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Sound-mediated dynamic correlations between

colloidal particles in a quasi-one-dimensional channel

D Frydel and H Diamant

Raymond and Beverly Sackler School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel

E-mail: hdiamant@tau.ac.il

Abstract. We study the hydrodynamic interactions between colloids suspended in a
compressible fluid inside a rigid channel. Using lattice–Boltzmann simulations and a simplified
hydrodynamic theory, we find that the diffusive dynamics of density perturbations (sound) in the
confined fluid give rise to particle correlations of exceptionally long spatial range and algebraic
temporal decay. We examine the effect of these sound-mediated correlations on two-particle
dynamics and on the collective dynamics of a quasi-one-dimensional suspension.

1. Introduction

Particles embedded in an unbounded fluid are dynamically correlated by hydrodynamic
interactions that decay like 1/r (where r denotes the separation between particles) [1]. This
result is understood in terms of the fundamental solution to the steady-state Stokes equation,
η∇2u = ∇p−bδ(r), supplemented by the fluid-incompressibility condition ∇ ·u = 0. Here u is
the flow velocity field, p the pressure field, b a point force, and η the shear viscosity. It follows
from the first equation that the vorticity, ∇×u, satisfies the Laplace equation, leading in the case
of an unbounded fluid to the 1/r slow decay of the velocity field. When particles are confined to
a quasi-one-dimensional (q1D) channel, however, these long-range dynamic correlations are cut
off [2], the screening being attributed to dissipation at the fluid-solid interface, i.e., to the loss
of fluid momentum at the channel boundaries. The resulting screening length is comparable to
the channel width.

The dissipative effect of the boundaries can be incorporated through an additional friction
term in an “effective fluid” model [3, 4], η∇2u = ρ0ξu + ∇p − bδ(r). In the extra term ρ0

is the fluid mass density and ξ an effective friction coefficient. The parameter ξ has units
of inverse time and characterizes the rate of momentum loss to the boundaries. It can be
estimated, therefore, as the inverse of the time it takes fluid momentum to diffuse to the channel
boundary, ξ ∼ ν/h2, ν = η/ρ0 being the kinematic shear viscosity and h the channel width. This
simplified, phenomenological approach has been shown by simulations [5, 6, 7, 8] and analytical
calculations [9] to correctly reproduce the qualitative behavior of confined fluids. The modified
Stokes equation leads to a Helmholtz equation for the vorticity, whose regular solutions are
exponentially screened functions. Yet, the friction that suppresses the vorticity (transverse fluid
stress) does not similarly suppress the pressure field (longitudinal fluid stress) emanating from
a locally applied force. Consequently, the application of a localized force generates a long-range
pressure distribution, which may give rise to long-range flows and forces on embedded particles.
For example, in a q2D suspension confined between two plates, the pressure distribution creates
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hydrodynamic interactions that decay like 1/r2, while the 1/r correlations due to transverse
momentum transfer are cut off [10]. Thus, although the hydrodynamic interactions in the q2D
system remain long-ranged, the very mechanism for correlations changes [11]. In the case of a
q1D channel, the pressure generated by a localized force far along the channel is constant and,
therefore, does not produce long-range forces. Thus, within the Stokes description of a steady
incompressible flow, in a q1D rigid channel long-range hydrodynamic interactions arise neither
from transverse stresses nor from longitudinal ones, and the correlation between particles is
screened, the screening length being proportional to the channel width [2].

The omission of compressibility, and with it of compression (longitudinal sound) modes, is
usually justified for unbounded fluids, where the effects of sound are short-lived. The short
propagation time to any reasonable distance r, τs ∼ r/cs, is a result of the large speed of
sound, cs ∼ 103 m/s for ordinary liquids such as water. The effect of sound on the short-time
hydrodynamic interactions in unconfined suspensions was addressed in earlier works [12, 13, 14].
The corresponding effects are subtle and short-lived, quickly taken over by the fully established
hydrodynamic interaction due to transverse flow.

In confined geometries, however, the behavior of sound modes qualitatively changes. Inclusion
of fluid compressibility has been found to lead to a velocity autocorrelation function of a confined
particle, which decays with time only algebraically, with a negative long-time tail [5, 6, 7, 15].
[In the case of a q1D channel the decay is ∼ (−t−3/2).] Thus, under confinement, sound
acquires long-time memory without a well-defined relaxation time, and the incompressibility
assumption loses, at least in principle, its justification. Informed by this result, one suspects
that the long memory of sound modes may play a role in the dynamic correlations between
different particles in a channel: since sound may propagate to long distances, the resulting
correlations will be long-ranged, and the algebraic temporal decay will endow these interactions
with a long-time memory. This novel mechanism for correlations challenges the conventional
wisdom described above, according to which fluid-mediated correlations in a rigid channel are
exponentially screened. The question that comes to mind is whether the long-time memory
of sound is sufficiently significant to be observed experimentally and to undermine predictions
of the theories based on the assumption of incompressibility. We remind that the algebraic
temporal decay of sound modes in a channel does not imply that sound is capable of causing
steady rearrangement of the fluid. The integrated effect of the t−3/2 tail decays as t−1/2, which
is very slow, but still implies that at infinite time (the steady-state limit) all perturbations due
to sound eventually vanish.

In a recent Letter [16] we have demonstrated that the heuristic arguments given above are
correct —namely, the diffusive, slowed-down sound modes of a fluid confined in a rigid channel
mediate long-range and long-time velocity correlations between suspended particles. In the
present publication we report detailed findings concerning the compressive response of the fluid
and its effect on particles, which were not included in that brief publication. Two tools are
employed and compared: simplified analytical calculations and lattice–Boltzmann simulations.
We assume no-slip boundary conditions at the fluid-particle interface and consider either slip
or no-slip boundary conditions at the channel boundaries. Fluid dynamics in a q1D channel
strongly depends on the boundary conditions imposed at the edges of the channel [17]. In the
calculations we assume an infinitely long channel with a vanishing flow velocity at the edges. In
the simulation we take a sufficiently long channel, such that all the temporal results presented
below are insensitive to the system size. Further details of the simulations can be found in
Ref. [16].
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2. Dynamics of fluid density perturbations

2.1. Unbounded fluid

We begin by revisiting the compressive response of an unbounded Newtonian fluid to an
impulsive force [18], to which we will later compare the case of a fluid confined in a channel
[15, 19].

Isothermal fluid dynamics [20] is governed by the momentum-conservation Navier–Stokes
equation,

ρ
[

∂tu + (u · ∇)u
]

= −∇p + η∇2u + (ηv + η/3)∇(∇ · u) + f , (1)

and the mass-conservation equation,

∂tρ + ∇ · (ρu) = g. (2)

In these equations ρ is the fluid density field, f an external force density, and η and ηv are
the shear and volume viscosities, respectively. The function g could represent, for example, a
mass monopole, mδ(r − r0), where at the point r0 fluid is generated or lost, or a mass dipole,
−d ·∇δ(r− r0), where fluid is at the same time created and lost, thus globally conserving mass
but generating a flow.

The hydrodynamic equations are linearized by neglecting the convective term, (u · ∇)u,
and separating the thermodynamic variables into equilibrium and small perturbation parts,
ρ(r, t) = ρ0 + δρ(r, t) and p(r, t) ≃ p0 + (∂p/∂ρ)δρ = p0 + c2

sδρ(r, t). The resulting linearized
equations read

ρ0∂tu = −c2
s∇δρ + η∇2u + (ηv + η/3)∇(∇ · u) + f , (3)

∂tδρ + ρ0∇ · u = g. (4)

When dealing with sound, it is convenient to decompose the linearized equations into
transverse and longitudinal components (the so called Helmholtz decomposition), u = uT + uL,
which satisfy ∇ · uT = 0 and ∇ × uL = 0. The decomposition yields

ρ0∂tu
T = η∇2uT + fT , (5)

and

ρ0∂tu
L = −c2

s∇δρ + (ηv + 4η/3)∇2uL + fL, (6a)

∂tδρ + ρ0∇ · uL = g, (6b)

where we have used the identity ∇(∇ ·u) = ∇2uL. After separating the force-density field into
transverse and longitudinal components, f = fT + fL, the two flows become independent. The
sound is associated with the longitudinal flow, which is coupled dynamically to the density — i.e.,
the sound modes characterize the propagation and relaxation of a density perturbation.

The time evolution of a density perturbation is obtained by taking the divergence of Eq. (6a)
and then transforming it using the mass-conservation equation, Eq. (6b),

∂2
t δρ = c2

s∇2δρ + 2Γ∇2∂tδρ − b · ∇δ(r)δ(t). (7)

In Eq. (7) Γ = 1
2

ηv+4/3η
ρ0

, and we have set g = 0 and the force density to an impulsive point force,

f = bδ(r)δ(t). Note that the application of the impulsive point force generates a momentary
mass dipole in the equation for the density, −(bδ(t)) ·∇δ(r). Equation (7) represents a damped
wave equation with a damping parameter Γ. If Γ = 0, we retrieve a wave equation for δρ,
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and if cs = 0, we obtain a diffusion equation for ∂tδρ. Upon Fourier-transforming the spatial
coordinates, Eq. (7) becomes

∂2
t δρk + (2Γk2)∂tδρk + (c2

sk
2)δρk = −ik · bδ(t),

whose solution reads

δρk(t) =
−ik · be−Γk2t

√

c2
sk

2 − Γ2k4
sin
(

t
√

c2
sk

2 − Γ2k4
)

. (8)

If c2
s −Γ2k2 > 0, the density perturbation propagates as a decaying wave. If, on the other hand,

c2
s − Γ2k2 < 0, the sine becomes a hyperbolic sine, and the density perturbation propagates

diffusively. The crossover between these two behaviors occurs above a wavelength ∼ Γ/cs.
For water Γ/cs ≈ 1 nm, while a typical colloid diameter is σ ≈ 103 nm. Therefore, particle
correlations arising from sound are mediated by essentially underdamped wave-like modes. In
this large-wavelength limit, k−1 ≫ Γ/cs, Eq. (8) further simplifies to

δρk(t) ≈
−ik · be−Γk2t

csk
sin(cskt). (9)

Figure 1 shows a snapshot of the density perturbation, generated a certain given time after
the application of an impulsive force inside an unbounded fluid. We compare the result of a
lattice–Boltzmann simulation, where the force is applied to a rigid spherical particle, with Eq. (8)
for a point force. The analytical calculation reproduces all the features of the simulation, with
a quantitative discrepancy that can be ascribed to the finite particle size in the simulation.

-4 -2 0 2 4
x /h

-2e-05

0

2e-05

δρ
(x

,t)
 / 

b

simulation
theory

t = 0.074τΓ

Figure 1. Snapshot of the density perturbation generated by an impulsive force in an
unbounded fluid. The force is applied at the origin in the positive x direction. Lattice–Boltzmann
simulation result (where the force is applied to a rigid sphere of diameter σ) is compared with
the analytical one for a point force [Fourier-inverted Eq. (8)]. The snapshot is taken 0.074τΓ

after the impulse, where τΓ = h2/Γ and h = 1.5σ.

2.2. Channel with slip boundary conditions

For a fluid confined in a channel with slip boundary conditions, we neglect variations of the
density over the channel cross-section and consider only the direction along the channel, x.
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Equation (7) is then rewritten as

∂2
t δρ = c2

sδρ
′′ + 2Γδ∂tρ

′′ − b

h2
δ′(x)δ(t),

where a prime indicates differentiation with respect to x, and an impulse is evenly distributed
over the cross–sectional area of a square channel of side h. In the long wavelength limit the
solution takes the form,

δρ ≈ b

2csh2

(

e−(x−cst)2/(4Γt)

√
4πΓt

− e−(x+cst)2/(4Γt)

√
4πΓt

)

. (10)

There are two signals propagating with the speed of sound in opposite directions. In addition,
each signal spreads out diffusively with diffusion coefficient Γ. Figure 2 shows density
perturbation snapshots generated by an impulse applied at the center and along a square channel
with slip boundary conditions. Lattice–Boltzmann simulation results, where the impulse is
applied to a spherical particle, agree well with Eq. (10).

-20 0 20
x /h

-0.0002

-0.0001

0

0.0001

0.0002

δρ
 / 

b

simulation
theory

t=0.15τΓ

t=0.30τΓ

t=0.44τΓ

Figure 2. Three snapshots of a density perturbation for a fluid in a square channel with slip
boundary conditions. An impulsive force is applied along the channel axis in the positive x
direction. Lattice–Boltzmann simulation results (where the force is applied to a rigid sphere of
diameter σ) are compared with the analytical ones for a force distributed uniformly over the
square cross-section of side h = 1.5σ [Eq. (10)]. The time unit is τΓ = h2/Γ.

2.3. Channel with no-slip boundary conditions

To account for no-slip boundary conditions at the channel walls, we introduce an effective friction
term, (−ρ0ξu

L), to the right-hand side of Eq. (6a). This leads to an extra term, (−ξ∂tδρ), in
Eq. (7). Thus, neglecting again density variations transverse to the channel axis, we have the
effective 1D equation,

∂2
t δρ = c2

sδρ
′′ + 2Γ∂tδρ

′′ − ξ∂tδρ − b

h2
δ′(x)δ(t).

For the friction coefficient (rate of momentum loss to the walls) we take ξ = αν/h2, where
ν = η/ρ0 is the kinematic shear viscosity, and α a geometrical prefactor, dependent on the
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shape of the channel cross-section. (The value of α can be determined from the resistance of the
channel to a steady pressure-driven flow, e.g., α ≃ 28.454 for a square cross-section and α = 36
for a circular one [1, 9].)

In Fourier space the solution reads

δρk(t) =
b

h2

(−ik)e−(Γk2+αν/2h2)t

√

c2
sk

2 − (Γk2 + αν/2h2)2
sin
(

t
√

c2
sk

2 − (Γk2 + αν/2h2)2
)

. (11)

The corresponding signal propagates with underdamped oscillations only for a narrow range of
small wavelengths, satisfying

cs

2Γ

(

1 −
√

1 − 2Γ

Ds

)

< k <
cs

2Γ

(

1 +

√

1 − 2Γ

Ds

)

, (12)

where Ds = c2
sh

2/(αν) is the sound diffusion coefficient. Hence, the friction at the walls
transforms the large-scale dynamics from oscillating to diffusive. In the large-wavelength limit
Eq. (11) reduces to

δρk(t) ≈
( b

αν

)

(−ik)e−Dsk2t, (13)

which in real space reads,

δρ ≈ b

αν

2√
π

xe−x2/4Dst

(4Dst)3/2
. (14)

Thus, at large distances the density perturbation evolves as a diffusive dipolar signal.
Figure 3 shows snapshots of the density perturbation propagating in a square channel with

no-slip boundary conditions. The wave-like propagation quickly disappears and the perturbation
continues to evolve diffusively. Once again, the simplified 1D theory is found to qualitatively
reproduce all the features seen in the lattice–Boltzmann simulation [21].

-10 0 10
x /h

-4e-05

-2e-05

0

2e-05

4e-05

δρ
(x

,t)
 / 

b

simulation
theory

t=0.15τΓ

t=0.30τΓ

Figure 3. Two snapshots of a density perturbation for a fluid in a square channel with no-slip
boundary conditions. An impulsive force is applied along the channel axis in the positive x
direction. Lattice–Boltzmann simulation results (where the force is applied to a rigid sphere of
diameter σ) are compared with the analytical ones for a force distributed uniformly over the
square cross-section of side h = 1.5σ (Fourier-inverted Eq. (11), multiplied by a factor of 2 [21]).
The time unit is τΓ = h2/Γ.
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3. Velocity cross-correlation function

Section 2 has been concerned with the dynamics of density perturbations in a viscous fluid. We
now proceed to examine the effect of this dynamic response on particles suspended in the fluid.

Hydrodynamics represents the fluid as a continuous medium. Its discrete structure is revealed
when a large particle immersed in the fluid undergoes Brownian motion due to large number of
collisions with the much smaller fluid particles. Fluid particles impart momentum to the large
particle, and the particle, in its turn, returns momentum to the fluid by setting off large-scale
fluid flows. These flows lead to fluid-mediated correlations between the large particles. The flows
can be decomposed, according to Eqs. (5) and (6), into transverse and longitudinal components.
The present work is concerned with correlations caused by density perturbations, and so we
focus on the role of longitudinal flows. As noted in Sec. 1, transverse flows in a rigid channel
are screened at distances larger than the channel width and do not contribute to long-range
correlations.

To visualize these flow-mediated correlations, we show in Fig. 4 velocity cross-correlation
functions between two isolated particles, as obtained from lattice–Boltzmann simulations for
three different systems: an unbounded fluid, a fluid in a square channel with slip boundary
conditions, and a fluid in a square channel with no-slip boundary conditions. The cross-
correlation function,

C(t, d) =
〈

V1(0)V2(t)
〉

d
,

measures ensemble-averaged correlations between the velocities of two particles, V1 and V2,
separated by a distance d. In all three cases we take the two velocities to be oriented along
the line that connects the centers of the two particles. To avoid the time-consuming fluctuating
simulations and averaging procedure, we employ instead a deterministic measurement of C(t, d)
based on the linear response of the two-particle system. The equivalence of the two measurements
is guaranteed by the fluctuation-dissipation theorem [22]. The procedure goes as follows. For
t < 0 both particles are at rest, V1(t) = V2(t) = 0. At t = 0 we apply an instantaneous force to
particle 1 by assigning it a finite initial velocity, V1(t = 0) = V0. As time evolves, V2(t) responds
to the perturbation set off by particle 1. The velocity cross-correlation function is then obtained
as

C(t, d)

kBT
=

1

M

V2(t)

V1(0)
,

where M is the particle mass and kBT the thermal energy.
In Fig. 4 we see that in all three systems there is a finite incipient time required for the signal

to reach particle 2. This time is roughly d/cs. The leading signal in the channels is larger than
that in the unbounded fluid, because the perturbation is guided along the channel rather than
spreading in 3D. At larger inter-particle distances, however, that signal is suppressed in the case
of a rigid channel with no-slip boundary conditions because of the diffusive nature of sound.
(See Fig. 5.)

The correlations at long times are very different for the three systems. In the unbounded
case the correlation is governed by a positive algebraic tail, ∼ t−3/2. This is a manifestation of
the well known long-time tails arising from the 3D diffusion of vorticity (monopolar transverse
flow) [22]. In the rigid (no-slip) channel correlations due to transverse flows are screened, and
the long-time correlation is governed by a negative algebraic tail, ∼ (−t−3/2). This is a result
of the 1D diffusion of sound (dipolar longitudinal flow) presented in Sec. 2. By contrast, in the
case of a channel with slip boundary conditions, the longitudinal signal propagates acoustically,
making the correlation vanish exponentially fast once the signal has passed particle 2.

We next focus on the sound-mediated correlations in a rigid channel with no-slip boundary
conditions. Figure 5 shows C(t, d) for different separations d. The structure is similar for the
different separations. There is the incipient time required for the leading signal to reach the other
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0.04

0.06

0.08

C
(t

) 
/ (

k B
T

/M
)

3D
q1D slip
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Figure 4. Velocity cross-correlation functions for two particles, as obtained from lattice–
Boltzmann simulations of three systems: an unbounded fluid, a fluid in a square channel (side h)
with slip boundary conditions, and a fluid in a square channel with no-slip boundary conditions.
The particles have diameter σ and mass M and they are separated by a distance d = 2σ = 1.33h.
The time unit is τΓ = h2/Γ.

particle. This signal is suppressed with increased separation because of sound diffusion. It is
followed by a long-time negative algebraic tail, whose magnitude does not show any dependence
on separation. On the one hand, this indicates a correlation of unrestricted spatial range. On the
other hand, the backflow associated with the negative tail causes the particle to return almost
exactly to its initial position; the time-integrated correlation (which is equal to the coupling
diffusion coefficient of the particle pair) decays exponentially with d/h. This is how the two
phenomena— long-range temporal correlations and short-range steady-state correlations —are
reconciled.

To quantitatively account for the long-time algebraic behavior of the correlations we need to
relate the diffusive density perturbation, given by Eq. (14), to the flow velocity. This can be
done either via the continuity equation, ∂tδρ = −ρ0∂xu, or by applying Fick’s law to the sound
diffusion, ρ0u = −Ds∂xδρ. Both methods yield the same long-time flow velocity,

u(x, t) = − b

4cshρ0
√

παν

(

1

t

)3/2

.

Equating it with the velocity advecting particle 2 and applying the fluctuation-dissipation
theorem, as explained above, we obtain the long-time velocity cross-correlation function [23],

C(t, d) = − kBT

4cshρ0
√

παν

(

1

t

)3/2

, (15)

which has no dependence on the inter-particle separation d. The negative sign of the long-time
tail is traced back to the dipolar shape of the diffusive density perturbation, Eq. (14).

4. Collective dynamics

Finally, we study the effect of sound on the collective dynamics of many particles. The discussion
in this section is restricted to the q1D geometry of a rigid channel with no-slip boundary
conditions.
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Figure 5. Velocity cross-correlation functions for two particles in a rigid channel (no-slip
boundary conditions), as obtained from lattice–Boltzmann simulations. The particles, situated
on the channel axis, have diameter σ and mass M . The channel has a square cross-section of
side h = 1.5σ. Correlations are shown for three different inter-particle separations. The time
unit is τΓ = h2/Γ. The inset shows the absolute value of the correlations on a logarithmic scale,
demonstrating the (−3/2) power law at long times, with a distance-independent amplitude.

We consider the wavenumber-dependent particle current correlation function [22],

J(k, t) =
1

N

N
∑

i,j

〈

Vi(0)Vj(t)e
ik(xi(0)−xj(t))

〉

, (16)

where N is the number of particles and i, j are particle labels. Self-contributions to the sum,
with i = j, are related to the velocity autocorrelation function of single particles, 〈V (0)V (t)〉.
As our interest here lies solely in cross-correlations, we subtract this contribution and consider
Jc(k, t) = J(k, t) − 〈V (0)V (t)〉.

To obtain Jc from lattice–Boltzmann simulations we assume time-scale separation between
the relaxation of the fluid and that of particle configurations. We generate configurations
XN of N particles using a Monte Carlo scheme. For each configuration we assign to each
particle an initial velocity from a Maxwell–Boltzmann distribution and then follow the time
evolution of every particle in a lattice–Boltzmann simulation. This allows us to calculate,
for each configuration, the velocity cross-correlation functions between all pairs of particles,
〈Vi(0)Vj(t)〉{XN}, as described in Sec. 3. The assumption of time-scale separation simplifies the
expression for Jc to

Jc(k, t) =
φ

σ

∫ ∞

−∞

dx g(x)eikx
〈

V1(0)V2(t)
〉

fast
{x},

where g(x) is the equilibrium pair correlation function of the particles, and φ = Nσ/L (L
being the channel length) is their linear fraction. The angular brackets 〈. . . 〉fast denote a
double averaging procedure: first, for a given configuration, an average is taken over time
that is sufficiently long for the fluid to relax but sufficiently short for the configuration to be
considered “frozen”; then another averaging is performed over many particle configurations with
the constraint x1 − x2 = x.

In Fig. 6 we plot the time evolution of Jc(k, t), thus obtained from the lattice–Boltzmann
simulations, for various wavenumbers k. As t → 0, Jc vanishes, as the inter-particle correlations
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in the compressible fluid require a finite time to develop. The presence of oscillations for
small wavelengths, comparable to the particle size and channel width, reflects the wave-
like propagation of sound over these small length scales. The oscillations vanish at longer
wavelenghs, indicating the onset of diffusive sound propagation. At long times, the particle
current correlation Jc decays algebraically as t−3/2.

0 0.2 0.4 0.6 0.8 1
t /τΓ

0

0.2

0.4

0.6

J c
(k

,t)
 / 

(k
B
T

/M
)

kσ=0.038

kσ=0.30

kσ=0.60

kσ=1.02

kσ=2.00

Figure 6. Particle current correlation functions obtained from lattice–Boltzmann simulations
for a suspension of particles (diameter σ, linear fraction φ = 0.72) in a square channel (side
h = 1.5σ). The different curves, corresponding to different wavenumber k, are shifted vertically
by 0.15 from each other, for clarity. The time unit is τΓ = h2/Γ.

To further clarify the results of Fig. 6 we resort to a simple model, where g(x) is replaced by
its dilute limit: g(x) = 0 for |x| < σ, and g(x) = 1 for |x| > σ. For the velocity cross-correlation
function 〈V1(0)V2(t)〉fast{x} we use the 1D description of Sec. 3. From Eq. (11) and the continuity
equation, ∂tδρk = −ikρ0uk, we obtain the flow velocity uk. The fluctuation-dissipation theorem
is then used to relate the flow to the velocity cross-correlations. This model yields

Jc(k, t)

kBT
=

φ

bσ

[

uk(t) −
∫ σ

−σ
dx e−ikxu(x, t)

]

. (17)

The qualitative change in Jc as its oscillations vanish at long wavelengths is reproduced by the
first term. The onset of the overdamped diffusive regime for small wavenumbers, lying outside
the range delineated in Eq. (12), should occur for the parameters used in the simulation at
kσ < 0.18, which is in line with Fig. 6. The second term in Eq. (17) supplies the function Jc

with the algebraic decay ∼ t−3/2, which at long wavelength is positive.
Another function that characterizes the collective dynamics of particles is the dynamic

structure factor [22, 24],

S(k, t) =
1

N

N
∑

i,j

〈

eik(xi(0)−xj(t))
〉

. (18)

At times much shorter than the configurational relaxation time it decays exponentially with
time and can be written as

S(k, t) = S0(k)e−tk2H(k)/S0(k),
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where S0(k) = S(k, t = 0) is the static structure factor. The hydrodynamic factor H(k) accounts
for the effect of fluid-mediated correlations on the dynamic structure and is given by [24]

H(k) = Dself +
1

N

N
∑

i6=j

〈

Dij{XN} eik(xi−xj)

〉

,

where Dij{XN} are the configuration-dependent pair diffusion coefficients, and Dself = 〈Dii〉
is the self-diffusion coefficient. Note that H(k) depends only on steady-state properties of the
fluid and, hence, is unaffected by sound.

Recalling the Green–Kubo relation [22],

Dij(x) =

∫ ∞

0
dt
〈

Vi(0)Vj(t)
〉

{x},

and assuming time-scale separation, we relate H(k) to the current correlation function,

H(k) =

∫ ∞

0
dtJ(k, t).

To examine the effect of sound we therefore use the functions

Ĥ(k, t) =

∫ t

0
dt′ J(k, t′), Ĥc(k, t) =

∫ t

0
dt′ Jc(k, t′),

such that in the limit t → ∞ Ĥ(k, t) reduces to H(k), and Ĥc(k, t) to H(k)−Dself [25]. Figure 7

shows the dependence of Ĥ(k, t) on k at various times. As t increases, Ĥ(k, t) converges to its
limiting form, H(k), and eventually all sound effects vanish. However, at any finite time there
appears a feature that is absent in unbounded suspensions—a sharp peak at k → 0.

0 2 4 6
kσ

0.15

0.2

0.25

^ H
(k

,t)
 / 

D
0

t=0.74τΓ
t=1.48τΓ
t=2.22τΓ
t=2.96τΓ

top to bottom:

Figure 7. Temporal hydrodynamic factor as a function of wavenumber at various times. The
system is the same as in Fig. 6.

To see that the small k feature is due to long-range sound-mediated correlations, we return
to the simplified 1D description. Using Eq. (17) and the continuity equation, ∂tδρk = −ikρ0uk,
we obtain

Ĥc(k, t)

kBT
=

φ

bσρ0

[

δρk(t)

(−ik)
− 1

π

∫ ∞

−∞

dk′ sin(σ(k′ − k))

k′ − k

δρk′(t)

(−ik′)

]

, (19)
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where δρk is given by Eq. (11) [or by Eq. (13) for small k]. At t → ∞ this expression vanishes,
indicating that within the simplified 1D description all steady correlations between particles
confined in the channel disappear, and H(k) = Dself . However, at any finite t, we have a range
of small wavenumbers, k2 < (Dst)

−1, for which Eq. (19) reduces to

Ĥc(k, t)

D0
≈ 3πφ

α

(

e−Dsk2t − σ√
πDst

)

, (20)

where D0 = kBT/(3πησ) is the Stokes-Einstein self-diffusion coefficient in an unbounded
fluid. Equation (20) contains two interesting terms originating from sound diffusion. The first
contributes at k → 0 a time-independent constant. The second adds a k-independent negative
long-time algebraic tail, ∼ (−t−1/2), which derives from the time-integrated t−3/2 tail of the
current correlation function Jc(k, t).

In Fig. 8 we replot the function Ĥ(k, t), focusing on the small k region, and compare it with

the fit Ĥ(k,t)
D0

= 6πφ
α e−Dsk2t [21]. The agreement between theory and simulation is satisfactory,

both exhibiting the small-k peak.

0 0.05 0.1 0.15 0.2 0.25
kσ

0.2

0.3

0.4

0.5

0.6

^ H
(k

,t)
 / 

D
0

t=0.74τΓ
t=1.48τΓ
t=2.22τΓ
t=2.96τΓ

Figure 8. Temporal hydrodynamic factor for small wavenumber at various times. The system
is the same as in Fig. 6. Data points represent lattice–Boltzmann simulation results. Solid lines

show the expression Ĥ(k,t)
D0

= 6πφ
α e−Dsk2t.

5. Conclusion

In the present work we have tried to establish the role of fluid density perturbations (sound)
in mediating dynamic correlations among particles in a channel at the pair and the collective
levels. We have been motivated in this investigation by two considerations: (i) the hydrodynamic
effects that are not associated with sound (due to momentum and steady pressure) are screened
in a rigid channel and have no bearing on long-range particle correlations; (ii) the density
perturbations in a channel do not decay within a well defined relaxation time (as in an unbounded
fluid) but rather relax algebraically, thus giving sound a long memory.

The effects of sound on particle correlations in a rigid channel have been found to be quite
striking. At the two-particle level, the velocity cross-correlation function is independent of
inter-particle distance (i.e., unrestricted in its range) and has a long-time negative algebraic tail
∼ (−t−3/2) (similar to the single-particle autocorrelation function [5, 6, 7]). At the collective
level of a large particle assembly (q1D suspension), the particle current correlation function has
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a similar long-time algebraic tail. We have characterized the collective correlations by a time-
dependent hydrodynamic factor, Ĥc(k, t), which converges to the ordinary hydrodynamic factor
at infinite time [25]. The sound-mediated correlations in the channel make this function exhibit
an anomalous peak at small wavenumbers and a long-time algebraic temporal decay ∼ (−t−1/2).
Thus, in summary, the common picture of negligible, exponentially screened hydrodynamic
interactions among particles in a rigid channel is somewhat misleading; strictly speaking, it
applies only at steady state.

At the same time, the predicted sound-mediated correlations are weak and may be measurable
only over sufficiently short times. The correlation is inversely proportional to the speed of sound
[see, e.g., Eq. (15)], which makes its amplitude small, and the sound diffusion is fast— for
water in a micron-wide channel, Ds = c2

sh
2/(αν) ∼ 0.1 m2/s. For example, let us examine the

correlation between the observable Brownian displacements of two distant particles along the
channel, as characterized by their pair diffusivity,

D12(t) ≡
〈∆x1∆x2〉

2t
=

1

t

∫ t

0
dt′
∫ t′

0
dt′′C(t′′, d) =

kBT

cshρ0
√

παν
t−1/2. (21)

For a micron-wide channel filled with water, according to Eq. (21), measuring D12 of order
10−3 µm2/s would require a temporal resolution of order 10−7 s. Thus, the predicted sound-
mediated effects might be observable using experimental techniques of high temporal and spatial
resolution, such as diffusive wave spectroscopy [12] or fast optical tracking [14, 26]. The fact that
D12 is independent of inter-particle distance may greatly facilitate the acquisition of statistics
in such fast-tracking experiments.

The short-time relevance of sound-mediated correlations was noted in earlier works on
unconfined suspensions [12, 13, 14]. We end by underlining the key differences between those
correlations and the ones in a rigid channel addressed here. First, whereas in an unconfined
suspension sound propagates as an underdamped wave until it is scattered by a sufficient
number of particles [12], in a channel, because of scattering from the boundaries, sound becomes
diffusive as soon as the distance gets much larger than the channel width. Second, in an
unconfined suspension sound-mediated correlations are a sub-dominant effect, quickly taken over
by vorticity diffusion (transverse modes) [12, 13]. By contrast, in a rigid channel correlations
due to transverse flow are cut off, leaving longitudinal flow as the sole mechanism of long-range
correlations. Thus, any correlation which could be resolved at inter-particle distances much
larger than the channel width should be associated with sound-mediated effects.
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