases. Notably smaller 
PMMA particles, with diameter 2as = 0.50 μm, polydispersity δs ≈ 7%, 
monomerized rhodamine B as fluorescent label and volume fraction 
ϕs ≈ 0.005, are added as tracers. Representative confocal images of 
the binary mixture are shown in Fig. 1; the matrix particles and trac-
ers appear green and red, respectively. Using a two-channel confocal 
microscopy set-up, we independently imaged the differently dyed parti-
cle species, as simultaneous acquisition causes signal leakage between 
them (Fig. 1c,d). Therefore, for our measurements, we used only one 
laser and one channel per acquisition. This approach ensures stable 
image quality and enables clear, accurate visualization of the tracer par-
ticles. As the volume fraction of large particles increases (from Fig. 1a,b 
and from Fig. 1c,d), the tracers start to occupy the voids of the dense 
structure. A detailed description of the experimental realization and 
data analysis is available in the Supplementary Information.

An optical section of ~0.4 μm was used without performing a 3D 
scan, making both the measurements and the analysis two-dimensional 
while probing bulk properties. We characterize the dynamics of the 
system by extracting the trajectories Ri(t) and rj(t) of each large and 
small particle. The corresponding mean squared displacements aver-
aged over all particles are shown in Fig. 2a (MSDΔR(τ), large particles) 
and Fig. 2b (MSDΔr(τ), tracers) for increasing volume fraction of the 
matrix. At ϕ ≥ 0.57, MSDΔR(τ) hardly increases with time, confirming 
the arrest of particle motion and thus reproducing the previously 
reported colloidal glass transition of hard-sphere suspensions20,22.  
By contrast, the tracer particles stay mobile up to about 10 Brownian 
times (τBs = 3πη0(2as)

3/kBT ≈ 1 s) even for very high volume fractions, 
before they start to become sensitive to the finite cages of the  
structure. In this work, we focus on the dynamics during delay time 
τ = 68 ms ≈ 0.07τBs  (Fig. 2b, inset), over which each particle is able to 
explore only the area schematically indicated by the dashed circles in 
Fig. 2c. Thus, the large particles hardly move (compared with their size), 
whereas the small particles exhibit diffusive behaviour. Any anomalous 
dynamics, for example due to caging effects, occur on much larger 
timescales (τ > 1 s), and the motion of the tracers is determined solely 
by Brownian motion or by large-scale fluid flows induced by the mobi
lity of the matrix.

To gain insight into the glass transition of the suspension, 
we consider all pairs of tracers, i and j, separated by a distance 
r(t) = ∣r(t)∣ = ∣rj(t) − ri(t)∣ and extract the displacements of the two trac-
ers along their connecting line (Δxi(t, τ) = Δri(t, τ) ⋅ r(t)/r(t)) and per-
pendicular to it (Δyi(t, τ)) (and correspondingly Δxj(t, τ) and Δyj(t, τ)) 
(see sketch in Fig. 2d). Finally, the longitudinal, D∥(r, τ), and transversal, 
D⊥(r, τ), two-point correlation functions are obtained as

D∥(r, τ) = ⟨Δxi(t, τ)Δx j(t, τ)⟩(i,j)r(t),t,

D⟂(r, τ) = ⟨Δyi(t, τ)Δy j(t, τ)⟩(i,j)r(t),t.
(1)

The angular brackets ⟨⋯⟩(i,j)r(t),t  denote an average over all pairs i and j 
separated by the same distance r(t) for all starting times t. D∥ and D⊥ 
quantify the degree to which the random thermal motions of the two 
tracers are correlated along and perpendicular to their connecting 
line, respectively. The longitudinal and transversal correlations are 
illustrated for a liquid suspension (ϕ = 0.05) and a supercooled one 
(ϕ = 0.59) in Fig. 2e. Substantial correlations between the tracers are 
observed in the liquid state, whereas the correlations are weaker but 
measurable in the supercooled suspension. The decay as a function of 
the relative distance r is also qualitatively different in the two cases 
(Fig. 2e, inset).

The pronounced increase in correlations for D∥ at separations 
r ≲ 1 μm (Fig. 2e) originates from the local structure of tracers, as 
captured by the radial distribution function (Supplementary Fig. 27) 
and is consistent with previous findings for quasi-two-dimensional 
concentrated systems34. This increase is also observed in computer 
simulations in the absence of hydrodynamic interactions (Supple-
mentary Information), further verifying that it results purely from the 
structural arrangements. We have excluded this short-distance region 
from the main analysis.

This strategy of analysing pairwise correlated displacements as a 
function of interparticle distance forms the basis of two-point micro-
rheology, a powerful technique used to probe the elastic and viscous 
moduli of complex materials32. In purely viscous fluids, the mobility 
matrix becomes time independent, the two-point correlation functions 
increase linearly with τ and the method reveals how the strain-rate field 
decays through the fluid35.

Our framework belongs to this purely viscous category, because 
over τ = 68 ms the tracers interact solely with the surrounding fluid. 
However, they still sense the matrix indirectly via its effect on the fluid 
flow. Without solvent, at τ = 68 ms, D∥(r, τ) and D⊥(r, τ) of equation (1) 
would vanish (Supplementary Fig. 30d). Figure 3 displays the two-point 
correlations as functions of τ for various volume fractions ϕ and par-
ticle separations r. The linearity observed around the relevant delay 
time (τ ≈ 68 ms) confirms that the medium behaves predominantly as a 
viscous liquid within this time regime; thus, elasticity can be precluded. 
This is further supported by the linear dependence on τ of the one-point 
MSDΔr(τ) in the same time range (Fig. 2b).

We now focus on the r dependence of D∥(r, τ) and D⊥(r, τ) at 
τ = 68 ms to find distinct signatures. Figure 4 presents the two-point 
correlations D∥(r, τ) and D⊥(r, τ) for various volume fractions ϕ. In the 
longitudinal direction (Fig. 4a), the correlations decay monotonically 
for r ≳ 1 μm, with the decay rate strongly dependent on the volume frac-
tion. For dilute suspensions (low ϕ), the decay follows D∥(r, τ) ∝ r−1 and 
is consistent with long-range hydrodynamic interactions in Newtonian 
fluids. By contrast, at higher-volume fractions (supercooled states), 
the decay becomes notably steeper, approaching r−3, which reflects the 
suppression of fluid propagation due to the dense matrix. The trans-
verse correlations D⊥(r, τ) (Fig. 4b,c) exhibit two additional features. 
First, for ϕ > 0.45, D⊥(r, τ) shows a non-monotonic dependence on r, 
and for the highest densities it becomes negative at small separations, 
indicating anticorrelated motion between nearby tracers, a signature of 
mechanical constraints in solid environments36,37. Second, in the liquid  
state, the amplitude of D⊥(r, τ) is approximately half that of D∥(r, τ)  
(Supplementary Fig. 24), in agreement with theoretical expectations 
for isotropic hydrodynamic coupling38. To disentangle these spatial 
effects caused by the matrix from changes in single-tracer mobil-
ity, we normalize both D∥(r, τ) and D⊥(r, τ) by the ϕ-dependent mean 
squared displacement MSDΔr(τ = 68 ms) (Fig. 2b, inset). The resulting 
curves (Fig. 4d–f) retain their distinct r dependence, confirming that 
the observed changes in the correlations arise from hydrodynamic 
interactions. This normalization removes the trivial scaling MSD ∝ τ 
and isolates the spatial dependence encoded in the pair-coupling 
mobility tensors that enter equation (1).

To gain a quantitative understanding of the correlations as a func-
tion of ϕ and r, we fitted the decaying part of the logarithm of the lon-
gitudinal data to a linear equation with slope − α, that is D∥(r, τ) ∝ r−α, 
over varying intervals of separations r (Fig. 5a). This resolves the spatial 
crossover between the two power-law decays at different values of ϕ. 
For 1.3 μm ≤ r ≤ 1.8 μm, α as a function of ϕ gradually changes from 
α ≈ 1 at low ϕ to a value around α ≈ 3 for the supercooled suspensions. 
Thus, the dynamical slowdown of the large particles is reflected in the 
dynamics of the tracers, which, however, are never arrested (Fig. 2b). 
For larger separation intervals, the increase in α begins at a higher 
value of ϕ and becomes sharper. Motivated by these results and the 
model described below (equation (9a)), we fit the longitudinal data to a 
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superposition of the two power laws, D∥ = 2A∥(r−1 + ℓ2r−3). The coefficient 
A∥, which determines the overall strength of the correlation, is expected 
to be inversely proportional to the viscosity of the suspension η. The 
coefficient ℓ2, in units of length squared, defines a crossover separation 
length ℓ before and after which the correlations are dominated by the 

r−3 or r−1 term, respectively. Figure 5b shows the dependence of ℓ2 on 
ϕ, exhibiting a steep increase for the supercooled suspensions. The 
extraction of α and ℓ from the transversal correlation D⊥ is consistent 
with the analysis above but statistically more challenging due to the 
non-monotonic behaviour of this correlation.
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Fig. 2 | Overview of particle dynamics from the bi-disperse colloidal 
suspension’s one- and two-point observables. One-point dynamics of large 
and tracer particles across the glass transition. a, Mean squared displacement 
MSDΔR(τ) of large particles as a function of delay time τ, for various volume 
fractions ϕ. b, MSDΔr(τ) of tracer particles for the same volume fractions. The 
vertical dashed line indicates τ = 68 ms. The inset shows MSDΔr(τ = 68 ms).  
c, Schematic cross-section illustrating, to scale, the spatial positioning of tracer 
(red) and large (green) particles for a suspension of ϕ = 0.5. Tracer particles 
primarily reside in the voids formed between the larger particles. The dashed 
circles indicate the regions each particle is able to explore during the chosen 

time interval τ = 68 ms. d, A 3D visualization of the system and the method for 
measuring two-point correlations between well-separated tracers at distance 
r(t). e, Flow-mediated two-point displacement correlations D∥(r, τ) and D⊥(r, τ)  
for liquid (blue) and supercooled (red) states at τ = 68 ms. The data in a and 
e represent the weighted mean from Narea (≥10) different areas (technical 
replicates), where Narea varied for each ϕ (Supplementary Table 3). The error bars 
represent the corresponding weighted s.d. The weighting is based on the number 
of displacements (one-point or two-point) and is applied consistently to both the 
mean and s.d. calculation. The error bars may be smaller than the symbol size.
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Theory
The experimental results are now rationalized using a model-free 
approach based on conservation laws36,37. A more elaborate analysis 
is found in ref. 39.

We start by considering the overdamped stochastic dynamics of 
a pair of tracer particles in a fluid. The dynamics are described by an 
overdamped Langevin equation40,41,

d
dt
ri,𝜗𝜗(t0) = Mij,𝜗𝜗β(r1(t0), r2(t0)) [F j,β(t0) + ξj,β(t0)] , (2)

where i, j = (1, 2) label the particles and ϑ, β = (x, y, z) denote Cartesian 
coordinates. Summation over repeated indices is implied. The position 
vector of particle i at time t has the component ri,ϑ(t) in the ϑ direction; 
Fi,ϑ and ξi,ϑ are the ϑ-components of the deterministic and random forces 
acting on particle i, respectively. (We have omitted the ‘spurious drift’ 
term appearing in the formulation40 because, in the approximation to 
follow, the mobility matrix Mij,ϑβ is divergence-free.) The pair-mobility 
matrix Mij,ϑβ depends on the instantaneous spatial configuration of the 
pair, (r1(t), r2(t)). The matrix contains self-mobility blocks (i = j), which 
relate the velocity of each particle to the force acting on itself, and 
coupling-mobility blocks (i ≠ j), which relate the velocity of each particle 
to the force acting on the other (that is, the hydrodynamic interac-
tion between the two). For a purely viscous medium (which is the case 
in our measurements), the mobility matrix does not have an explicit 

dependence on time. The dispersion medium is at equilibrium and 
therefore satisfies the fluctuation-dissipation theorem, which dictates

⟨ξi,𝜗𝜗(t)⟩ = 0, ⟨ξi,𝜗𝜗(t)ξj,β(t′)⟩ = 2kBT(M−1)ij,𝜗𝜗β δ(t − t′). (3)

Our measurements are taken over a short time interval τ such that the 
configuration (r1, r2) remains effectively unchanged (Fig. 2c). In addi-
tion, our tracers are force-free, Fi = 0. Integration of equation (2) while 
using equation (3) gives the displacement correlations,

⟨Δri,𝜗𝜗(t0, τ)Δr j,β(t0, τ)⟩ = 2kBTτMij,𝜗𝜗β(r1(t0), r2(t0)), (4)

which relates the measured two-point displacement correlations, equa-
tion (1), to the coupling blocks of the mobility matrix. In the limit where 
the tracers’ size is much smaller than their separation, as ≪ r ≡ ∣r2 − r1∣, 
the coupling mobility becomes independent of the particles’ proper-
ties and equal to the flow velocity response (Gϑβ(r)) to a point force, 
Mi≠j,ϑβ(r1, r2) ≈ Gϑβ(r). This ‘stokeslet approximation’42 is similar to the 
monopole–monopole limit of the electrostatic interaction between 
charged particles at large separations (large-separation limit), given 
simply by the Coulomb potential. Thus, the coupling mobility reflects 
the properties of the surrounding medium on a large-scale r. (This is 
the basis of two-point microrheology32.) Defining the x axis along the 
separation vector, r = rx̂, equation (4) simplifies in the large-separation 
limit to
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of delay time τ for different volume fractions ϕ, shown for r = 1.3 μm (a and c) and 
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r regions analysed in this work. Solid lines indicate a linear increase with τ.  

The data in a–d represent the weighted mean from Narea (≥10) different areas 
(technical replicates), where Narea varied for each ϕ (Supplementary Table 3). The 
error bars represent the corresponding weighted s.d. The weighting is based on 
the number of two-point displacements and is applied consistently to both the 
mean and s.d. calculation. The error bars may be smaller than the symbol size.
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D∥(r, τ) ≡ ⟨Δx1Δx2⟩(r, τ) = 2kBT τGxx(rx̂), (5a)

D⟂(r, τ) ≡ ⟨Δy1Δy2⟩(r, τ) = 2kBT τGyy(rx̂). (5b)

In a neat solvent of viscosity η0 the flow response Gϑβ reduces to the 
Oseen tensor42, G𝜗𝜗β(r) = (8πη0r)

−1 (δ𝜗𝜗β + r𝜗𝜗rβ/r2), or, in Fourier space,

G̃𝜗𝜗β(q) =
1

η0q2
(δ𝜗𝜗β −

q𝜗𝜗qβ
q2 ) . (6)
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describe the flow of the dispersion medium in-between the matrix particles. 
a–c, Longitudinal D∥(r, τ) (a) and transversal D⊥(r, τ) (b and c) correlations for 
τ = 68 ms and different volume fractions (ϕ) of the colloidal matrix. D∥(r, τ) is 
always positive, whereas D⊥(r, τ) can be either positive or negative. b shows the 
magnitude of D⊥(r, τ) for all values of ϕ, while c displays D⊥(r, τ) for the three 
highest-volume fractions, for which a transition from negative to positive 
transversal correlations is observed. d–f, The corresponding correlations 
normalized by the tracers’ mean squared displacement MSDΔr(τ = 68 ms).  

The solid lines denote the power-law decays as indicated. The data in 
a–f represent the weighted mean from Narea (≥10) different areas (technical 
replicates), where Narea varied for each ϕ (Supplementary Table 3). The error bars 
in a–c represent the corresponding weighted s.d. The weighting is based on the 
number of two-point displacements and is applied consistently to both the mean 
and s.d. calculation. The error bars in d–f represent the propagated uncertainty, 
determined by applying the Gaussian error propagation formula, assuming 
uncorrelated input parameters. The error bars may be smaller than the  
symbol size.
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The first factor has a pole at q = 0, reflecting the conservation of 
momentum over large distances37, while the second factor ensures the 
conservation of mass (incompressibility), qβ G̃𝜗𝜗β = 0. Thus, as long as 
a certain fluid is incompressible and conserves momentum, one expects 
the same expression to hold at sufficiently large r (small q), with merely 
a change of prefactor η0 → η. This rescaled Oseen tensor is used in 
two-point microrheology32.

To generalize equation (6) to dispersion media that contain inter-
nal structure as in the case of a matrix made of large particles, we con-
sider the following expansion:

G̃𝜗𝜗β(q) =
1
η0

1
A + Bq2 + Cq4 +… (δ𝜗𝜗β −

q𝜗𝜗qβ
q2 ) , (7)

where the coefficients A, B and C depend on the matrix’s volume 
fraction ϕ. This expression recovers equation (6) in the limit B = 1, 

A = C = … = 0. This modified response is equivalent to a modified Stokes 
equation containing a term proportional to the velocity (a Brinkman 
term43) and velocity gradients higher than the Laplacian. Another 
equivalent perspective is to associate with the structured medium 
a space-dependent viscosity44, equal to η0(A/q2 + B + Cq2 + …), which 
diverges at q → 0 if A ≠ 0 (that is, in a solid). We add that one can obtain 
equation (7) explicitly for a random distribution of spheres, along with 
explicit expressions for the coefficients in terms of ϕ and the fraction 
of immobile versus mobile spheres39. For example, if all the spheres 
are mobile, we get A = 0 and B = 1 + (5/2)ϕ, in agreement with Einstein’s 
famous result.

Thus, the effect of the dispersed structure manifests itself as addi-
tional poles in the first factor of G̃𝜗𝜗β(q), corresponding to corrections 
at large, yet progressively smaller, length scales. The incompressibility 
constraint is enforced by the second factor, which remains unchanged. 
The only assumptions underlying equation (7) are that the dispersion 

1

2

3

a

0

5

10

15

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.5

1.0

1.5

2.0

2.5

b

0.1 1 10

1

10

d

0 0.1 0.2 0.3 0.4 0.5 0.60 0.1 0.2 0.3 0.4 0.5 0.6

0

50

100

150

200

250

300

0.56 0.59

1

5

10

c

Φ

Φ

Φ

10–2

10–1

100

2 (µm2)

2
(µ

m
2 )

1.3 µm to 1.8 µm
1.8 µm to 3.4 µm
3.4 µm to 5.8 µm
5.8 µm to 8.7 µm

r region

η,
 η

lo
c (

Pa
 s

)

1/
η 

(P
a–1

 s
–1

)

η/
η lo

c

α

η
ηloc

A |
|

(1
0–3

 µ
m

5 )
2

Fig. 5 | Changes in the spatial decay of the longitudinal correlation with 
increasing volume fraction. a, Exponent α of the power-law decay of D∥(r, τ) 
within different ranges of separation as indicated in the legend. b, Crossover 
length squared obtained from the coefficient of the correlation’s r−3 term.  
The inset shows the prefactor A∥ℓ2 of the r−3 term in the correlation function.  
c, Inverse viscosity 1/η as obtained from the coefficient A∥ ∝ η−1 of the correlation’s 
r−1 term. The solid line shows the low-density theoretical expression known 
to hold for ϕ ≲ 0.3 (ref. 45). The inset focuses on the largest-volume fractions 
(supercooled suspensions). d, Comparison between the viscosity η extracted 
from the two-tracer correlation and the local viscosity ηloc as extracted from the 
single-tracer mean squared displacement MSDΔr(τ = 68 ms). The two viscosities 
coincide for small ϕ, whereas η ≫ ηloc for large ϕ. The inset shows η/ηloc against ℓ2, 
exhibiting a roughly linear dependence at large ϕ. For each ϕ, the D∥(r, τ = 68 ms) 

and MSDΔr(τ = 68 ms) data represent a weighted mean from Narea (≥10) different 
areas (technical replicates), where Narea varied (Supplementary Table 3), with the 
weighting based on the number of displacements (one- or two-point).  
These D∥(r, τ = 68 ms) data were fitted using an unweighted nonlinear least- 
squares algorithm (MATLAB Fitting Toolbox) to determine α (Supplementary 
Equation 24), and A∥ and ℓ2 (Supplementary Equation 26). The error bars for 
these three parameters represent the 68% confidence interval from the fit. The 
viscosities η (Supplementary Equation 32) and ηloc (Supplementary Equation 34) 
were calculated. The error bars for η, 1/η, ηloc, η/ηloc and A∥ℓ2 represent the 
propagated uncertainty, determined by applying the Gaussian error propagation 
formula, assuming uncorrelated input parameters. Error bars may be smaller 
than the symbol size.
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is rotation- and inversion-symmetric and that the medium is  
incompressible.

For A = 0, the expression in equation (7) has a pole at q = 0, 
and we recover for small q the leading-order behaviour of a 
momentum-conserving liquid, equation (6), with effective viscosity 
(global viscosity) η(ϕ) = η0B(ϕ). For A ≠ 0, the pole at q = 0 is removed, 
and the medium described by equation (7) does not conserve momen-
tum. Equation (7) then coincides, for small q, with the classical Brink-
man theory of flow inside a porous solid43. Thus, A(ϕ) serves as an ‘order 
parameter’ for the colloidal glass transition; it vanishes in the liquid 
suspension and is non-zero in the solid suspension. Its departure from 
zero, removing the q = 0 pole, marks the breaking of the translation 
symmetry of the dispersion medium; when pushed, the fluid now flows 
relative to an overall stationary structure and loses momentum to it.

More specifically, inverting equation (7) from q to r and expanding 
to two leading orders in large r, we obtain

liquid (A=0)∶ G𝜗𝜗β(r)=
1

8πη [
1
r (δ𝜗𝜗β+

r𝜗𝜗rβ
r2 )− ℓ2

r3 (δ𝜗𝜗β−3
r𝜗𝜗rβ
r2 )] ,

(8a)

solid (A≠0)∶ G𝜗𝜗β(r)=−
1

4πη0
ℓ2s
r3 (δ𝜗𝜗β−3

r𝜗𝜗rβ
r2 ) , (8b)

In addition to the global liquid viscosity η = η0B, two dynamic lengths 
emerge, ℓ = ∣2C/B∣1/2 and ℓs = A−1/2, characterizing the liquid and solid 
suspensions, respectively. Substituting equations (8) in equations (5), 
we obtain the tracers’ displacement correlations,

liquid (A=0)∶ D∥(r, τ)=
kBTτ
2πη ( 1r+

ℓ2
r3 ) , D⟂(r, τ)=

kBTτ
4πη ( 1r−

ℓ2
r3 )
(9a)

solid (A≠0)∶ D∥(r, τ)=
kBTτ
πη0

ℓ2s
r3 , D⟂(r, τ)=−

kBTτ
2πη0

ℓ2s
r3 . (9b)

The spatial dependencies of the two-term correlations for a liquid, equa-
tion (9a), are shown in Supplementary Fig. 6. Equations (9) are our cen-
tral predictions. Analysis of the experimental data using equation (9a)  
confirms its theoretical predictions. First, we note the crossover 
between the r−3 and r−1 terms in the correlations, as fitted above. Second, 
the positive and negative values for the coefficient of the r−3 term in D∥ 
and D⊥, respectively, are observed (Fig. 4 and Supplementary Table 5).

Third, the viscosity η(ϕ) is extracted from the prefactor of the 
r−1 term in the correlations according to equation (9a) (Fig. 5c). The 
values obtained on the basis of D∥ and D⊥ are consistent (Supplemen-
tary Information). At low-to-moderate volume fractions (ϕ ≲ 0.3) 
the measured viscosities (Fig. 5c) are reasonably in agreement with 
the known low-density expression45. This confirms that the tracers 
reliably reproduce the global viscosity of the suspension over the 
measurement time.

Figure 5b shows a steep increase of ℓ2(ϕ) with ϕ in the supercooled 
range. As a result, the r−3 correlation term becomes more important 
compared with the term r−1, leading to the observed increase of the 
exponent α with ϕ (Fig. 5a). Unlike the prefactor of the term r−1, A∥ ∝ η−1, 
the prefactor of the term r−3, A∥ℓ2 ∝ ℓ2/η, is found to depend much more 
weakly on ϕ (Fig. 5b, inset, and Supplementary Table 5). This binds the 
increase of ℓ with that of the viscosity according to ℓ(ϕ) ∝ η(ϕ)1/2. Thus, 
if the viscosity diverges at the glass transition, so must the length ℓ.  
A way to interpret this observation is that the mechanism underlying the  
r−3 term depends on the local viscosity experienced by the small tracers, 
ηloc (which should have a weak dependence on ϕ), and not on the sharply 
increasing global viscosity of the suspension, η (refs. 36,37). To check 
this, we extract ηloc(ϕ) from the observed mean square displacement 
MSDΔr(τ) of a single tracer according to the Stokes–Einstein relation, 

MSDΔr(τ) = 2kBTt/(3πηlocas) (Supplementary Information). The results 
are shown, along with the global viscosity η(ϕ), in Fig. 5d. Although the 
two viscosities coincide in the dilute suspensions, they substantially 
differ at larger ϕ, with η increasing sharply and ηloc only moderately. As 
anticipated by the conjecture A∥ ~ ℓ2/η ~ 1/ηloc, for these large-volume 
fractions, the ratio η/ηloc is found to be roughly proportional to ℓ2 
(Fig. 5d, inset).

Conclusion
We have exploited random thermal flows in a dispersion medium, 
captured by displacement correlations between tracers, to gain 
insight into the dynamic arrest of colloidal suspensions. This indirect 
approach yields new observables that mirror the approaching glass 
transition and are based on strong signals that can be experimentally 
measured. We highlighted three observables: the transversal correla-
tion D⊥(r, τ), the crossover length ℓ between the two leading contribu-
tions to D∥(r, τ) or D⊥(r, τ), and the power-law exponent α of the decay 
of D∥(r, τ) and D⊥(r, τ). D⊥(r, τ) develops a distinctive negative contribu-
tion that becomes increasingly dominant towards the glass transition 
(Fig. 4b,c and equation (9a)). Beyond the glass transition, this contri-
bution should completely dominate the large-separation transversal 
correlation (equation (9b)). As the glass transition is approached, 
ℓ(ϕ) and the corresponding viscosity η(ϕ) steeply increase together, 
as ℓ ∝ η1/2 (Fig. 5). This is in line with a recent report on the power-law 
increase of a differently defined structural length in colloidal sus-
pensions with the relaxation time, having an exponent of approxi-
mately 0.54 (ref. 46). The connection between ℓ and η established 
here (ℓ(ϕ) ∝ η(ϕ)1/2) implies that ℓ must diverge at the glass transition. 
Finally, the decay exponent α changes at the glass transition from α = 1, 
characteristic of a liquid, to α = 3, indicating a solid (Fig. 5a and equa-
tions (9)). We have tied this observation to the breaking of translation 
symmetry of the dispersion medium. The experimental observations 
can thus be rationalized on the basis of conservation laws without 
resorting to a specific model. The price of such a generic approach 
is that the predictions depend on phenomenological parameters  
(A, B and C) to be determined by different methods. Our experimental 
method also reveals subtle spatial features of the approach to the 
glass transition. As long as ℓ is finite, the correlations consist of a 
mixture of two terms, leading to ‘solid-like’ correlations (∝ r−3) for 
r < ℓ mixed with ‘liquid-like’ correlations (∝ r−1) for r > ℓ (equation (9a) 
and the corresponding fits of the data in Fig. 4a,b). This resembles the 
situation in continuous phase transitions. Only when the measure-
ments cover asymptotically large distances r ≫ ℓ will the changes in 
the symmetry-determined power α and the large separation sign of 
D⊥ be sharply located at the transition.

The spatial dependence of the pair correlations raises a question 
concerning the glassiness of the suspensions with ϕ ≥ 0.58. If our meas-
urements were restricted to r ≲ 2 μm, we would find for these suspen-
sions a negative D⊥ (Fig. 4c) and α = 3 (Fig. 5a) and conclude that the 
suspensions were solid. This would agree with the common view of 
the location of colloidal glass transition for hard spheres20. Indeed, 
the displacement fluctuations of single large particles show caging 
at these high-volume fractions (Fig. 2c). However, once the measure-
ments are extended to larger distances, liquid-like behaviour (α ≈ 1 
and positive D⊥) is found even for ϕ ≥ 0.58. This is particularly evident 
from the asymptotic decay of D⊥ to zero from positive values (Fig. 4c). 
The same holds quite clearly, albeit less robustly, for ϕ = 0.60 as shown 
in Supplementary Fig. 19. Indeed, we have extracted finite values of η 
and ℓ for these suspensions (Fig. 5b,c). Thus, the new signatures pre-
sented here indicate that the colloidal glass transition for hard spheres 
occurs at larger volume fractions than usually expected. This finding 
is in line with ref. 47, which reported fluid behaviour up to a volume 
fraction of 0.597 using dynamic light scattering. While the finding of 
ref. 47 required measurements over 103 s, ours has been obtained over 
68 ms. The volume fraction at which the large-scale liquid behaviour 
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completely disappears and the suspension can be considered solid 
on all scales remains unclear. The data for 1/η (Fig. 5c, inset) does not 
preclude the possibility that this might occur only at random close 
packing (ϕRCP ≈ 0.64).

We also leave two interesting aspects for future investigation. What 
does the observed scaling between the crossover length and the relaxa-
tion time, ℓ(ϕ) ∝ τr(ϕ)1/2, imply about the properties of the domains 
of cooperatively moving particles associated with ℓ (refs. 3,48)?  
How does the characteristic length in the solid, ℓs (equation (9b)), 
change as the glass transition is approached from the solid side? The 
weaker correlations between the tracers in the glass would require 
particularly accurate measurements to answer the last question.  
A growing ℓs (ref. 39), if found, might be associated with the growth of 
plastic ‘soft spots’ proposed to accompany glass melting49.

Finally, the experimental method presented here can be applied to 
any other system that includes a dispersion medium, for example, poly-
mer solutions that, upon cross-linking or entanglement, solidify into a 
gel50, or dispersed fibre networks that undergo a rigidity transition in 
response to applied shear51. Relevant systems also include biological 
samples, such as actin networks52 and cells or groups of cells, for which 
the concept of glassiness is gaining increasing relevance.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41567-025-03140-z.

References
1.	 Berthier, L., Biroli, G., Bouchaud, J.-P., Cipelletti, L. & Saarloos, W.  

Dynamical Heterogeneities in Glasses, Colloids, and Granular 
Media (Oxford Univ. Press, 2011).

2.	 Wolynes, P. G. & Lubchenko, V. Structural Glasses and 
Supercooled Liquids: Theory, Experiment, and Applications (Wiley, 
Hoboken, 2012).

3.	 Weeks, E. R., Crocker, J. C., Levitt, A. C., Schoefield, A. & Weitz, D. A.  
Three-dimensional direct imaging of structural relaxation near the 
colloidal glass transition. Science 287, 627–631 (2000).

4.	 Karmakar, S., Lerner, E. & Procaccia, I. Direct estimate of the static 
length-scale accompanying the glass transition. Physica A 391, 
1001–1008 (2012).

5.	 Tanaka, H., Kawasaki, T., Shintani, H. & Watanabe, K. Critical-like 
behaviour of glass-forming liquids. Nat. Mater. 9, 324–331  
(2010).

6.	 Parisi, G. & Zamponi, F. Mean-field theory of hard sphere glasses 
and jamming. Rev. Mod. Phys. 82, 789–845 (2010).

7.	 Biroli, G. & Bouchaud, J.-P. in Structural Glasses and Supercooled 
Liquids: Theory, Experiment, and Applications (eds Wolynes, P. G. &  
Lubchenko, V.) Ch. 2 (Wiley, 2012).

8.	 Dauchot, O., Ladieu, F. & Royall, C. P. The glass transition in 
molecules, colloids and grains: universality and specificity.  
C. R. Phys. 24, 25–56 (2023).

9.	 Wang, W. H. Bulk metallic glasses with functional physical 
properties. Adv. Mater. 21, 4524–4544 (2009).

10.	 Zhou, E. H. et al. Universal behavior of the osmotically 
compressed cell and its analogy to the colloidal glass transition. 
Proc. Natl Acad. Sci. USA 106, 10632–10637 (2009).

11.	 Sadati, M., Nourhani, A., Fredberg, J. J. & Qazvini, N. T. Glass-like 
dynamics in the cell and in cellular collectives. Wiley Interdiscip. 
Rev. Syst. Biol. Med. 6, 137–149 (2014).

12.	 Angelini, T. E. et al. Glass-like dynamics of collective cell 
migration. Proc. Natl Acad. Sci. USA 108, 4714 (2011).

13.	 Park, J.-A. et al. Unjamming and cell shape in the asthmatic airway 
epithelium. Nat. Mater. 14, 1040–1048 (2015).

14.	 Bi, D., Lopez, J. H., Schwarz, J. M. & Manning, M. L. A density- 
independent rigidity transition in biological tissues. Nat. Phys. 11, 
1074–1077 (2015).

15.	 Bi, D., Yang, X., Marchetti, M. C. & Manning, M. L. Motility-driven 
glass and jamming transitions in biological tissues. Phys. Rev. X 6, 
021011 (2016).

16.	 Chepizhko, O. et al. Bursts of activity in collective cell migration. 
Proc. Natl Acad. Sci. USA 113, 11408–11413 (2016).

17.	 Mongera, A. et al. A fluid-to-solid jamming transition underlies 
vertebrate body axis elongation. Nature 561, 401–405  
(2018).

18.	 Atia, L. et al. Geometric constraints during epithelial jamming. 
Nat. Phys. 14, 613–620 (2018).

19.	 Grosser, S. et al. Cell and nucleus shape as an indicator of tissue 
fluidity in carcinoma. Phys. Rev. X 11, 011033 (2021).

20.	 Hunter, G. L. & Weeks, E. R. The physics of the colloidal glass 
transition. Rep. Prog. Phys. 75, 066501 (2012).

21.	 Gokhale, S., Sood, A. K. & Ganapathy, R. Deconstructing the glass 
transition through critical experiments on colloids. Adv. Phys. 65, 
363–452 (2016).

22.	 Pusey, P. N. & Megen, W. Phase behaviour of concentrated 
suspensions of nearly hard colloidal spheres. Nature 320, 
340–342 (1986).

23.	 Pusey, P. N. in Liquides, Cristallisation et Transition Vitreuse/
Liquids, Freezing and Glass Transition (eds Hansen, J. P. et al.) 
763–942 (Elsevier Science Publishers B.V., 1991).

24.	 Cheng, Z. et al. Phase diagram of hard spheres. Mater. Des. 22, 
529–534 (2001).

25.	 Royall, C. P., Poon, W. C. K. & Weeks, E. R. In search of colloidal 
hard spheres. Soft Matter 9, 17 (2013).

26.	 Sentjabrskaja, T. et al. Anomalous dynamics of intruders in a 
crowded environment of mobile obstacles. Nat. Commun. 7, 11133 
(2016).

27.	 Sentjabrskaja, T. et al. Binary colloidal glasses: linear 
viscoelasticity and its link to the microscopic structure and 
dynamics. Soft Matter 15, 2232–2244 (2019).

28.	 Lázaro-Lázaro, E. et al. Glassy dynamics in asymmetric  
binary mixtures of hard spheres. Phys. Rev. E 99, 042603  
(2019).

29.	 Zhang, R. & Schweizer, K. S. Correlated matrix-fluctuation- 
mediated activated transport of dilute penetrants in 
glass-forming liquids and suspensions. J. Chem. Phys. 146, 
194906 (2017).

30.	 Laurati, M., Sentjabrskaja, T., Ruiz-Franco, J., Egelhaaf, S. U. & 
Zaccarelli, E. Different scenarios of dynamic coupling in glassy 
colloidal mixtures. Phys. Chem. Chem. Phys. 20, 18630–18638 
(2018).

31.	 Poling-Skutvik, R. et al. Structure dominates localization of 
tracers within aging nanoparticle glasses. J. Phys. Chem. Lett. 10, 
1784–1789 (2019).

32.	 Crocker, J. C. et al. Two-point microrheology of inhomogeneous 
soft materials. Phys. Rev. Lett. 85, 888–891 (2000).

33.	 Yethiraj, A. & Blaaderen, A. A colloidal model system with an 
interaction tunable from hard sphere to soft and dipolar. Nature 
421, 513–517 (2003).

34.	 Diamant, H., Cui, B., Lin, B. & Rice, S. A. Correlated particle 
dynamics in concentrated quasi-two-dimensional suspensions.  
J. Phys. Condens. Matter 17, S4047 (2005).

35.	 Prasad, V., Koehler, S. A. & Weeks, E. R. Two-particle 
microrheology of quasi-2D viscous systems. Phys. Rev. Lett. 97, 
176001 (2006).

36.	 Diamant, H. Long-range hydrodynamic response of particulate 
liquids and liquid-laden solids. Isr. J. Chem. 47, 225–231 (2007).

37.	 Diamant, H. Hydrodynamic interaction in confined geometries.  
J. Phys. Soc. Jpn 78, 041002 (2009).

http://www.nature.com/naturephysics
https://doi.org/10.1038/s41567-025-03140-z


Nature Physics

Article https://doi.org/10.1038/s41567-025-03140-z

38.	 Crocker, J. C. Measurement of the hydrodynamic corrections to 
the Brownian motion of two colloidal spheres. J. Chem. Phys. 106, 
2837–2840 (1997).

39.	 Diamant, H. Model-free hydrodynamic theory of the colloidal 
glass transition. Preprint at https://arxiv.org/abs/2411.06270 
(2024).

40.	 Ermak, D. L. & McCammon, J. A. Brownian dynamics with 
hydrodynamic interactions. J. Chem. Phys. 69, 1352–1360 (1978).

41.	 Brady, J. F. & Bossis, G. Stokesian dynamics. Annu. Rev. Fluid Mech. 
20, 111–157 (1988).

42.	 Kim, S. & Karrila, S. J. Microhydrodynamics: Principles and 
Selected Applications (Dover Publications, 2005).

43.	 Brinkman, H. C. A calculation of the viscous force exerted by a 
flowing fluid on a dense swarm of particles. Appl. Sci. Res. A1, 
27–34 (1947).

44.	 Grosberg, A. Y., Joanny, J.-F., Srinin, W. & Rabin, Y. Scale- 
dependent viscosity in polymer fluids. J. Phys. Chem. B 26, 
6383–6390 (2016).

45.	 Batchelor, G. K. The effect of Brownian motion on the bulk stress 
in a suspension of spherical particles. J. Fluid Mech. 83, 97–117 
(1977).

46.	 Hu, J., Ning, L., Liu, R., Yang, M. & Chen, K. Evidence for growing 
structural correlation length in colloidal supercooled liquids. 
Phys. Rev. E 106, 054601 (2022).

47.	 Brambilla, G. et al. Probing the equilibrium dynamics of colloidal 
hard spheres above the mode-coupling glass transition. Phys. Rev. 
Lett. 102, 085703 (2009).

48.	 Diamant, H. Criteria of amorphous solidification. Preprint at 
https://arxiv.org/abs/1406.2508 (2014).

49.	 Aharonov, E. et al. Direct identification of the glass transition: 
growing length scale and the onset of plasticity. Europhys. Lett. 
77, 56002 (2007).

50.	 Rubinstein, M. & Colby, R. H. Polymer Physics (Oxford Univ. Press, 
2003).

51.	 Licup, A. J. et al. Stress controls the mechanics of collagen 
networks. Proc. Natl Acad. Sci. USA 112, 9573–9578 (2015).

52.	 Sonn-Segev, A., Bernheim-Groswasser, A., Diamant, H. & 
Roichman, Y. Viscoelastic response of a complex fluid at 
intermediate distances. Phys. Rev. Lett. 112, 088301 (2014).

Publisher’s note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, 
as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons licence, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2026

http://www.nature.com/naturephysics
https://arxiv.org/abs/2411.06270
https://arxiv.org/abs/1406.2508
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Nature Physics

Article https://doi.org/10.1038/s41567-025-03140-z

Methods
Sample
We studied binary mixtures of PMMA colloidal spheres. The parti-
cles were fluorescently labelled with monomerized rhodamine B 
(small particles) or NBD (large particles) and sterically stabilized with 
poly(12-hydroxy-stearic acid) by covalently binding the stabilizer to the 
surface of the particles53. The small particles (tracers) had a diameter 
2as = (0.50 ± 0.02) μm and a polydispersity δs ≈ 7% and the large (matrix) 
particles had a diameter 2al = (3.19 ± 0.02) μm and a polydispersity 
δl ≈ 7% as determined using confocal differential dynamic microscopy54. 
The particles are suspended in an index- and density-matched mixture 
of cis-decalin and cycloheptylbromide that prevents particle sedimen-
tation and turbidity. The suspension also behaves as a hard-sphere-like 
system23,25,33, where interactions between particles occur only upon 
contact. Assuming that the sediments were randomly close-packed 
with a volume fraction ϕRCP = 0.65 (ref. 55), binary suspensions with 
a volume fraction of large particles 0.050 ≲ ϕ ≲ 0.601 and of small 
particles 0.005 ≲ ϕs ≲ 0.008 were prepared. The statistical uncertainty 
of the ratios of volume fractions is expected to be smaller than 10−4, in 
agreement with previous reports56. Details about the sample prepara-
tion can be found in Supplementary Section 1.1 and the samples studied 
in Supplementary Table 1.

Sample cell
The sample cells were built from a microscope slide with an area of 
76 × 26 mm2, a thickness of 1 mm (631-1550, vwr), a cover glass with an 
area of 20 × 20 mm2 and a thickness between 0.13 mm and 0.16 mm 
(Nr. 1, 631-1568, vwr). In the centre of the microscope slide, a cylin-
drical cavity with a diameter of approximately 3 mm and a depth of 
approximately 0.5 mm was drilled. The cylindrical cavity in a cleaned 
microscope slide was filled with the sample using either a stainless-steel 
spatula or a micropipette with a cut pipette tip to avoid self-filtration 
effects57. Then, a cleaned cover glass was placed on the cavity. The sam-
ple was sealed with glue (All Purpose Adhesive Super, UHU). The glue 
was left to dry for at least 12 h while the cell was rotated to homogenize 
the contained sample. Details about the cleaning process are given in 
Supplementary Section 1.2.

Confocal microscopy
The samples were imaged using a confocal scanning unit (A1R-MP, 
Nikon) mounted on an inverted microscope (Eclipse Ti, Nikon) with a 
60× oil immersion objective with a numerical aperture of 1.4 (Plan Apo 
VC, MRD01602, Nikon). Solid-state lasers with wavelengths of 561 nm 
and 488 nm were used to excite the rhodamine B and NBD fluorescence 
dyes from the small and large particles, respectively.

Without 3D scan, time series of images with 512 × 512 pixels, usu-
ally with an optical section of 0.42 μm and a pixel pitch of 0.105 μm 
per pixel, were recorded at a fixed distance of 30–60 μm from the 
cover glass. More details are given in Supplementary Section 1.3 and 
Supplementary Table 2.

Analysis procedure
A series of time-lapse microscopy images was used to extract the 2D 
trajectories Ri(t) of the matrix (large) and ri,a(t) of the tracer (small) 
particles, using i as particle ID, a as area (field of view) and t as starting 
time. Trajectories that complied with a specified trajectory length were 
used to determine one-point observables such as the MSD.

To ensure consistent dynamics from all the different areas (meas-
urements) of the tracer particles, we performed an equilibration check 
of the variances σ2Δra (τ) (MSDΔr), with τ as the delay time. We considered 
an area a as equilibrated when σ2Δra (τ) presented dynamical information 
equivalent to the ones with the largest time span after filling the sample 
in the sample cell. All one-point observables from equilibrated areas 
a were then averaged.

The corresponding trajectories that passed the equilibration 
check were used to determine the two-point correlation functions  
D∥(r, τ) and D⊥(r, τ) for a specific τ and distances r between the tracer 
particles. We first fitted the two-point correlation functions to deter-
mine the decay exponents α∥ (α) and α⊥ for different r regions. In a 
subsequent fitting process, we used an analytical expression for the 
two-term correlations to extract the prefactors A∥, A⊥ and the crossover 
lengths squared ℓ2∥ (ℓ2) and ℓ2⟂. We performed a consistency check by 
fitting this same expression to a calculated analytical form using the 
extracted quantities. Finally, we used the Stokes–Einstein relation to 
determine the local viscosity ηloc and determined the global viscosities 
η∥ (η) and η⊥ from the prefactors A∥ and A⊥, respectively. Details are 
given in Supplementary Section 2.

Data availability
The data that support the findings of this study are available via Zenodo 
at https://doi.org/10.5281/zenodo.17533166 (ref. 58) in MATLAB data 
file format.

Code availability
The MATLAB codes used for the analysis in this study are available via 
Zenodo at https://doi.org/10.5281/zenodo.17533166 (ref. 58).
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