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Abstract

The stability of soft-matter quasicrystals is explained by linking between the microscopic

description of the system and its coarse-grained free energy. We show, both theoretically

and numerically, that the underlying source of the stability is the existence of two natural

length-scales and e�ective three-body interactions, that emerge from the interplay between

energy and entropy. We formulate a coarse-grained free-energy functional for a soft-matter

system, composed of isotropic particles, which depends on thermodynamical quantities such

as temperature, mean density and the critical temperature for the formation of ordered

structures from the uniform liquid phase. Using several pair potentials, we study the

formation of periodic and quasiperiodic structures displaying various symmetries, and show

how one could design the pair potentials to obtain the required structure.
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Introduction

In the last few years we have witnessed the exciting experimental discovery of soft matter

with nontrivial quasiperiodic long-range order�a new form of matter termed a soft qua-

sicrystal. These newly discovered soft quasicrystals provide platforms for the fundamental

study of both quasicrystals and of soft matter, and also hold the promise for new applica-

tions, such as complete and isotropic photonic band-gap materials, based on self-assembled

nanomaterials with unique physical properties that take advantage of the quasiperiodicity.

The goal of this work is to explain the source of stability of soft quasicrystals, proposing

a theoretical model and providing numerical support. We examine the stability of these

soft quasicrystals by linking between the microscopic description of the system and its

coarse-grained free energy, and show that the underlying source of stability is the existence

of two natural length-scales that emerge from the interaction potential and the existence

of e�ective three-body interactions whose origin is mainly entropic.

The discovery of quasicrystals by Shechtman in 1982 signaled the beginning of a re-

markable scienti�c revolution [1], in which some of the most basic notions of condensed

matter physics have undergone a thorough reexamination. In their subsequent publication,

Shechtman et al. [2] described the discovery of a new state of matter, that later Levine

and Steinhardt [3] named a `quasicrystal' (QC)�short for quasiperiodic crystal. Shecht-

man studied Aluminum transition metal alloys and found a solid metal phase with long

range order and 5-fold symmetry (icosahedral), but with no translational periodicity. This
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Figure 1: (a) A pentagonal facet of a single grain of a Ho-Mg-Zn QC. (b) Transmission
electron microscope image and (c) the di�raction pattern of the 5-fold Dy-Mg-Zn QC.
Since for each k the opposite wave vector −k also appears, there are 10 Bragg peaks on
each circle for a 5-fold QC. All images taken from Ref. [6]

discovery contradicted the old crystallographic paradigm, that de�ned a crystal as both

ordered and periodic. Since 1982, numerous examples of QCs were discovered, most of

them binary or ternary metallic alloys with 5-fold or 10-fold (decagonal) symmetries [4,5],

see Fig. 1(a,b).

For both periodic and quasiperiodic crystals, the density c(r) can be expanded as a

superposition of plane waves [7],

c(r) =
∑

k∈L

c̃(k)eik·r, (1)

where the set L can be expressed as integral linear combinations of a number D of wave

vectors. The Fourier coe�cients c̃(k) are revealed by X-ray di�raction experiments as

Bragg peaks as shown in Fig. 1(c). When D is equal to the dimension of space, the crystal

is periodic, and its symmetry is limited to 2-, 3-, 4- or 6-fold. When D is larger than the

dimension of the space the crystal is quasiperiodic [8�10]. In this case, the set of Bragg

peaks is not discrete and k space is dense. However, since any experiment is limited in

2



sensitivity, it shows only a �nite number of wave vectors, producing an �essentially-discrete�

di�raction diagram [11].

In spite of the theoretical research in the �eld of QCs in the past 25 years, several

open questions are still being discussed, such as the stability mechanism of QC [5,12] and

the dynamics of phonons and phasons, where the latter are collective energy excitations

unique to QCs [13]. Studies of the minimal-energy structures [14,15] and molecular dynam-

ics simulations [16�28] describe stable QCs, assuming various types of pairwise interaction

between the particles. In this work we propose a theoretical model that not only demon-

strates the stability of single-component QCs, but also give insight to the source of the

stability, enabling us to design the pairwise interaction to obtain the required structure.

Recently, as part of the study of soft matter [29], structures with quasiperiodic order

were found [30�35]. Behind the name soft matter lies a large group of materials including

polymer solutions, colloids and liquid crystals that show a certain degree of order [36].

Unlike �uids and solids where either entropy or energy dominates, soft matter is stabilized

by an interplay between both thermal excitations and particle interactions. In addition,

the length scales are much larger than in the atomic counterparts, and lie in the mesoscopic

regime (i.e. 1nm− 1µm). These unique features enable complicated phase diagrams with

a variety of structures, including liquids, crystals, and liquid crystals [37].

In 2004, Zeng et al. [30�32] discovered a dodecagonal (12-fold) QC phase in a liquid

crystal. They used dendrons (tree-like molecules with connectivity 3) that assume a conical

shape in solution and self-assemble into spherical micelles, and found that the micelles

form a QC structure as shown in Fig. 2. In an independent study, Takano et al. [33, 34]

showed that a three-block (ABC) star-polymer system also forms a structure of dodecagonal

symmetry. Although there are 3 di�erent polymers, the system can be described by only 2

�elds because the overall density is constant and one of the parameters can be scaled out.

In this manner, Dotera [38] proposed a mean-�eld theory with two order parameters to
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Figure 2: (a) From left to right, top, side and isometric views of a cluster of spheres with
12-fold symmetry. (b) Experimental X-ray di�raction pattern of the liquid QC showing 12
Bragg peaks on the �rst circle. Images describing the work of Zeng et al. [30].

explain the stability of the three-block star-polymer QCs. Recently, Percec et al. [35] have

provided yet another example of dodecagonal soft-matter QCs, which like the �rst one, are

composed of spherical micelles. The purpose of this work is to develop a model for soft-

matter QCs relying on a microscopic description of a single-component system composed

of isotropic particles.

The signi�cance of the discovery of quasiperiodic structures in soft matter has several

aspects. First, in these soft-matter systems the particles are in fact supramolocular ag-

gregates of thousands of atoms in the form of micelles or star polymers. These structures

are 100 times larger than regular metal atoms that are the building blocks of metal alloy

crystals and QCs. Second, because the quasiperiodic order resides in a plane, the third axis

shows a regular periodic order of planes of QCs and therefore one is left with an e�ective

two-dimensional problem rather than a three-dimensional one. Third, to this date, soft

quasicrystals have been observed only with dodecagonal point-group symmetry, in place of

the 5-, 8- or 10-fold symmetries encountered before in solid-state systems, suggesting that

4



their source of stability is likely to be di�erent from their solid-state siblings. Finally, the

liquid is composed of only one type of micelles, instead of compounds of two or three types

of atoms for metal based QCs. This means that the interaction between pairs of particles

is determined by a single pair potential, whereas in metals one has to consider several

di�erent pair interactions for all the combinations of the di�erent atoms. We will show

that these exceptional properties of soft-matter QCs provide a relatively simple physical

system, for which the stability of the quasiperiodic pattern can be accounted for.

We draw our inspiration from the work of Lifshitz and Petrich [39], who studied the

stability of systems with quasiperiodic order via a free energy that features two di�erent

length scales and three-body interactions. Motivated by experiments with parametrically-

excited surface waves (Faraday waves), exhibiting dodecagonal (12-fold) quasiperiodic or-

der [40�42], Lifshitz and Petrich developed a model describing the pattern-forming dynam-

ics of a two-dimensional �eld in which two length scales undergo a simultaneous instability.

The dodecagonal quasiperiodic order is energetically preferred for a certain ratio between

the two wavelengths, and when the three-body interactions are su�ciently strong com-

pared with the pairwise interactions. This relates to soft QCs, as Lifshitz and Diamant [43]

discuss, because the soft-matter experimental systems that show quasiperiodic order are

expected to possess two length scales and relatively strong three-body interactions. In this

work we prove their conjecture and show how one can tune the pairwise interaction to

stabilize the required structure. In Chapter 1 we compare the Lifshitz and Petrich free

energy with a mean-�eld free energy for a single component liquid with pairwise isotropic

interactions, and �nd the requirements on the experimental parameters needed to obtain

a thermodynamically stable dodecagonal QC. In Chapter 2 we give several examples for

interactions that ful�ll these requirements. We present the results of a numerical simula-

tions that show the formation of a dodecagonal QC for such conditions in Chapter 3 and

conclude with some �nal remarks and ideas for future research.
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Chapter 1

Theoretical Model

1.1 The Lifshitz-Petrich equation

The inspiration to this work comes from the free energy proposed by Lifshitz and Petrich

(LP) [39], that was motivated by the existence of two-dimensional dodecagonal quasiperi-

odic patterns in Faraday waves [40�42]. They started from the Swift-Hohenberg equa-

tion [44],

∂tρ = ερ− (∇2 + 1
)2

ρ− ρ3, (1.1)

where ρ is the deviation from the mean value of the �eld describing the two-dimensional

problem at hand, and the gradient term prefers one length scale that is set here to 1. The

Swift-Hohenberg equation is often used to model a supercritical instability and pattern

formation in various systems. It is variational, i.e. it can be written as

∂tρ = −δF
δρ

, (1.2)
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where F is an e�ective free energy,

FSH =

∫
dr

[
−1

2
ερ(r)2 +

1

2

[
(∇2 + 1)ρ(r)

]2
+

1

4
ρ(r)4

]
. (1.3)

Thus, a steady-state solution of the Swift-Hohenberg equation (1.1) minimizes the e�ective

free energy (1.3). LP suggested a modi�ed expression,

F =

∫
dr

[
−1

2
ερ(r)2 +

1

2
c
[
(∇2 + 1)(∇2 + q2)ρ(r)

]2 − 1

3
αρ(r)3 +

1

4
ρ(r)4

]
, (1.4)

where they incorporated two features from the Faraday wave experimental system: e�ective

three-body interactions that are controlled by the parameter α, and the existence of two

dominant wavelengths whose ratio is q. The selection of the wavelengths is controlled by

the gradient terms and its strength by the parameter c. The forth power of ρ stabilizes the

system by providing a lower bound for the free energy. The coe�cient α of the three-body

interaction can be scaled out, and by denoting ε∗ = ε
α2 and c∗ = c

α2 , one obtains the

Lifshitz-Petrich scaled free energy [39]

FLP =

∫
dr

[
−1

2
ε∗ρ(r)2 +

1

2
c∗

[
(∇2 + 1)(∇2 + q2)ρ(r)

]2 − 1

3
ρ(r)3 +

1

4
ρ(r)4

]
. (1.5)

The gradient terms have zero contribution to the LP free energy for wavelengths whose

magnitude is either 1 or q. If the parameter c∗ is su�ciently large, the system energetically

selects wavelengths at these magnitudes. Assuming a perfect selection, LP wrote the free

energy in Fourier space as

FLP = −ε∗

2

∑

|k|=1,q

ρkρ−k − 1

3

∑

|ki|=1,q

ρk1ρk2ρ−k1−k2 +
1

4

∑

|ki|=1,q

ρk1ρk2ρk3ρ−k1−k2−k3 , (1.6)

where the summation is restricted to wave-vectors whose magnitude is either 1 or q, i.e. ly-
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Figure 1.1: Wave-vectors lying on two rings in a two-dimensional Fourier space. The ratio
between the radii of the rings is chosen so that the sum of two adjacent wave-vectors on
the �rst ring (solid lines) cancels a wave-vector on the second ring (dashed line). Note that
at the same time the sum of two wave-vectors on the second ring (dotted lines) cancels a
wave-vector on the �rst ring (dashed-dotted line). Here q = 2 cos

(
π
12

)
=

√
2 +

√
3 in order

to prefer 12-fold symmetry.

ing on one of two rings with radii ratio q in the two-dimensional Fourier space as shown in

Fig. 1.1. The system chooses the overall phases of ρki
so that the second term in Eq. (1.6)

lowers the free energy. Note that the second term is a sum over all triplets of wave-vectors

whose vector sum is zero, and thus, three-body interactions can lower the free energy.

For N-fold symmetry, there are N Bragg peaks on each ring. The lowest free energy is

obtained when the ratio q between the rings is such that the sum of two wave-vectors on

one ring and a third wave-vector from the second ring is zero, as shown in Fig. 1.1. This

means that for N-fold symmetry the ratio q should be equal to the magnitude of the vector

sum of two unit vectors separated by an angle of 2π
N
, i.e.

q = 2 cos
( π

N

)
. (1.7)
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Note that for any N-fold symmetry the value of q is between 1 and 2.

Using standard methods LP [39] calculated the free energy for several patterns and

found that when the ratio q is chosen to prefer 12-fold symmetry, the resulting stable

pattern depends upon the value of the parameter ε∗. An N -fold symmetry is stable for a

range of values

ε
∗(N)
min < ε∗ =

ε

α2
< ε∗(N)

max , (1.8)

where a dodecagonal pattern is stable with ε
∗(12)
min = 0 and ε

∗(12)
max ' 0.08776. This condition

implies that the three-body interactions, that are controlled by the parameter α, should be

su�ciently strong compared with the pairwise interactions, controlled by the parameter ε.

If the interactions are weaker, a 6-fold pattern is obtained for ε∗ between ε
∗(6)
min ' 0.08776

and ε
∗(6)
max ' 1.91313, and a 2-fold pattern whenever ε∗ is larger than ε

∗(2)
min ' 1.91313. 2-

fold, 4-fold and 6-fold symmetries are obtained when the ratio q is selected according to

Eq. (1.7), possibly with superstructure ordering. When q is selected to prefer 8-fold or 10-

fold patterns, the system nevertheless prefers a 6-fold periodic pattern with 6 wave-vectors

lying on one ring in Fourier space. Thus, 8-fold and 10-fold patterns are not found to be

stable with the LP free energy.

To sum up, Lifshitz and Petrich found that dodecagonal QCs are stable when three-

body interactions are su�ciently strong and two length scales exist. When the value of the

ratio q prefers 12-fold symmetry (1.7), a dodecagonal QC is stable for a range of values of

the free energy parameters given in Eq. (1.8). Their work provides us with valuable insight

to the stability of QCs in soft-matter systems, where complicated molecular structures give

rise to two length scales, and where three-body interactions may be strong, as we show in

the following section.
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1.2 A coarse-grained free energy for pairwise interac-

tions

We take the partition function of a system of discrete identical particles with a pairwise

interaction, denoted by U(|r − r′|), and coarse-grain it to obtain a free-energy functional

of a continuous density. The Appendix describes a rigorous coarse-graining scheme that

can be later extended to include higher-order correlations, yet for our current purposes it

su�ces to use the leading mean-�eld result (A.21), which we reproduce here

F =
1

2

∫
drdr′c(r)U(|r− r′|)c(r′) + kBT

∫
dr

(
c(r) ln

c(r)
Z0ζ

− c(r)
)

, (1.9)

where c is the density, ζ = eβµ is the fugacity, and µ is the chemical potential. We denote

Z0 = e
1
2
βU(0)/Λd, where β = 1/kBT is the inverse temperature, Λ = h/

√
2πmkBT is the

thermal de Broglie wavelength, and d is the dimensionality. Note that the second term in

this free energy is just the entropy of an ideal gas.

We want to expand the free energy as a power series of the deviations δc from the

average density an its gradients, and then cut o� the expansion to obtain an expression

similar to the LP free energy (1.5). Since the free energy (1.9) is formulated in the grand-

canonical ensemble, the mean density is given by the equation

0 =
δF
δc

= c̄

∫
dr′U(|r− r′|) + kBT ln

c̄

Z0ζ
= c̄ŪV + kBT ln

c̄

Z0ζ
, (1.10)

where V is the volume of the system, and Ū = 1
V

∫
drU(r) is the volume-average of the

pairwise interaction. We �nd the average density to be

c̄ = Z0ζ exp

(
− c̄ŪV

kBT

)
= Z0ζ exp

(
−NŪ

kBT

)
, (1.11)
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where N = V c̄ is the number of particles.

We expand the free energy (1.9), in density variations δc around c̄

F = F0 +
∞∑

n=2

(δc(r))n

n!

δnF
δc(r)n

∣∣∣∣
c(r)=c̄

= F0 +
1

2

∫
drdr′δc(r)U(|r− r′|)δc(r′)

+ kBT

∫
dr

∞∑
n=2

(δc(r))n

n!

∂n

∂c(r)n

(
c(r) ln

c(r)
Z0ζ

− c(r)
) ∣∣∣∣

c(r)=c̄

, (1.12)

and cut o� the sum at the 4th order of δc like the LP free energy to obtain, up to a constant,

F ≈ 1

2

∫
drdr′δc(r)U(|r− r′|)δc(r′) + kBT

∫
dr

[
1

2

δc(r)2

c̄
− 1

3

δc(r)3

2c̄2
+

1

4

δc(r)4

3c̄3

]
. (1.13)

Such an expansion in powers of density variations is expected to be particularly appropriate

for soft matter, where density gradients are much smaller than in atomic or molecular

systems.

We now turn to Fourier space in order to rewrite the energy term using Parseval's

identity. Taking the Fourier transform of the pair potential

Ũ(k) ≡
∫

drU(r)e−ik·r, (1.14)

and the Fourier transform of the density variations

δc̃(k) ≡
∫

drδc(r)e−ik·r, (1.15)
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we rewrite the energy term (denoted by FU) as

FU =
1

2

∫
drdr′δc(r)U(|r− r′|)δc(r′)

=
1

2

∫
drdr′δc(r)

(∫
dk

(2π)d
Ũ(k)eik·(r−r′)

)
δc(r′)

=
1

2

∫
dk

(2π)d
Ũ(k)

∫
drδc(r)eik·r

∫
dr′δc(r′)e−ik·r′

=
1

2

∫
dk

(2π)d
Ũ(k)δc̃(−k)δc̃(k), (1.16)

where d is the dimensionality. Next, we expand the Fourier transform of the pair potential

in powers of k. The pair potential is assumed isotropic in real space, i.e. U(r) = U(|r|),
and therefore its Fourier transform is isotropic in momentum space, i.e. Ũ(k) = Ũ(|k|).
Hence, we can expand the pair potential in powers of k · k = k2,

Ũ(k) =
∞∑

n=0

a2nk
2n, (1.17)

and obtain

FU =
1

2

∫
dk

(2π)d

∞∑
n=0

a2nk
2nδc̃(−k)δc̃(k)

=
1

2

∫
dk

(2π)d

∞∑
n=0

a2n [knδc̃(−k)] [knδc̃(k)] . (1.18)

The next step is to replace the powers of k with gradients of δc. When we transform
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back to real space, each multiplication by k is replaced by a gradient, and we are left with

FU =
1

2

∫
dk

(2π)d

∞∑
n=0

a2n

∫
dr(−i)n∇nδc(r)eik·r

∫
dr′(i)n∇′nδc(r′)e−ik·r′

=
1

2

∫
drdr′

∞∑
n=0

a2n∇nδc(r)∇′nδc(r′)
∫

dk
(2π)d

e−ik·(r′−r)

=
1

2

∫
drdr′

∞∑
n=0

a2nδ (r′ − r)∇nδc(r)∇′nδc(r′)

=
1

2

∫
dr

∞∑
n=0

a2n [∇nδc(r)]2 . (1.19)

The derivative ∇n is understood as (∇2)m for even n, and as (∇2)m∇ for odd n. Such an

expansion in gradients is appropriate for soft matter, where the length scale of the density

variations is large. Substituting the last expression for the potential energy into the free

energy, Eq. (1.13), we have

F =

∫
dr

[
1

2

∞∑
n=0

a2n [∇nδc(r)]2 + kBT

(
1

2

δc(r)2

c̄
− 1

3

δc(r)3

2c̄2
+

1

4

δc(r)4

3c̄3

)]
, (1.20)

which is of the form of the LP free energy, Eq. (1.5).

The �nal step is to show how the critical temperature for crystallization is determined.

We denote the minimum of the Fourier transform of the pair potential Ũ(k) by Ũmin,

subtract this contribution from the energy term and add it to the entropy term to obtain

F =

∫
dr

[
1

2
(a0 − Ũmin)δc(r)2 +

1

2

∞∑
n=1

a2n [∇nδc(r)]2

+ kBT

(
δc(r)2

2

(
Ũmin

kBT
+

1

c̄

)
− 1

3

δc(r)3

2c̄2
+

1

4

δc(r)4

3c̄3

)]
. (1.21)

For the sake of simplicity, we re-de�ne the expansion coe�cients {a2n} to compensate for
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Figure 1.2: The Fourier transform of the pair potential Ũ(k) (solid curve) and its shifted
form (dashed curve) where the value of the minima is exactly zero.

Ũmin,

Ũ(k)− Ũmin =
∞∑

n=0

ã2nk
2n, (1.22)

as shown in Fig. 1.2, and obtain

F =

∫
dr

[
1

2

∞∑
n=0

ã2n [∇nδc(r)]2 + kBT

(
δc(r)2

2

(
Ũmin

kBT
+

1

c̄

)
− 1

3

δc(r)3

2c̄2
+

1

4

δc(r)4

3c̄3

)]
.

(1.23)

The uniform state becomes unstable when the quadratic term changes sign from positive

to negative. Because the gradient term is zero at the minima of Ũ(k), the sign of the

coe�cient of the quadratic term is determined by the term Ũmin + kBT/c̄, as shown in

Fig. 1.3. Therefore, we identify the critical temperature as

kBTc ≡ −Ũminc̄. (1.24)

Note that the critical temperature is thus de�ned only if Ũmin < 0. We divide the free

14



5 10 15 20
k

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

T < Tc

T = Tc

T > Tc

Figure 1.3: Solid curve�the coe�cient of δc(r)2 at the critical temperature Tc, where the
value of the two minima is exactly zero. Dotted curve�above Tc, where the coe�cient is
positive for all k-values. Dashed curve�below Tc, where regions around the minima have
a negative sign.

energy by the critical temperature, to obtain the familiar form

F
kBTc

=

∫
dr

[
1

2kBTc

∞∑
n=0

ã2n [∇nδc(r)]2 +
δc(r)2

2c̄

(
T − Tc

Tc

)
− 1

3

T

Tc

δc(r)3

2c̄2
+

1

4

T

Tc

δc(r)4

3c̄3

]
.

(1.25)

Using a dimensionless deviation from the mean density de�ned as

ρ(r) ≡ 2

3

δc(r)
c̄

, (1.26)

we rescale the free energy and obtain

Fisotropic ≡ F 24

33kBTcc̄
=

∫
dr

[
23

33kBTcc̄

∞∑
n=0

ã2n [∇nρ(r)]2

+
4

3

(
T − Tc

Tc

)
ρ(r)2

2
− T

Tc

ρ(r)3

3
+

T

Tc

ρ(r)4

4

]
. (1.27)

Note that since T is assumed close to Tc, the factor of T/Tc is of order 1. In fact, we do not

have to calculate the coe�cients of the expansion ã2n (1.22), but we give them here (1.27)
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explicitly in order to show the similarity between the pair potential contribution and LP's

wavelength selection term (1.5). We could, instead, express the free energy of the identical

isotropic particles using the actual Fourier transformed pair potential Ũ(k), rather than

its power expansion, and obtain the main result of this section

Fisotropic =

∫
dk

(2π)d

23

33kBTcc̄

(
Ũ(k)− Ũmin

)
ρ̃(−k)ρ̃(k)

+

∫
dr

[
4

3

(
T − Tc

Tc

)
ρ(r)2

2
− T

Tc

ρ(r)3

3
+

T

Tc

ρ(r)4

4

]
. (1.28)

In order to obtain 12-fold symmetry, we �rst have to satisfy the condition concerning

the ratio q between the minima, stated in Eq. (1.7). We show how the selection of q is

made possible in the next chapter. Overall, the physical parameters that control the free

energy are c̄, T and Ũmin. We compare our result with the LP free energy FLP (1.5), and

�nd that the range of values of the parameter ε∗, given by Eq. (1.8), corresponds to a range

of values for the temperature

1− 3

4
ε∗(N)

max <
T

Tc

< 1− 3

4
ε
∗(N)
min . (1.29)

When q is set to prefer 12-fold patterns, we �nd that while a structure with 12-fold sym-

metry is stable for

0.9382 . T

Tc

< 1, (1.30)

and a structure with 6-fold symmetry is stable for

0 <
T

Tc

. 0.9382, (1.31)

a 2-fold pattern, unlike the LP case, is not stable in this case because it will require

a negative temperature. In order to �nd the region in parameter space for which the

16



dodecagonal phase is stable, we use the de�nition of the critical temperature (1.24) and

�nd the requirement

0.9382 . kBT

−Ũminc̄
< 1, (1.32)

where Ũmin is assumed negative.

To conclude, we have been able to derive from a microscopic partition function a coarse-

grained mean-�eld free energy similar to the LP free energy. We have subsequently found

the corresponding conditions where the LP results apply, namely, the stability of di�erent

N-fold patterns. The expansion of the entropy term in powers of ρ is su�cient to provide an

e�ective three-body interaction term ρ3, which is essential for the stability of quasiperiodic

symmetries in the LP description. The expansion of the energy term in gradients of ρ

e�ectively selects two wavelengths with a ratio q, as discussed in detail in the next chapter.
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Chapter 2

Isotropic Pair Potentials with Two

Length Scales

This chapter is devoted to presenting several two-dimensional isotropic pair potentials

that enable stabilizing various symmetries, and speci�cally, the 12-fold symmetry that

was observed in soft materials. The pair potential contribution to the free energy (1.28)

corresponds to the quadratic term of the LP free energy FLP (1.5),

F2{ρ(r)} = −1

2
ε∗ρ(r)2 +

1

2
c∗

[
(∇2 + 1)(∇2 + q2)ρ(r)

]2
, (2.1)

which becomes a polynomial in k2 when expressed in Fourier space

F̃2{ρk} = −1

2
ε∗|ρk|2 +

1

2
c∗

∣∣(−k2 + 1)(−k2 + q2)ρk
∣∣2

=
c∗

2

[
k8 − 2k6(q2 + 1) + k4(q4 + 4q2 + 1)− 2k2(q4 + q2) + (1− ε∗

c∗
)q4

]
|ρk|2.

(2.2)

As shown in Fig. 2.1, the polynomial is constructed so that it has two equal-height minima,

one at k = 1, and the second at k = q. Wavelengths that match these minima are selected
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Figure 2.1: LP's wavelength selection term in Fourier space where c∗ = 2, ε∗ = 0 and
q = 2 cos( π

12
), see Eq. (2.2)

because they minimize the free energy. However, for the Fourier transform of a pair poten-

tial Ũ(k), we have to tune the parameters of the potential so that the heights of the minima

are equal. This is because a su�ciently large di�erence between the heights of the minima,

compared with the temperature, will cause the system to choose the lower minimum, and

the second length scale, crucial for the stability of QCs, will be lost. Therefore, Ũ(k) has

to have two minima with a minimal di�erence between their heights.

In addition, as we discussed in section 1.1, in order to stabilize a structure with N-fold

symmetry in two dimensions, the ratio q between the minima has to satisfy the geometrical

condition (1.7). Consequently, the two-dimensional pair potential has to have at least two

length scales so that in Fourier space both the height of and the ratio between the minima

can be tuned to stabilize the desired structure. Alternatively, since we have two conditions,

we must have at least two independent parameters in the pair potential to obtain a solution.

While many di�erent isotropic potentials, with at least two length scales, were shown to

stabilize quasicrystals [14�28], here we provide a theoretical model that enables one to tune

the parameters of the pairwise interaction, by analyzing its Fourier transform, in order to

obtain the desired structure.

We focus here on the simple case of isotropic particles in two-dimensions, interacting
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via circularly symmetric potentials (i.e. U(r) = U(r)). In the study of Zeng et al. [30�32],

spherical micelles were the building blocks of their 12-fold QC. These micelles are composed

of conical shaped dendrimers joined at the head, and can be described as having a harder

core and a softer repulsion at greater distances. Therefore, we start by characterizing the

pair potential between such micelles using a box-like pair potential, and then move on to

more realistic interactions.

2.1 Piecewise constant pair potential�two boxes

Let us start with the simplest potential we can use to describe the interaction between the

micelles�a piecewise constant potential with two length scales

U(r) =





1 0 < r < 1

u 1 < r < R

0 R < r < ∞,

(2.3)

where r is the distance between the two particles. It contains a repulsive core, whose

strength and radius are normalized to unity, and an additional repulsive shoulder with

strength u extending to a radius R, the two free parameters, as shown in Fig. 2.2(a).

The Fourier transform of a circularly symmetric function in two dimensions is the so-

called Hankel transform

Ũ(k) =

∫
drU(r)e−ik·r

=

∫ ∞

0

drrU(r)

∫ 2π

0

dθe−ikr cos(θ)

= 2π

∫ ∞

0

drrU(r)J0(kr), (2.4)

where J0 is the zeroth-order Bessel function. From the Fourier transform of a two-
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Figure 2.2: Pair potential with a �nite core and a soft shoulder in real space (a) where
R = 1.7442 and u = 0.457, and in Fourier space (b) where the ratio between the positions
of the two equal-height minima matches 12-fold symmetry (q ' 1.932), in accordance with
Fig. 2.3.

dimensional unit step function

ΘR(r) =





1 0 < r < R

0 R < r < ∞,
(2.5)

that is given by

Θ̃R(k) =
2πRJ1(kR)

k
, (2.6)

we obtain the Fourier transform of the piecewise constant potential de�ned in Eq. (2.3),

which is given by

Ũ(k) = (1− u)Θ̃1(k) + uΘ̃R(k). (2.7)

This Fourier transform is plotted in Fig. 2.2(b) for a particular choice of the parameters

R and u giving two equal-height minima at wave vectors whose ratio q ' 1.932 favors the

formation of 12-fold structures. Note that Ũmin is negative, as it has to be so that the critical

temperature (1.24) is positive. It is also important to note that for the Fourier transform

of a single unit step function, i.e. a single Bessel function (2.6), the �rst two minima
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Figure 2.3: The values of the potential parameters (2.3) u (a) and R (b) for a given value
of the minima ratio q.

are at di�erent heights with a ratio of approximately 2.2626. This does not comply with

the necessary requirements, and so the simple single step core potential cannot stabilize

structures with 12-fold symmetries.

We �nd the minima of the Fourier transformed potential (2.7), by solving the transcen-

dental equation

[J0(k)− J2(k)]
1− u

4πk
+ [J0(kR)− J2(kR)]

R2u

4πk
− J1(k)

1− u

2πk2
− J1(kR)

Ru

2πk2
= 0, (2.8)

obtained by setting dŨ/dk = 0. We solve this equation numerically for a range of values of

the potential parameters u and R (2.3). We impose the requirement that the two minima

be at the same height, and numerically �nd the values of the potential parameters u and

R given any particular value of q�the desired ratio between the positions of the minima.

Since we impose two conditions on the potential, we expect to �nd at most one set of

parameters as a solution, and indeed we do �nd that the ratio q can be selected between

1.3 to 2.1 for a range of the potential parameters, which are plotted in Fig. 2.3.

This demonstrates that even the simplest pair potential with two length scales can be

designed to ful�ll the requirements needed to stabilize structures with various N-fold sym-
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metries, among which is the dodecagonal quasicrystal. However, with two free parameters

there is only one solution for any speci�c ratio between the positions of the two equal-

height minima. This is probably why previous studies of a �nite core and a soft shoulder

potential did not �nd a quasiperiodic pattern [45�47]. More complicated potentials, with

more than two free parameters, may show regions in their parameter space for any desired

ratio between the minima. In the next sections we discuss such potentials.

2.2 Pair potential with a van der Waals attraction and

a long range repulsion

While a simple Piecewise constant potential as presented in Fig. 2.2 is su�cient for suc-

cessfully describing the stability of dodecagonal soft quasicrystals, we wish to examine a

more realistic interaction. Since the two length scales are a crucial demand, the commonly

used Lennard-Jones potential, for example, is not appropriate. It is possible to add more

features to the Lennard-Jones potential (see, for example, [16, 25]), but we do not follow

this route. Instead, we try to incorporate the most essential elements of the experimental

systems [30,33].

We keep the �nite repulsion between overlapping cores of the previous potential (2.3),

and replace the uniform shoulder by a van der Waals attraction between two cores and a

soft repulsion between overlapping coronas. Denoting r again as the distance between the

centers of two micelles, we express this pairwise potential by

U(r) =





1 0 < r < 1

− u1

r−1
+ u2e

−(r−1)/λ 1 < r < ∞,
(2.9)

where the van der Waals term is proportional to 1
r−1

, as appropriate to two spherical
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Figure 2.4: Pair potential with a van der Waals attraction and a long range repulsion,
as described in Eq. (2.9), as a function of the particle separation in real space (a), where
u1 = 2.057, u2 = 1.057 and λ = 0.97561, and in Fourier space (b), where the �rst two
minima ratio q is 1.932.

surfaces in two dimensions separated by a distance much smaller than their radii (r−1 ¿ 1)

[48]. The soft repulsion length-scale is λ, and its strength is controlled by the parameter

u2. Together with the strength of the van der Waals term controlled by u1, these three

independent parameters control the pair potential.

Fig. 2.4 shows the potential (2.9) for the parameters u1 = 2.057, u2 = 1.057 and

λ = 0.97561. In order to compute the Fourier transform of the in�nite van der Waals

attraction, we add ε = 0.01 to the denominator. The ratio between the positions of the

�rst two minima, q ' 1.932, is close to the geometrical value needed to obtain 12-fold

symmetry (1.7). In fact, since this pair potential has three independent parameters, all

the requirements can be satis�ed by a range of parameter values.
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2.3 Piecewise constant pair potential�three boxes

We proceed to discuss a simpli�ed potential that includes all the physical phenomena as

the previous one (2.9). Using a piecewise constant potential

U(r) =





1 0 < r < 1

−u1 1 < r < R1

u2 R1 < r < R2

0 R2 < r < ∞,

(2.10)

we replace the van der Waals interaction with a short range attraction with strength −u1

and width R1 − 1, and replace the exponentially decaying interaction with a uniform

repulsion that extends from R1 to R2 with strength u2, as in Fig. 2.5(a).

Using the Fourier transform of a unit step function (2.6), we write the two-dimensional

Fourier transform as

Ũ(k) =
1 + u1

k
J1 [(1 + R1)k]− u1 + u2

k
J1 [(R1 + R2)k] +

u2

k
J1(R2k). (2.11)

We now have four independent parameters u1, R1, u2 and R2, after having scaled out the

dimensions of energy and length, as before. From our discussion of a potential with a hard

core and a soft shoulder potential in Sec. 2.1 we learn that two independent parameters

give a single solution for any given ratio q. Indeed, for this potential we �nd a solution

within a �nite volume in the four-dimensional parameter space, rather then the previous

point-like solution described in Sec 2.1. An example to such a solution for a speci�c set of

values of the parameters is plotted in Fig. 2.5(b).
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Figure 2.5: Piecewise constant pair potential, as described in Eq. (2.10), as a function
of particle separation in real space (a) where R1 = 1.04569, R2 = 1.6121, u1 = 0.4 and
u2 = 0.48 so that q, the ratio between the positions of the �rst two minima in Fourier space
(b) is approximately 1.932, very close to the value that prefers the formation of 12-fold
symmetry (1.7).
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Chapter 3

Free Energy Numerical Calculations

We test our theoretical predictions by �nding the minimum of the free energy Fisotropic

(1.28) with the pair potentials we discussed. This is done with a numerical solution1 for

the partial di�erential equation that is related to our free energy via

∂tρ = −δFisotropic{ρ}
δρ

, (3.1)

i.e. whose steady-state solution corresponds to minimization of the free-energy functional

Fisotropic{ρ}. Note that this equation does not represent the actual relaxation dynamics

because the total density ρ is a conserved order parameter. We use this equation merely

to �nd the minimum of Fisotropic{ρ}. We calculate the free energy (1.28) by separating the

energy and the entropic terms. We use Ũ(k), the full Fourier transform of the pair potential

(1.14), instead of its expansion to the series {ã2n} (1.22), to evaluate the interaction energy

in Fourier space, while the entropic contribution expressed in powers of the density ρ is

calculated in real space. This numerical calculation starts from a random distribution of

the density for a two-dimensional grid containing 256x256 pixels, with periodic boundary

conditions. We advance it in time according to Eq. (3.1) until we reach a steady state.
1Original code by Michael Cross.
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Because our simulation grid is �nite, we have to set an upper cuto� for k. Since a high

k value in Fourier space refers to a small r value in real space, the value of the Fourier

transform of the pair potential Ũ(k) above the cuto� is relevant only for strongly overlap-

ping particles, which is not the case we discuss. For the potentials described in Chapter 2

the two equal-height minima are the global minimum of Ũ(k), and thus determine the

steady state solution which is not in�uenced by the value of the potential for any other k

values, in particular for high k values for which Ũ(k) goes to zero.

All the potentials discussed in Chapter 2 are simulated, with the same choice of param-

eters previously presented, so that the ratio q between the minima is close to the analytical

value (1.7) favoring 12-fold patterns. The temperature and density are chosen so that a

12-fold pattern has the lowest free energy, according to our analytical predictions (1.32).

The resulting stable patterns, shown in Fig 3.1(c), are the same for all the potentials. It

is easy to recognize the dodecagonal symmetry by the 12 Bragg peaks on two di�erent

circles in Fourier space. These circles are located at the potential's �rst two minima in

Fourier space. When the temperature and density are chosen so that a 6-fold pattern is

stable, we obtain hexagons or compressed hexagons, depending on the initial conditions�

see Fig. 3.1(a,b). Setting any one of the potentials so that the ratio q matches 4-fold and

6-fold symmetries, we obtain the tetragonal and hexagonal patterns shown in Fig. 3.2(a,b).

The sensitivity of the numerical results to the value of the ratio q was tested using the

simple piecewise constant pair potential (2.3). The same steady states were obtain even

when the ratio q is shifted from the analytical value (1.7) by about 1%.
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Figure 3.1: Steady state in real space (left) and Fourier space (right). The ratio q between
the minima is approximately 1.932 to favor 12-fold pattern. The choice of temperature
T and mean density c̄ determines the resulting pattern: (a) hexagonal, (b) compressed
hexagonal, or (c) dodecagonal.
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Figure 3.2: Steady state in real space (left) and Fourier space (right). (a) 6-fold super-
structure of hexagons is obtained for q ' 1.732. (b) q ' 1.414 yields a 4-fold pattern of
squares.
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Conclusions

In this work we described a new theoretical model for the stability of single-component

quasicrystals with isotropic pair-potentials. The model is particularly appropriate for soft-

matter systems where density variations occur over length scales much larger than molecu-

lar dimensions. We obtained the free energy of a single component two-dimensional liquid

characterized by an isotropic pair potential, and the stable symmetries for di�erent values

of the macroscopic and microscopic parameters. We discussed several pair potentials that

meets the model requirements, and tested them via a numerical simulation that con�rmed

the validity of the theoretical predictions.

Our model relates the microscopic description of soft materials, via the parameters

of the pair potential, to the symmetry formed when they crystalized. 4-fold and 6-fold

crystals and 12-fold quasicrystals are predicted, while 8-fold and 10-fold symmetries are

not stable, in agreement with current experimental results. In the future, we intend to

study the stable structures in three dimensions in a similar fashion.

The mean-�eld approximation of the free energy (1.13) is su�cient for this work, while

the derivation presented in the appendix enables one to go beyond mean-�eld theory to

higher order correlations. Comparing this approximation with LP's free energy functional

(1.5), we can discern the roles of energy and entropy in stabilizing the quasiperiodic pattern

within our current description. The pairwise interaction yields two length scales, whereas

entropy provides an e�ective three-body interaction term ρ3. Incorporating actual (rather
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than e�ective) three-body interactions, that may modify this term, is left for a future study.

Previous studies of QCs focused on the interaction potential. The researchers obtained

two length scales in real space by assuming various pair potentials such as a Lennard-Jones

potential with an additional repulsive maximum [16�21] or attractive minimum [25�28],

a hard core potential with a repulsive [23, 24] or attractive shoulder [22], and even more

complicated ones [14, 15]. Indeed, these potentials are similar to the potentials discussed

in Chapter 2, but, motivated by the LP equation, we looked in Fourier space for the two

length scales needed for the description of QCs. We have thus not limited ourselves to any

one certain interaction potential and our results are valid as long as the Fourier transform of

the pair potential meets the conditions described in Chapter 2. This prediction is con�rmed

for three di�erent pair potentials that could straightforwardly be designed to stabilize a

dodecagonal QC.

32



Appendix A

Coarse-Grained Free Energy for a

System of Pairwise Interacting Particles

We show here how one can coarse-grain a partition function for discrete isotropic particles

with pairwise interactions into a free energy functional of a continuous density �eld. The

statistical-mechanical method is standard, and the derivation is general [49]. For our

purposes, the mean-�eld level is satisfactory. However, this systematic derivation enables

one to go beyond the mean-�eld approximation, which may be useful in future studies.

We assume that all the interactions between particles in our system can be described

by a translation-invariant, isotropic, pair potential

U(r, r′) = U(|r− r′|). (A.1)

That is, we assume that interactions between several particles are superpositions of the

interactions between pairs of particles. For N particles the Hamiltonian is given by

H(N) =
1

2

∑

i 6=j

U(|ri − rj|), (A.2)
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where we do not sum over self-interactions. The microscopic density is de�ned as the sum

of delta functions representing the positions of the particles

c(r) =
N∑

i=1

δ(r− ri). (A.3)

Then, we can rewrite the Hamiltonian of N particles from Eq. (A.2) as an integral over

the entire volume V

H(N) =
1

2

∫
drdr′c(r)U(|r− r′|)c(r′)− 1

2
NU(0), (A.4)

where we exclude the self-interactions explicitly.

In the canonical ensemble, the partition function of a monatomic �uid is given by

ZC(N, V, T ) =
1

N !ΛdN

∫ N∏
i=1

dri exp(−βH(N)), (A.5)

where β = 1/kBT is the inverse temperature, Λ = h/
√

2πmkBT is the thermal de-Broglie

wavelength, and d is the dimensionality (here d = 2). We can insert the explicit form of

the Hamiltonian of N particles, Eq. (A.4),

ZC(N, V, T ) =
1

N !ΛdN

∫ N∏
i=1

dri exp

[
−β

2

∫
drdr′c(r)U(|r− r′|)c(r′) +

β

2
NU(0)

]
,

(A.6)

and separate the self-interaction term

ZC(N, V, T ) =
1

N !ΛdN
exp

(
βU(0)

2
N

) ∫ N∏
i=1

dri exp

[
−β

2

∫
drdr′c(r)U(|r− r′|)c(r′)

]

=
ZN

0

N !

∫ N∏
i=1

drie
−βH , (A.7)
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where we denote Z0 = eβU(0)/2/Λd, and

H =
1

2

∫
drdr′c(r)U(|r− r′|)c(r′), (A.8)

is the pairwise-interaction Hamiltonian of the continuous density.

Using the chemical potential µ, we write the partition function in the grand canonical

ensemble

ZGC(µ, V, T ) =
∞∑

N=0

eβµNZC(N, V, T ) =
∞∑

N=0

ZN
0 ζN

N !

∫ N∏
i=1

dri exp(−βH), (A.9)

where ζ = eβµ is the fugacity. We substitute the density (A.3) into the Hamiltonian (A.8)

by making use of a delta function in the expression (A.9) of ZGC and obtain a functional

integration over the density,

ZGC =
∞∑

N=0

ZN
0 ζN

N !

∫
Dc(r)

∫ N∏
i=1

driδ

(
c(r)−

N∑
j=1

δ(r− rj)

)
exp(−βH). (A.10)

We represent the delta function using a �eld ψ(r) conjugate to the density

δ

(
c(r)−

N∑
j=1

δ(r− rj)

)
=

∫
Dψ(r) exp

[
i

∫
drψ(r)

(
c(r)−

N∑
j=1

δ(r− rj)

)]
, (A.11)
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and substitute this representation into the partition function (A.10)

ZGC =
∞∑

N=0

ZN
0 ζN

N !

∫
Dc(r)Dψ(r)

∫ N∏
i=1

dri exp

[
−βH + i

∫
drψ(r)

(
c(r)−

N∑
j=1

δ(r− rj)

)]

=

∫
Dc(r)Dψ(r) exp

[
−βH + i

∫
drψ(r)c(r)

]

∞∑
N=0

ZN
0 ζN

N !

∫ N∏
i=1

dri exp

[
−i

N∑
j=1

ψ(rj)

]
. (A.12)

We notice that the last term is the product of N identical integrals, and so we have

ZGC =

∫
Dc(r)Dψ(r) exp

[
−βH + i

∫
drψ(r)c(r)

] ∞∑
N=0

ZN
0 ζN

N !

(∫
dre−iψ(r)

)N

. (A.13)

We identify the formal representation of the exponent function

ex =
∞∑

N=0

xN

N !
, (A.14)

and obtain the partition function

ZGC =

∫
Dc(r)Dψ(r) exp

[
−βH + i

∫
drψ(r)c(r) + Z0ζ

∫
dre−iψ(r)

]
. (A.15)

This partition function is exactly equal to the one we started with, Eq. (A.9), yet now it is

expressed in terms of the continuous �elds c(r) and ψ(r), rather than the discrete particle

positions rj.

We perform the integration over ψ

Iψ =

∫
Dψ(r) exp

[∫
dr

(
iψ(r)c(r) + Z0ζe−iψ(r))

]
, (A.16)
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using a saddle point approximation. That is, we replace the integrand f(ψ) = iψc+Z0ζe−iψ

with its extremal value. The �eld ψ̄ that gives an extremum for the integrand is given by

∂f(ψ)

∂ψ
= 0 ⇒ ψ̄ = i ln

c

Z0ζ
. (A.17)

So the extremal value of the integrand f(ψ) is

f(ψ̄) = c− c ln
c

Z0ζ
. (A.18)

Note that this formalism can be extended to higher order approximations, but for our

purposes we need only the �rst order that can be shown to be equivalent to a mean-�eld

approximation. Within this saddle-point approximation we thus obtain

Iψ = exp

[∫
dr

(
c(r)− c(r) ln

c(r)
Z0ζ

)]
. (A.19)

Substituting Iψ into the partition function (A.15), we obtain

ZGC '
∫
Dc(r) exp

[
−βH +

∫
dr

(
c(r)− c(r) ln

c(r)
Z0ζ

)]
. (A.20)

Upon substitution of the expression for the Hamiltonian (A.8), we obtain the main result

of the Appendix�the free energy of a system described by pairwise interactions

F =
1

2

∫
drdr′c(r)U(|r− r′|)c(r′) + kBT

∫
dr

(
c(r) ln

c(r)
Z0ζ

− c(r)
)

. (A.21)

Note that Eq. (A.21) is the familiar mean-�eld free energy, containing ideal entropy and

pair interactions, and could have been written down at the outset. The advantage of the

rigorous formulation presented here is that it provides this familiar result as the leading

order in a systematic expansion, which can be improved further if needed.
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