
Tel Aviv University

Raymond and Beverly Sackler Faculty of Exact Sciences
School of Chemistry

Dynamics and diffusion of colloidal particles in an
optical vortex

by
Yulia Sokolov

Thesis submitted in partial fulfillment of the requirements for the M.Sc. degree
at Tel Aviv University School of Chemistry

This work has been carried out under the supervision of
Dr. Yael Roichman and Prof. Haim Diamant

February 2011



Contents

Abstract ii

1 Introduction 2

1.1 Single-particle manipulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Optical trapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Holographic optical tweezers . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Colloidal dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Hydrodynamic interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Navier-Stokes equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.2 Stokeslet approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.3 Random motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.4 Stokesian Dynamics simulation . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Technical details 10

2.1 Experimental system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Particle tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Simulation details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Results and discussion 14

3.1 The pairing mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1 Collective mobility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.2 Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

i



4 Theory 24

4.1 The mobility tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 The pairing mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3 Collective mobility for even particle numbers . . . . . . . . . . . . . . . . . . . . . 26

4.3.1 Collective mobility calculation . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3.2 The particle number influence on their collective mobility . . . . . . . . . . 28

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 Summary and future directions 32

Bibliography 34

ii



1

Abstract
Holographic optical tweezers can be used to manipulate multiple dielectric particles in de-

signed traps. In this work the trapping pattern is such, that the spherical colloidal particles are
driven by constant optical force along a ring-like trap, called a vortex, creating a well-defined, non-
equilibrium microscopic system. When several particles are trapped in the vortex, hydrodynamic
interactions affect their dynamics, resulting in complex particle motion, including a surprising pair-
ing effect. In this work we examine closely the dynamics of the particles, using experiment, a simple
theoretical model, and data from Stokesian Dynamics simulations. We establish the existence of
the pairing effect, suggest and confirm its underlying mechanism. We show that the pairing arises
from symmetry breaking in the radial positions of the particles, which in turn breaks the symme-
try of their pairwise hydrodynamic interactions. We calculate the particles’ collective mobilities
in different particle density limits, and compare them with experimental average velocities. In ad-
dition, we study the random fluctuations of this system, and compare the results to those known
in equilibrium systems. We find a crossover in the particles’ mean-square displacements along the
ring from single-file diffusion at intermediate time to normal diffusion at long time, arising from
the collective motion of the assembly.



Chapter 1

Introduction

In this chapter we describe the holographic optical tweezing technique for particle trapping and
manipulation, and touch upon the trapping mechanism and particle tracking technique, used in this
work. We give a theoretical background for the relevant subjects: (i) hydrodynamics, focusing on
the hydrodynamic interactions, or the drag forces the particles apply on each other via the viscous
medium; (ii) Stokesian Dynamics simulations, and (iii) diffusion, including single-file diffusion,
occurring in 1D or quasi-1D geometries with particles moving in single-file, which is the case for
the particles in a vortex.

1.1 Single-particle manipulation

1.1.1 Optical trapping

Optical tweezers (OT) use optical forces exerted by strongly focused laser beams to trap and move
objects. Since the forces exerted by light range from femto- to nanonewtons, they can influence the
motion of very small, micro- to nanoscale objects [1]. Optical trapping can be described intuitively
in two limits: the Rayleigh regime in which a≪ λ, or the ray optics regime in which a≫ λ, where
a is the trapped particle’s radius and λ is the wavelength of the trapping laser beam. Most trapping
experiments of dielectric particles are conducted in an intermediate regime where trapped particles
are of the order of the wavelength of the trapping beam, which is described more accurately by
numerical calculations [2]. The trap can be regarded as a parabolic potential with depth U , which
must be larger than the kinetic energy kBT .

In the Rayleigh regime the particle is treated as an induced point dipole in an inhomogeneous
electrical field. The force exerted on a particle then consists of two components: the gradient
trapping force and the scattering force [3] (see Fig. 1.2).

Each particle feels the Lorentz force

Fgrad = (p · ∇)E+
1

c

dp

dt
×B, (1.1)

2



CHAPTER 1. INTRODUCTION 3

Figure 1.1: Competition between the radiation pressure and the trapping gradient force. For stable
trapping the electric gradient force, which attracts the particle to the highest intensity region, must
dominate.

where E and B are the electric and magnetic fields, p = ǫE is the particle’s dipole and ǫ is the
polarizability. In continuous wave laser traps the average gradient force becomes proportional to
polarizability

〈Fgrad〉 =
ǫ

2
∇
〈

E2
〉

, (1.2)

and since the square magnitude of the electric filed gives the beam’s local intensity, the Rayleigh
particle is attracted by the Fgrad to the highest intensity region and gets trapped by it. The
scattering force coming from the interaction between electromagnetic wave a small spherical particle
is

〈Fscat(r)〉 ∝ ǫ2I(r)ẑ, (1.3)

pushing the particle downstream.

In the ray-optics regime transparent particles act as lenses, focusing the light and changing
the photon momentum [4]. The momentum transferred from the light to a particle is the difference
in linear momentum between incoming and outgoing rays. This momentum is the one that moves
the particle towards the focal point.

Figure 1.2: The trapping gradient force and the driving scattering force exerted on a particle in a
trap.

A typical optical tweezers setup is illustrated in Fig. 1.3 [5]. It comprises a laser source,
a beam expander, two stirring mirrors, relay optics and an inverted microscope equipped with a
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high NA objective lens. The laser beam is expanded to slightly overfill the back aperture of the
microscope’s objective lens. It is stirred in two directions by the stirring mirrors and focused by
the microscope to create a diffraction limited spot, which is the optical trap.

Figure 1.3: Gradient-force optical tweezing set up. A laser beam is expanded, steered onto the
microscope port, relayed by a telescope to a high NA microscope objective, slightly overfilling it,
and tightly focused onto the sample.

1.1.2 Holographic optical tweezers

In a Holographic Optical Tweezers (HOTs) setup [6, 7] one of the stirring mirrors of a convectional
OT setup is replaced with a Spacial Light Modulator (SLM). SLMs are computer controlled devices
capable of imprinting a phase-only hologram, a kinoform [8], on the wavefront of a laser beam.
When an imprinted beam is focused through an objective lens it forms an image which is related to
the Fourier transform of the phase pattern. By calculating specific kinoforms HOTs can be utilized
to create multiple optical traps in three dimensions, to change the trap pattern during experiment
and to change the nature of the beam [7, 9, 10].

One special beam that can be created with the use of a SLM is the optical vortex. An
optical vortex is a beam of light whose phase is given by φ = lθ [11], where l is the topological
charge of the vortex, the winding number of the azimuthal angle θ. The helical mode is therefore
given by:

ψl(r) = u(r, z)e−ikzeilθ, (1.4)

where kẑ is the beam’s wavevector and u(r, z) is the field’s radial profile at position ẑ. A typical
phase hologram of an optical vortex with topological charge l = 6 is depicted in Fig. 1.4. This
phase pattern has a singular point in its center which causes the beam to interfere destructively.
The excess light forms a ring-like trap at a radius directly connected to the vortex’s topological
charge. As a result, particles are drawn to the ring by intensity gradient forces and are driven with
constant force along its circumference by scattering forces [2, 10, 12, 13]. The potential exerted by
an optical trap in the radial direction is equivalent to the potential of a Hookean spring.

Most observed characteristics of optical vortices have been interpreted in terms of the prop-
erties of Laguerre-Gaussian (LG) eigenmodes of the paraxial Helmholtz equation [14, 15]. These
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Figure 1.4: The TEM laser beam is projected onto the SLM screen, then each pixel is undergoing
a phase shift of φ(ρ) = lθ, according to a field at each pixel through amorphous Si liquid crystals
orientation shift, and transforming from transverse to helical mode. b. The resulting destructive
interference along the optical axis, turning a point focused trap to a ring-like trap with radius Rl

proportional to topological charge l. c. Trapping colloidal particles with an optical vortex. The
particle is caught in an optical angular momentum flux and circling along the circular trajectory.

have a radial dependence

ulp(r, z) = (−1)p

(√
2r

w

)l

Ll
p

(

2r2

w2

)

exp

(

− r2

w2

)

, (1.5)

where Ll
p is a generalized Laguerre polynomial with radial index p , and w is the beam’s radius

[11]. If each scattered photon is assumed to transfer an angular momentum proportional to l~,
then the time required to complete one cycle in a vortex should scale as

Tl(P ) ∝
√
l

P
, (1.6)

where P is the power of the input beam of wavelength λ. For l > l0 it is expected that Tl(P ) ∝ l2

P .
The intensity dependence on the arclength s around the ring is modeled as

Il(s) =
P

2πλRl
. (1.7)

The tangential force exerted on a particle in a vortex then is

Fl(s) = A0

P

Rl
. (1.8)

A0 is the prefactor including such geometric factors as the particle’s scattering cross-section.
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1.2 Colloidal dynamics

1.3 Hydrodynamic interaction

In this experiment we deal with a common hydrodynamic problem, colloidal spherical particles
moving in water, inducing long-range flows and affecting each other’s motion.

1.3.1 Navier-Stokes equations

The basic scenario at hand is the isothermal flow of a homogeneous viscous fluid. In the hydrody-
namic regime, where the local properties of the fluid can be regarded as constant on micro-scales,
the fluid behavior can be treated phenomenologically with fluid mechanics equations [18], and all
the hydrodynamic variables obey matter, momentum conservation laws. The derivation of the
fluid motion dynamic equation is based on Newton’s laws of motion, interpreted to the following
statement: per unit volume, the rate of change of momentum is equal to the rate of momentum
increase and loss by convection through the surface, and to the sum of external forces. For in-
compressible fluids, when the local density of the fluid ρf is assumed constant, the fluid motion is
described by the Navier-Stokes equation [19]:

ρf
Du

Dt
= ρf

(

∂u

∂t
+ u∇u

)

= −∇p+ η∇2u+ F, (1.9)

plus the incompressibility constraint, ∇ · u = 0. p is the fluid’s hydrostatic pressure, u is the mean
fluid velocity, F is the external force density, and η the dynamic shear viscosity.

When the flow is laminar and sufficiently slow, the inertial effects can be neglected [20].
This behavior is related to the low Reynolds number limit, when

Re =
ρfvσ

η
≪ 1, (1.10)

where σ and v are the relevant scales of length and velocity (here, the particle diameter and its
velocity). In this limit the problem can be treated with the simpler Stokes or creeping motion
equations, which amounts to setting the left-hand size of Eq. (1.9) to zero.

When the Stokes equation with the incompressibility constraint are applied to the motion
of an isolated spherical particle, the following Stokes law follows [21]:

v = BsF,

Bs = (3πησ)−1, (1.11)

where Bs = 1/ξ is the particle self-mobility (ξ is the sphere’s drag coefficient).

1.3.2 Stokeslet approximation

In this work we describe the hydrodynamic interactions between particles within the simplest
Stokeslet approximation. This description strictly holds in the limit of large inter-particle distance
relative to the particle size.
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The relation between a sphere’s velocity v to the force F and flow u it experiences is given
by Faxen’s law [22]:

v = u(r) +BsF+
σ2

24
∇2u(r). (1.12)

If no force is exerted on the particle, and if the pressure gradient is small relatively to the particle
diameter σ, the sphere can be assumed to be simply advected by the fluid flow, v = u. On the
other hand, a local force F(ri) applied to sphere i induces a flow at large distances, |r− ri| ≫ σ,
of the form [23, 24]

u(r) = O(r− ri) ·F(ri), (1.13)

where O is the Oseen tensor, relating the force to the resulting flow velocity,

Oαβ(r) =
1

8πηr

(

δαβ +
rαrβ
r2

)

, (1.14)

where α, β = x, y, z. Combining these two approximate results, we have

vj = O(rj − ri) · Fi (1.15)

This is the so called Stokeslet approximation. It implies that for interparticle distance much larger
than particle size, r ≫ σ, the pair-mobility tensor is simply given by the Oseen tensor,

Bij,αβ(rij) ≃ Oαβ(rij), (1.16)

where rij = rj − ri is the vector connecting the two particles.

1.3.3 Random motion

Normal and anomalous diffusion

In our experiment, on top of the driven motion of particles through the liquid, we also deal with
a very well-known random process, diffusion, with the simplest case of no-memory or a Markov
process. The diffusion itself takes place via Brownian motion. Brownian motion of our colloid
particles results from collisions with the much smaller medium particles (i.e., water molecules)
that surround them. It can be described by either Langevin’s phenomenological approach using
stochastic theory [25], or by probability distributions using the differential Fokker-Planck equation
[26].

In the Langevin treatment of the problem, the overall force acting on a free (undriven and
non-interacting) Brownian particle consists of two considerations: a systematic frictional force
associated with the slow relaxation of the initial particle velocity due to the viscous drag forces, as
described in Sec. 1.3, and a randomly fluctuating force f(t), coming from frequent collisions with
the medium, so that

mv̇(t) = −ξv(t) + f(t), (1.17)

where v(t) is the particle’s velocity, m its mass, and ξ is the friction coefficient. The random
force is assumed to have a zero mean, infinitesimally short autocorrelation times and mean-square
fluctuations that satisfy the fluctuation-dissipation law, 〈f(t)f(t+τ)〉 = 2kBTξδ(τ). At sufficiently



CHAPTER 1. INTRODUCTION 8

long times or in the overdamped limit the inertial forces can be neglected and the mean square
displacement (MSD) becomes

〈∆r(τ)2〉 = 6
kBT

ξ
τ. (1.18)

The self-diffusion coefficient D is defined as

D = lim
τ→∞

〈∆r(τ)2〉
6τ

, (1.19)

and after comparison with Eq. 1.18,

D =
kBT

ξ
, (1.20)

giving Einstein’s relation for D in terms of the friction coefficient ξ. And so if Eq. (1.18) is
rewritten, we get

〈∆r(τ)2〉 = 6Dτ. (1.21)

For a d-dimensional case the expression is

〈∆r(τ)2〉 = 2dDτ. (1.22)

In Eqs. (1.21) and (1.22) the MSD is linearly dependent on time. This behavior is widespread
in systems close to equilibrium and is referred to as normal diffusion [27]. In this case the solution
of the diffusion equation has the Gaussian form and the next conditions are fulfilled: the variable
increments have a defined and finite mean and variance, are mutually independent and the number
of steps is large.

There are many systems which do not follow this pattern, but diffuse either slower or faster
than in the normal diffusion case. The diffusion processes are characterized through the scaling of
the MSD with time. If the general scaling is

〈r2(t)〉 ∝ tγ , (1.23)

then γ is the diffusion scaling index. When γ = 1, the diffusion is normal, otherwise the diffusion
is anomalous and can be either subdiffusion for γ < 1 or superdiffusion for γ > 1. This scaling
index can be obtained from a linear fit of log(〈r2〉) versus log(t) plot.

Single-file diffusion (SFD)

SFD was introduced first in 1955 by Hodgkin and Keynes in relation to particle transport across
a membrane [28]. This type of diffusion was studied both experimentally and theoretically since
then. It was found, that SFD occurs, when the particles move in a channel, sufficiently narrow to
prevent them from passing each other [29, 30, 31]. The scaling index typical for SFD equals 1/2,
and the expression for MSD is

〈r2(t)〉 = Fsf

√
t, (1.24)

where Fsf is the SFD mobility. It was found that constricting the particles to a one-dimensional
sequence leads to a scaling index of 1/2 [30]. Thus, SFD offers perhaps the simplest example of
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subdiffusion. Levitt pointed that this scaling should be expected in most physical systems, where
the frequency of the collisions with random background is much larger than the inter-particle
collision frequency, for example, when the particles move through narrow water-filled pores [31].

Experiments with the colloids diffusing in quasi- 1D circular channels [32] show the existence
of crossover time tc from normal self-diffusion for t < tc to SFD for t > tc. In this study the
hydrodynamic interactions between the particles could be neglected because the distance between
the particles was sufficiently large. For weakly interacting colloidal spherical particles in 1D grooves,
diffusion depends on the interaction time ti [33]. When t < ti, which is approximately equal to
the average collision time between the spheres, normal diffusion was observed. It was found, that
the scaling index γ decreases as the time increases, until reaching 1/2 for t ≫ ti, the onset of
subdiffusion. The crossover from normal self-diffusion to SFD depends on the particle density.
As the particle density increases, interaction time between the particles decreases, reducing the
crossover time.

The SFD mobility Fsf for colloidal systems can be determined by the short-time collective
diffusion coefficient [34],

Fsf =
S

ρ

√

Dcol

π
, (1.25)

where S = S(q = 0) is the zero-wavevector structure factor, equal to the relative compressibility of
the 1D particle assembly, ρ its average 1D density, and Dcol its zero-wavevector effective diffusivity.
This equation holds for relatively low concentrations [35], when hydrodynamic interactions are
sufficiently weak. The way to calculate the prefactor in the presence of strong hydrodynamic
interactions is still unknown.

Colloidal particles trapped in a quasistatic (non-driving) optical circular trap show the
same behavior: gradual transition from normal self-diffusion with γ = 1 at short-time to SFD
with γ = 1/2 at long-time [36]. In that work crossover time and SFD mobility were measured
as a function of particle density, showing that both crossover time and prefactor Fsf decrease
with particle density. The measured Fsf values were also compared to the theoretically predicted
mobilities by Eq. (1.25). To our knowledge SFD has never been studied for driven particles.

1.3.4 Stokesian Dynamics simulation

Brownian Dynamics is a common technique to simulate systems of particles that obey the Langevin
equation, (Eq. 1.17), including interparticle interactions. Stokesian Dynamics is an extension of this
technique that takes into consideration hydrodynamic interactions [37]. Thus, these simulations
include: stochastic Brownian motion (see Sec. 1.3.3), inter-particle interactions (if the particles in-
teract directly), and many-body hydrodynamic interactions (see Sec. 1.3). In Sec. 1.3 we described
a way to deal with hydrodynamic interactions using the so-called Stokeslet approximation. In
Stokesian Dynamics simulations a more accurate approximation is used, taking into consideration
the size of the particles, via the so-called Rotne-Prager tensor [42] instead of the Oseen tensor.



Chapter 2

Technical details

In this chapter we supply experimental and simulation technical details, and describe the data
analysis for (i) experimental and simulation average velocities and (ii) experimental mean square
displacement calculations.

2.1 Experimental system

We use holographic optical tweezers to trap and drive colloidal particles along the ring of light.
We image the particles’ motion with an optical microscope and track their positions. We extract
the coordinates from the movies for analysis and study of the particles’ dynamics and diffusion.

Our sample consists of a water dispersion of colloidal polystyrene particles with diameter
σ = 1.48 ± 0.08 µm (Bangs Laboratories Inc. PS04N), encapsulated between a glass microscope
slide and a coverslip.

We use holographic optical tweezers (HOT), described in Sec. 1.1.2, to create an optical
vortex, by imprinting a helical phase profile on a laser beam (Coherent Verdi, λ = 532 nm) with a
Hamamatsu X6750 PPM spatial light modulator. A Nikon TE-2000U inverted optical microscope
with an oil immersion Plan-Apo objective lens (100× NA 1.4) is used both to focus the laser light
and to image the trapped particles. The laser light focuses in the sample plane into a ring of light
of diameter 2R = 12.41± 0.06 µm.

Particles are trapped in the vortex by radial gradient forces and are propelled in the tan-
gential direction due to phase gradients in the helical beams of light [38]. Adaptive optics methods
are employed to ensure a near-constant tangential driving force, Fθ [39, 40]. By tuning the particle
size and radius of the vortex we restrict the particles to one-dimensional, single-file motion.

A series of experiments with the number of trapped particles ranging from N = 1 to N = 16
was performed. The motion of the particles was recorded on a Pioneer 520H-S digital video recorder
(DVR) with a NEC TI-324AII monochrome video camera at a rate of 30 frames per second and
the particle positions were extracted with 20 nm resolution by applying digital video analysis, as

10
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described in the next section.

We optimize the combination of such parameters as the size of the particles, vortex radius,
the trap intensity and the distance of the lens from the coverslip with the sample. These parameters
define how well the particles are trapped, and the maximum particle density on the ring.

2.2 Particle tracking

After recording the images of the particles. We use the well known particle tracking algorithm of
Crocker and Grier [17]. Initially each image is filtered to clean high frequency and low frequency
noise. The local maxima of brightness in the image are located. From this list the intensity peaks
resulting from particles are chosen, and their exact location is deduces by a fit to a 2D Gaussian.
After all images are analyzed thus, particle motion and identity are calculated using a least squares
method.

We use the data files including particle number, frame number and particle’s position after
making sure that the location and tracking give reasonable results. After we have those we proceed
with the calculations described in the next section.

2.3 Data analysis

We are interested in the average particle velocities for various particle numbers and in mean
square displacements (MSD) for various number of steps τ , 〈∆r2〉(τ). We translate the cartesian
coordinates that we get after tracking the particles to polar coordinates. We then calculate the
displacements of the particles along the vortex circumference and in the radial direction. We
approximate the arc to be a straight line, when the angular step is sufficiently small, and the radial
step to be a normal to the tangential step (see Fig. 2.1).

Figure 2.1: Calculation of MSD for particles on a ring.
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The displacements in the tangential and the radial directions are then

∆s =
2R1R2 sin∆θ

√

R2
1R

2
2 + 2R1R2 cos∆θ

, (2.1)

∆r =
R2

2 −R2
1

√

R2
1R

2
2 + 2R1R2 cos∆θ

. (2.2)

We average over ∆s to get the average velocities.

Mean square displacement is a statistical value, demanding repetition of the same exper-
iment, in the same conditions, for each time interval. This is hard to achieve experimentally.
Assuming the system to be ergodic 1 we analyze the data derived from one experiment, breaking
it to many independent time intervals for each step number τ , as demonstrated for a 2D-random
walk in Fig. 2.2. We calculate the displacements ∆s and ∆r per τ , averaging over the number
of intervals ttot/τ , where ttot is the total number of frames. Then we follow the usual routine,
calculating [〈∆s2〉 − 〈∆s〉2](τ) or the variance var(∆s) and in the same manner var(∆r).

Figure 2.2: Two-dimensional random walk. One experiment is broken to several for varying τ =
[1, τmax].

2.4 Simulation details

All the simulations were programmed and run by Derek Frydel. Stokesian Dynamics are used to
simulate the driven colloidal particles in an optical vortex [37]. The radial degree of freedom is
assumed to have an impact on the system’s behavior. Therefore in this simulation the particles
are restricted to two-dimensional motion, while confined in the radial direction to a ring of radius
R = 5σ (σ being the particle’s diameter) by a harmonic radial potential of spring constant kr. A
constant tangential force F θ = Rkθ is driving the particles around the ring, and a repulsive WCA
pair interaction [41] prevents them from overlapping. Hydrodynamic interactions between particles
are modeled using the many-body Rotne-Prager mobility tensor [42]. Temperature is introduced

1In ergodic system all the microstates have the same probability over a long period of time. In this case, the

average of a variable over time can be assumed to be the same as the average over the statistical ansemble.
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via a Gaussian-distributed random force, obeying the fluctuation dissipation relation using the
same mobility tensor. The temperature in the simulation is presented in units of kθσ

2/kB, where
kB is Boltzmann’s constant, and the angular velocity in units of Bskθ, where Bs = (3πησ)−1 is
the particle’s self-mobility in a liquid of viscosity η. The data analysis of the simulation results for
extraction of the average velocities is equivalent to the experimental one.



Chapter 3

Results and discussion

Colloidal particles driven in an optical vortex exhibit complicated dynamics, expressed through
fluctuating distances between them and various transient particle arrangements, such as pairs or
trains, forming and breaking as the particles circulate along the vortex. For example, in Fig. 3.1
(a) and (b) we see the same two particles with two different angular distances between them.
It means that their velocities are not constant, despite the approximately identical optical force
exerted on them.1 In addition, we observe particle pairing, as shown in Fig. 3.1 (b). The particles
come close to one another, move in a pair, split, then pair again, exhibiting quite peculiar behavior
for non-interacting particles. We see this pairing effect in the angular distance distribution (see
Fig. 3.2), where the average inter-particle distance is fluctuating around 35◦. As the particle
number increases, the picture becomes more complicated, but common features are observed in all
the vortices: the inter-particle distances fluctuate and there is a tendency to create pairs and even
short-lived chains.

We see the pairing effect manifestation in Fig 3.3, where there is a clear difference between
the average particle velocity in odd or even particle rings. The stronger correlations in the even
case, where all the particles can be paired, lead to increased collective mobilities, due to drag
reduction. In the odd particle number case there is always at least one unpaired particle, leading
to lower velocities than the adjacent even N .

Another feature seen in Fig. 3.3 is the average velocity non-monotonous increase, unlike
what is usually observed in particles moving in single-file in a channel. The reason for this common
observation is the fact that a train of particles experiences less drag than its constituent particles
would feel when isolated. Why then is it not the case for the particles moving in single-file in the
vortex?

1It is important to note, that the vortex is not an ideal circle, but slightly elliptical. In addition, the intensity is

not homogeneous, due to the optical setup inaccuracies. For the case of homogeneous distribution the same force

is exerted on the particles, whereas inhomogeneity leads to slight deviations in the force applied on each particle.

It becomes important when studying and understanding both dynamical and random behavior of the particles.

Nevertheless, in our theoretical model and during the analysis we assume the vortex to be a perfect ring and the

driving force to be identical for all the particles and constant. Our primary motivation here is to identify the effects

that are insensitive to such imperfections.

14
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Figure 3.1: Two-particle vortex with (a) separated and (b) paired particles.

Figure 3.2: Distribution of experimentally measured angular distances between particles in a two-
particle vortex. The particles form a long-lived pair with a fluctuating but well defined separation
angle.

3.1 The pairing mechanism

Since the driving force is approximately identical and constant for all the particles, and the par-
ticles should have no intrinsic interactions other than short-range hard-core ones, we suspect that
the hydrodynamic interactions could be responsible for the observed dynamics. We see in our
theoretical calculations that hydrodynamic interactions in the radial direction could be responsible
for the pairing (See Sec. 4.2). We therefore propose a pairing mechanism based on radial symmetry
breaking, as schematically depicted in Fig. 3.4. Under a tangential optical driving force on two
particles in a vortex the leading particle is shifted to a slightly larger radius, R1 > R, and a trailing
particle to a slightly smaller one, R2 < R. Once the symmetry is broken, the trailing particle’s
angular velocity becomes higher than that of the leading particle. As a result the trailing particle
catches up with a leading one. As the particle number increases, each one of the particles will
affect the others, giving rise to complicated dynamics, as observed in the experiments.

Plotting the distribution of leading and trailing particle radii ratio R1/R2 in Fig. 3.5, we
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Figure 3.3: Average particle velocities plotted versus particle number N , showing the difference
between odd (blue squares) and even (green circles) particle number dynamics. The average particle
velocity is scaled by the velocity in a single-particle vortex. This is also equal to the ratio between
the collective mobility of particles in the vortex and their self-mobility as isolated particles.

Figure 3.4: The pairing mechanism. As optical forces drive the particles along the ring, the
resulting fluid flow pushes the leading particle outward and pulls the trailing one inward. Once
displaced radially, the particles’ angular velocities change, making the trailing particle catch up
with the leading one.

see that it is biased toward values larger than 1, proving that the leading particle adopts a higher
radius trajectory.

In Fig. 3.6 we see the same result from simulation, under low temperature and weak radial
confinement conditions. The distribution of the leading particle’s radius has higher values than
that of the trailing one, in a circular trap under constant driving force with sufficiently weak radial
confinement. The angular distance between particles in a pair under these conditions is found
to be about 13◦. Hence, the symmetry breaking is borne out by the statistics of the measured
trajectories, as we propose.
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Figure 3.5: Distribution of the experimentally measured ratio between the radii of the leading and
trailing particles in a two-particle vortex.

Figure 3.6: The radii distributions of the leading (L) and the trailing (T) particles in a simulated
vortex. The leading particle’s mean radius is higher than that of the trailing particle, pointing at
the radial symmetry breaking.

3.1.1 Collective mobility

We have already observed the effect of pairing on the average velocity in vortices containing even
versus odd number of particles (Fig. 3.3). In Fig. 3.7 we further compare the experimentally
measured average velocities for even N with the theoretical collective mobilities predicted by
Eq. (4.11) for paired particles driven in a ring, using a vertical shift α as a fitting parameter
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1. Despite the oversimplified model, described in detail in Sec. 4.3.1, a reasonable agreement is
obtained for α = 1.10± 0.02. Largest deviations are obtained for N = 2 and 4, which are systems
characterized by low particle density, and therefore more affected by noise.

At given experimental conditions the particles are not fixed in one configuration, as in our
theoretical model, but switching between several transient configurations [43, 44], and since the
average velocity depends on statistical sampling of these configurations, it becomes stochastic. For
N = 2, for example, the theoretically considered paired configuration is the fastest one. In practice,
the noise increases the average inter-particle distance, and therefore reduces the overall mobility
relative to the theoretical one of a fixed pair. For N = 4, conversely, the theoretically considered
configuration of two opposing pairs is relatively slow, since the pairs inhibit each other via the fluid
medium. In this case thermal noise causes the particles to sample faster configurations, reducing
the hindrance effect and increasing the collective mobility. At this point, as one of the reasons for
positive mobility deviation, a pairing between two pairs was considered, which indeed takes place
in certain conditions. This configuration was seen in simulations by Derek Frydel [44], along with
other stable configurations that the four particles can adopt.

We see the same behavior in the simulations, as presented in Fig. 3.8. We analyzed the
simulation data in two different temperatures to show the thermal effect on the average particle
velocities in the dilute rings. In Fig. 3.8 the particle collective velocity for N = 4 at T = 0.02 is
higher than at T = 0.1, as a result of the configuration that the particles adopt. These configu-
rations are temperature and confinement dependent [44], therefore, in a given radial confinement,
temperature dictates the particle arrangement on a ring, and therefore, their dynamic properties,
such as collective mobilities. For N > 4 the simulation results agree with our theoretical prediction
with fitting parameter α = 1.57± 0.05.

The value of α = Bp/Bs can be related to the inter-particle distance through the theoretical
expression for the mobility of a pair of spheres [45]. In the simulation we measure an angular
distance of ∆θ = 12.9 ± 0.1◦, which corresponds to α = 1.52 ± 0.02. These two independent
measurements of α agree within the statistical error.

In both experiment and simulation, as the particle number increases, the number of possible
configurations and the particle density on a ring also increase. It leads to smaller deviations from
the theoretically considered positions, and a better agreement with the theoretical prediction. For
particle numbers higher than 4 we observe the usual mobility increase with increasing N . This
tendency is broken when reaching the maximum density on a ring. At this density, the particles
begin to wander outside the vortex, as shown in Fig. 3.9. In this experiment the maximum density
is φmax = Nσ/(2πR) = 0.38± 0.02, for N = 10.

In Sec. 4.3.2 we propose that the driven particles in such a dense ring in this limit should be
comparable to that of a driven torus, leading to a linear average velocity dependence on particle
number.

We now understand that the average velocity dependence on increasing particle number is
affected by hydrodynamic interactions, temperature, radial confinement, particle configurations
and the particle density. This leads to the non-monotonous behavior seen in Figures 3.3, 3.7 and

1The exact definition of the collective mobility is described in Sec. 4.3.1. Here it is sufficient to note that the

collective mobility in our system is equal to the measured average velocity divided by the tangential driving force.
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Figure 3.7: Experimental results for the particle velocity (scaled by the velocity in a single-particle
vortex) for even N along with the theoretical prediction [Eq. (4.11)] with α = 1.10 ± 0.02 (solid
line). Experimental error bars are smaller than symbols.

Figure 3.8: Simulation results for particle velocity (scaled by the velocity in a single-particle vortex)
at T=0.02 (green circles) and T=0.1 (blue squares) for even N along with the theoretical prediction
[Eq. (4.11)] with α = 1.57± 0.05 (solid line).

3.8.

3.1.2 Diffusion

On top of the system dynamics, the particles also perform random fluctuations within the available
radial and tangential degrees of freedom, both of which are discussed below. We calculate and plot
the mean square displacements of the particles’ fluctuations (to be distinguished from their driven
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Figure 3.9: The trajectory of one of the particles in an N=12 ring. The particle is pushed out of
the ring due to high particle density. It happens when N > 10, or φ > φmax ≃ 0.38.

motion) using the procedure described in Sec. 2.3.

Example of the resulting logarithmic plot of 〈∆s2〉 versus τ is shown in Fig. 3.10. Note
that these variances are supposed to eliminate the effect of the deterministic driven motion of the
particle around the ring. We will see, however, that this is not exactly the case. After examination
of all the particles in different N -ring plots, a consistent pattern is seen: linear trends with three
different regions, perturbed by periodic wiggles. The crowding of these wiggles (to be discussed
shortly) on the long-time logarithmic scale allows us to average over them and perform a linear fit
in regions 2 and 3. We take into consideration the inaccuracy in separation into regions by eye,
and extract scaling index γ values from the slope, while averaging over the selected approximate
regions, as demonstrated in Fig. 3.11. This procedure is performed for each particle number,
ranging between N = 1 and N = 13 and for each particle in each vortex. Then the results are
averaged over all the particles per each N . This analysis was applied for both experiment and
simulation. The logarithmic plot for 〈∆r2〉 is shown in Fig. 3.12.

Figure 3.10: Log-log plots of mean square displacement in tangential and radial (inset) directions
vs time.

In Fig. 3.10 region 1 is not analyzable, since what we see there is a single wiggle — a result
of the periodical deterministic motion of the particle around the ring. The period of the highest
peak on the Fourier transform plot fits the period it takes the particle to complete a cycle (see
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Figure 3.11: Example of log-log 〈∆s2〉 versus τ plot for one of the particles in 8-particle vortex.
(a) Example how the regions are chosen and (b) Linear fit to the data in the chosen region.

Figure 3.12: Example of log-log 〈∆r2〉 versus τ plot for one of the particles in 8-particle vortex.

Fig. 3.13). For example, the highest peak in the FT plot for each particle in a three-particle vortex,
gives the period of 67 frames, and this is exactly the number of frames it takes each particle to
complete one loop in a vortex. We therefore conclude, that the vortex intensity inhomogeneity is
responsible for the wiggles in the MSD plots.

Figure 3.13: Example of Fourier transform plot of the 〈∆s2〉. The high peaks originate from the
wiggles seen in MSD log-plots.
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In Fig. 3.14 we see the results for the scaling exponent γ for even [panels (a) and (b)] and
odd [(c) and (d)] particle number. For even N , as the particle number increases, γ asymptotically
approximates 0.6 ± 0.2 in region 2 and 1.1 ± 0.1 in region 3. For odd N no consistent pattern
is observed. This is again the manifestation of the pairing, leading to the difference in diffusive
behavior between odd or even particle number.

Figure 3.14: Average scaling exponents of the particles as a function of particle number for region
2 (a) and 3 (b), for even N [(a),(b)] and odd N [(c),(d)]. As the particle number increases, γ goes
to about 0.5 in region 2 and to about 1 in region 3.

The exponent found for Region 2 is typical of single-file diffusion (SFD), discussed in
Sec. 1.3.3. Despite the non-equilibrium conditions, the particles in a vortex also perform quasi-1D
SFD. Region 2 is the sub-diffusional area, corresponding to the collisions time-scale, where each
particle becomes aware of its closest neighbors reducing its degrees of freedom and leading to the
diffusion indices of approximately 0.5. In our experiment the system is small enough to observe the
crossover to the center-of-mass diffusion, which is normal. Thus, in region 3 the particles diffuse
with γ ≃ 1, due to reaching the time-scales, where the particles are aware of all the other particles,
and exhibit collective behavior. To our knowledge, this is the first time this crossover was observed
experimentally. This behavior is relevant for sufficiently high particle densities in a vortex, where
the collision times are sufficiently short. We assume, that we do not see SFD features in relatively
dilute systems in our set of experiments, since the measurement time is not sufficiently long for
the collisions between the particles to become appreciable.

If we compare the radial mean square displacements of the leading and the trailing particles
[see Fig. 3.15 (a) and (b)] in a two-particle vortex, we see that the leading particle is periodically
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fluctuating with smaller amplitude than the trailing one. This effect reduces the average radii ratio
we calculated and plotted earlier in Fig. 3.5.

Figure 3.15: Radial MSD of the leading (a) and the trailing (b) particle in a two-particle vortex.
The radial fluctuation amplitude of the leading particle is smaller than that of the trailing particle,
pointing at the subtle intensity profile influence on the radial distribution discussed in Sec. 3.1.

3.2 Summary

In this chapter we discussed the pseudo pair-attraction between the particles in a vortex, seen
in both experiments and simulations. We suggested the mechanism for particle pairing based
on radial symmetry breaking, and supported by the radial distribution and collective dynamics,
combining experiment, simulation and theory. We found that dilute rings are affected by strong
noise. From four particles on, the mobility continuously increases, as we predicted theoretically,
up to a maximum occupied fraction φmax. At this and higher densities two problems occur: (i)
the particles begin to get out of the trap and wander nearby ; (ii) the Stokeslet approximation
no longer holds and so does our model. The high-density region could not be examined due to
problem (i). We predict theoretically, in the next section, that in this limit the collective mobility
is expected to be linearly dependent on the particle number.

In addition, we examined the particle diffusion in the tangential and radial directions. We
found that the particle pairing influences the random fluctuations of the system as well, manifesting
itself through the difference between odd and even particle number. For even particle numbers we
find a crossover from SFD to collective normal diffusion. For odd particle numbers no consistent
pattern was observed. Wavy patterns seen in the MSD plots were examined through Fourier
transform and related to the trap intensity inhomogeneity.



Chapter 4

Theory

In addition to direct interactions (if there are any), particles in a viscous fluid medium interact
hydrodynamically. In this chapter we discuss hydrodynamic interactions between the particles
in an optical vortex, using a simplified analytical model to describe the system. We suggest a
mechanism for the pairing observed in experiment and simulation, and discussed in Sec. 3.1. We
calculate the collective mobilities, and examine their dependence on the particle density in the
ring.

4.1 The mobility tensor

Hydrodynamic interactions could give rise to the pair attraction observed in the experiment. We
therefore build a rough model to describe the experimental system, and check how hydrodynamic
interactions influence the particle dynamics.

We assume that colloidal particles motion in water is overdamped, and obeys the stick
boundary condition at the particle surface. Therefore, Stokes law can be applied, and the self-
mobility coefficient of a single particle is given by

Bs = (3πησ)−1, (4.1)

where η is the liquid viscosity and σ the particle diameter.

We use the Stokeslet approximation to describe the hydrodynamic interactions (see Sec. 1.3.2).
The distance between the particles, in fact, may not be large enough to ignore the particles size
influence. Thus the Stokeslet approximation fits the real picture very roughly. This approximation
becomes even less appropriate for the particles coming close to create a pair. Nevertheless, we
use the Oseen tensor to build a many-body mobility tensor and calculate the particle velocities in
the tangential and radial directions. For two isolated particles the change in the velocity of one
particle, ∆v, due to a force F acting on the other, is given within the Stokeslet approximation by

∆v ≃ O · F, (4.2)

24
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where O is the Oseen tensor, defined in Eq. (1.14).

For N particles the velocity–force relation is
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where the matrix defines a many-particle mobility tensor, and the Bij ’s are in principle functions
of the positions of all particles. The Stokeslet approximation then implies that we replace each
Bii by BsI, where I is the identity matrix, and each Bij , i 6= j, by O(rij), where rij is the vector
connecting particles i and j. Thus the velocity of particle i is the superposition of the velocities
resulting from its self-mobility and pairwise interaction with all the other particles j = 1...N , j 6= i,

vi = BsFi +
N
∑

j=1,j 6=i

O(rij) · Fj. (4.4)

Since the particles in the experiment are moving along a planar circular trajectory, we set
the plane of motion at z = 0 and translate the tensor coordinates from cartesian (x, y, z = 0)
to polar (r = R, θ, z = 0), where R is the ring’s radius, using the azimuthal projection operator

θ̂ = (− sin θ, cos θ). For each term in Eq. (4.4) then

xij = R(cos θj − cos θi),

yij = R(sin θj − sin θi),

|rij |2 = 2R2[1− cos(θij)], (4.5)

where θij = θj − θi. Now we can substitute the results into Eq. (4.4) and calculate the tangential
and radial velocities of the particles.

We now focus on two particles. According to the experimental situation we restrict the
following analysis to driving forces that are purely tangential,

Fj = Fj θ̂ (4.6)

This tangential force on particle j can change velocity of particle i in both tangential and radial
directions. We begin with the tangential component of the particle i velocity resulting from particle
j motion. Using Eqs. (4.4) and (4.5), we get

vθ = [Bs +Gθθ(θij)]F
θ,

Gθθ =
1 + 3 cos θij

16πηR
√

2(1− cos θij)
, (4.7)

where θij = θj − θi.
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Similarly, in the radial direction we get

vr = Grθ(θij)F
θ,

Grθ =
3 sin θij

16πηR
√

2(1− cos θij)
. (4.8)

4.2 The pairing mechanism

Now we check how hydrodynamic interactions in any of the directions can be responsible for the
pairing effect observed in the experiment. The simplest case to look at is a pair of spherical
particles on a ring, separated by an angular distance θij = θj − θi. Equation (4.7) is symmetric
under particle exchange, θij → θji = −θij . This means that, in the tangential direction, particles i
and j pull each other in the same direction and with the same strength. Therefore, the tangential
coupling cannot account for the pairing effect.

We take into consideration, that in experiment the confining radial force of the vortex is
not infinitely strong, therefore allowing the particles a radial degree of freedom. In the absence of
the radial trap, this would lead to the radial velocity, given in Eq. (4.8). The fact that Eq. (4.8)
is antisymmetric under particle exchange implies, that the hydrodynamic coupling has opposite
effects on the radial motions of the two particles. If particle i pushes particle j out of the ring, in
the radial direction, particle j pulls it inside the ring (or vice versa). This leads to slightly shifted
trajectories in the presence of the radial confining potential (See Sec. 3.1).

The pairing makes the dynamics of odd number of particles more complex than that of even,
since in the odd particle number case there will always be one single slower particle, which will
be caught up by those paired (see Fig. 4.1)[13, 43]. We focus on the simpler case of even particle
number from now on.

Figure 4.1: Three particles exchanging configurations, as an example of odd particle number
behavior.

4.3 Collective mobility for even particle numbers

4.3.1 Collective mobility calculation

An additional way to support the pairing is to look at the collective mobilities in the tangential
direction and compare them with the experimental average particle velocities. We first build a
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simple model, fixing N unpaired particles to positions evenly distributed along the ring, as shown
in Fig. 4.2.

Figure 4.2: The idealized configuration: particles evenly spread along the ring.

In the absence of hydrodynamic interactions each particle moves with tangential velocity
vθ = BsF

θ. The angular distance between each two particles θij is now constant and defined by
2π/N . In the tangential direction
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(4.9)
where Gθθ(θ) has been defined in Eq. (4.7).

One of the eigenvectors of this mobility tensor has the form (1, 1....1), the collective eigen-
vector. In simple words, this vector describes the state, when all particles are subjected to the
same force and, since they are evenly distributed, move with the same velocity. The existence of
this eigenvector is guarantied by our model conditions: identical particles with identical intervals
between them, symmetrically positioned on a ring. Hence, the expression for the collective mobil-
ity can be found by diagonalization of the tensor in Eq. (4.9) and finding the collective eigenvalue
Bcol.

It is easy to see that this eigenvalue is simply equal to the sum of row elements of the matrix
in Eq. (4.9) (which is equal for all rows). This gives

Bcol

Bs

=
vθ(N)

vθ(1)
= 1 +B−1

s

N−1
∑

n=1

Gθθ(2πn/N). (4.10)

To relate this result to the experiment, we now consider two paired particles as an effective

single particle. The ring then contains N/2 such effective particles, evenly distributed, as shown
in Fig. 4.3. The tangential velocity of an isolated pair is taken to be vθ = BpF

θ, where Bp = αBs

is the mobility of a pair with α being a prefactor of order 1. In this case the collective eigenvalue



CHAPTER 4. THEORY 28

becomes

Bcol

Bs

=
vθ(N)

vθ(1)
= α+ 2B−1

s

N/2−1
∑

n=1

Gθθ(4πn/N). (4.11)

Figure 4.3: The idealized configuration for paired particles, evenly spread along the ring with
angular distance 4π/N .

The mobility of an isolated pair of spheres, separated by a given distance and moving along
the line that connects them, is known theoretically [45]. Thus, if we know the separation between
two particles in a pair, we can predict Bp, i.e., the prefactor α (see Sec. 3.1.1).

4.3.2 The particle number influence on their collective mobility

For further calculations we define the occupation fraction φ = Nσ/2πR. In a sufficiently dilute
ring, when φ ≪ 1, the collective mobility of the particles can be calculated using expressions
(4.10) or (4.11), depending on whether we have single or paired particles. The resulting mobility
dependence on particle number in the paired case is as shown in Fig. 4.4.

2 4 6 8 10 12
N

1.5

1.6

1.7

1.8

B
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l/B
s

Figure 4.4: Theoretical prediction for mobility dependence on particle number for low occupation
fractions. The parameters fit those of the simulation (see Sec. 2.4).
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We next check two cases: (i) what happens when the particle density is relatively high; and
(ii) what would be the particle collective mobility in the theoretical limit of N → ∞ together with
R → ∞ such that φ remains small.

The collective particle mobility in a high density ring

For relatively high particle densities, the Stokeslet analysis can no longer be implemented. In this
case the particles begin to behave as a dense ”train”, and the collective mobility should be close
to that of a continuous torus.

Figure 4.5: High-density ring depicted as an effective torus of a radius R and cross-section radius
σ/2.

If we apply a force F θ on each particle, then the total force exerted on the torus isNF θ. Since
the collective velocity is equal to each particle velocity and constant, vθtorus = vθi ≃ BtorusNF

θ =
BcolF

θ, where Btorus is the mobility of the torus to rotation around its main axis. Therefore, the
particle collective mobility for high density rings is predicted to become linearly dependent on N ,

Bcol ≃ BtorusN. (4.12)

The infinite N limit

First of all, how can the N → ∞ theoretical limit be obtained theoretically? If we take a ring of
radius R, we can reach this limit by taking infinitely small σ. Thus, we can place many particles on
a given circumference. On the other hand, it is just the same, if we fix σ and take infinitely large
radius R. We therefore consider again the ratio Nσ/R ∼ φ. As long as this ratio is very small,
we can take the particle number to ∞ and still stay in the Stokeslet limit. Since ∆θ is defined
as 2π/N , the change in the argument of the Gθθ(θij) between consecutive summation terms in

Eq. (4.10) becomes very small. We then can convert the sum
∑N−1

n=1 G
θθ(2πn/N) to an integral

using Riemann sum:
N−1
∑

n=1

Gθθ(2πn/N) ≃
∫ N

0

Gθθ(2πn/N) dn. (4.13)

Substituting the expression for Gθθ from Eq. (4.10) and performing the integration, we get the
expression for the mobility:

Bcol = Bs

[

1 +
3φ

2

{

ln

(

4φR

σ

)

− 3

2

}]

(4.14)
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As N → ∞, R/σ → ∞, while φ remains constant. We therefore can simplify expression (4.14) to

Bcol ≃
3Bsφ

2
ln

(

4φR

σ

)

. (4.15)

According to Eq. (4.15) the collective mobility diverges logarithmically with system size. This
behavior is known from other hydrodynamic problems such as the mobility per unit length of a
long rod.

Finally, let us look at the mobility of the entire train of particles. To go from a description
of N particles with N forces exerted on them to a single train with a single force acting on it, we
need to divide the collective mobility of the particles by their number N ,

Btrain =
Bcol

N
=

1

4π2ηR
ln

(

4Rφ

σ

)

(4.16)

This expression is remarkably similar to the expression for the mobility of a solid cylinder of length
2πR and radius σ/2 [46]:

Bcylinder =
1

4π2ηR
ln

(

1.95πR

σ

)

. (4.17)

We no longer see the effect of the trajectory’s curvature due to the ring expansion (R → ∞) in
order to keep the ring dilute. But we also see that in this limit, apart from a logarithmic correction,
the dilute system behaves as a dense one, pointing at the long-range effect of the hydrodynamic
interactions.

Figure 4.6: According to the similarity of Eqs. (4.16) and (4.17), both the shape of the particles
and the curvature of the trajectory become negligible in the N → ∞ limit.

4.4 Summary

In this chapter a simple analytical model was built to describe the experimental system, i.e. col-
loidal particles moving on a circular trajectory. The Oseen tensor was translated to polar coordi-
nates, and the many-body mobility tensor was calculated for tangential and radial components of
particle motion. It was shown, that the radial degree of freedom can be responsible for the pair-
ing effect seen in the experiments. The collective mobility eigenvalue was found for even particle
number N , giving the expression for collective mobility as a function of N .

Then the dependence of the collective mobility on the particle density was examined. The
region of finite N and low occupation fractions was checked. The mobility for rings with high
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particle density was approximated to that of a torus, resulting in a prediction of linear dependence
of the collective mobility on N. Both of these predictions can be checked experimentally. In this
work we were able to check only the first.

The collective mobility for the theoretical N → ∞ limit was calculated, within the Stokeslet
approximation. It was shown that it diverges logarithmically with increasing particle number.
The expression itself was found to be almost identical to the expression for the mobility of a solid
cylinder.



Chapter 5

Summary and future directions

In this work we studied the deterministic and random behavior of the colloidal particles driven in an
optical vortex generated by holographic optical tweezers. Naively, the trapping mechanism implies
that the particles should move with constant and identical velocities. But this is not what we
observe in the experiments, where particles obviously move with different and changing velocities
and also exhibit pair-attraction, unexpected due to the lack of intrinsic long-ranged interactions
between them. We therefore set out to examine the system more closely. We focused on both the
driven dynamics and diffusion of the particles.

We confirmed the existence of the pairing by (i) the inter-particle angular distances distri-
bution with well-defined separation angle between the particles; (ii) the difference in the average
velocity increase with the particle number for rings with odd or even particle number; (iii) the
difference in the diffusive behavior of the particles depending on whether N is odd or even; (iv)
an agreement between the average particle velocities as a function of particle number and the
theoretical collective mobilities of paired particles. The pairing is proved to originate from radial
symmetry breaking due to the drag forces via water in the radial direction, by the leading and
trailing particles’ radii ratio distribution, and by simulations. This mechanism is general, and will
work for any system with colloidal particles driven along a curved trajectory with a radial degree
of freedom allowed.

We also see that the particle dynamics depends on the particle density in the vortex. It
is temperature and radial confinement dependent as well, as was found in simulations by Derek
Frydel. Relatively dilute systems are dominated by the hydrodynamic interactions, leading to
pairing and various particle configurations, which in turn determine the particles’ average velocity.
The more dilute the system, the more it is affected by noise. At relatively high particle densities,
the system is driven as a rigid structure, which can be compared to a torus. In this experiment we
could not strictly observe this limit due to particles being pushed out of the ring when the density
is higher than a certain maximum. We predict theoretically, that the average velocity will increase
linearly with the particle number. We would like to check this limit experimentally by adjustment
of such parameters as the vortex radius and intensity and the particle size.

Since the particles are restricted to move in single-file, their velocities are expected to in-
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crease monotonously with the particle number. But considering all the aforementioned parameters
influencing the particles’ average velocities, we were able to explain why the velocity increase
observed in the experimental plot is non-monotonous.

We also derived an expression for the collective mobility in the theoretical N → ∞ limit for
dilute rings. This expression is similar to that of a rod, showing that the dilute system behaves
much like a dense one. In addition, for N → ∞ the particle mobility diverges logarithmically with
N .

We studied the particle diffusion in a vortex, calculating and log-log plotting the mean square
displacements in the tangential and radial directions. The diffusion scaling exponent extracted from
the mean-square displacements (MSD) indicated that, like particles’ diffusion in an equilibrium
system [36], the particles in our driven system also undergo single-file diffusion (SFD) over a
certain time-range. We observed a crossover from SFD to normal collective diffusion at sufficiently
long times, where the center-of-mass diffusion of the entire particle assembly becomes appreciable.
This collective regime could be obtained due to the system’s small size and the closed trajectory.
In addition, the MSD plots revealed the influence of the trap intensity profile on the system’s
fluctuations. We want to perform more experiments with larger vortices in order to observe the
time regime smaller than the collision times, and the crossover times between the regimes, as a
function of particle density. We also want to look closer on the odd particle number case. In
addition, we are interested in finding the theoretical expression for the prefactors of the single-file
MSD in the presence of long-range hydrodynamic interactions and comparing them to experiment.

We would also like to study the non-equilibrium statistical mechanics behind the experi-
mental distributions in this experiment. For example, the apparently exponential distribution of
angular separation in a particle pair (Fig. 3.2) may be related to the non-equilibrium features and
effective temperature of the system.
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