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and polydispersity

Radina Hadgiivanova and Haim Diamant®

Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University,

Tel Aviv 69978, Israel

(Received 13 August 2008; accepted 27 January 2009; published online 16 March 2009)

A recently introduced thermodynamic model of amphiphilic molecules in solution has yielded under
certain realistic conditions a significant presence of metastable aggregates well below the critical
micelle concentration—a phenomenon that has been reported also experimentally. The theory is
extended in two directions pertaining to the experimental and technological relevance of such
premicellar aggregates. (a) Combining the thermodynamic model with reaction rate theory, we
calculate the lifetime of the metastable aggregates. (b) Aggregation number fluctuations are
examined. We demonstrate that over most of the metastable concentration range, the premicellar
aggregates should have macroscopic lifetimes and small polydispersity. © 2009 American Institute

of Physics. [DOL: 10.1063/1.3088828]

I. INTRODUCTION

The natural and technological applications of self-
assembled amphiphilic structures (micelles) in aqueous solu-
tion are vast." According to the common view supported by
numerous macroscopic experiments (e.g., conductivity and
surface-tension measurements) and widely accepted
theories, amphiphilic molecules form aggregates above a
well defined critical micelle concentration (cmc). During the
years, however, there have been several experimental
indications,“_8 as well as theoretical ones,9 for the appear-
ance of aggregates at concentrations well below the cmc—a
phenomenon referred to as premicellar aggregation. In par-
ticular, a fluorescence correlation spectroscopy experiment
seems to have provided direct observation of premicellar ag-
gregates at concentrations four times lower than the macro-
scopically determined cmc.

Recently we have presented a two-state (monomer-
aggregate) thermodynamic model for amphiphilic aggrega-
tion which, alongside its simplicity, allows the study of meta-
stable micelles of variable size.'® The analysis has yielded a
sequence of three well separated concentrations: c¢;, where a
metastable aggregated state appears but is not significantly
occupied; c,, above which an appreciable amount of meta-
stable aggregates forms; and c;, where the aggregated state
becomes stable. The cmc as commonly measured in macro-
scopic experiments has been shown to correspond to cj.
Thus, appreciable premicellar aggregation may occur in the
concentration range between ¢, and c;. We have shown that
so long as the micelles are not too large, the extent of premi-
cellar aggregation is much larger than what would be ex-
pected from mere finite-size effects. This somewhat surpris-
ing effect stems from the variability of the “excited state,”
i.e., the freedom of the micelles to select their sizes, and the
small free-energy difference between the pure monomeric
state and the metastable one, which contains mostly mono-
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mers and a low concentration of aggregates. In addition, we
have found that the premicellar regime is characterized by a
weak concentration dependence of micelle size. Thus, the
premicellar aggregates have roughly the same size as those
observed above the cmc in agreement with the experiment in
Ref. 6.

The analysis in Ref. 10, which is purely thermodynamic,
does not fully account for possible kinetic barriers for premi-
cellar aggregation. It has been assumed and will be assumed
below that the solution has fully equilibrated. (In cases
where high nucleation barriers exist, they might be overcome
in practice, e.g., through heterogeneous nucleation.) Two key
issues remain open, however. First, while the metastable
premicellar state may be appreciably occupied at equilib-
rium, the aggregates might be short lived. Second, although
the mean size of the premicellar aggregates is similar to that
of the micelles above the cmc, the size distribution in the
former case might be much broader. Evidently, these issues
of lifetime and polydispersity could jeopardize the experi-
mental and technological relevance of premicellar aggrega-
tion.

Micellization dynamics (above the cmc) were thor-
oughly studied in previous works, both experimentally (see
Ref. 11 and references therein) and theoretically (see, e.g.,
Refs. 12-20). Two disparate time scales are involved in the
dynamics, corresponding to the exchange of individual
monomers between the micelle and the solution and the
much slower process of micelle formation and breakup. Be-
ing interested in aggregate stability, we focus here on the
latter. We use the free energy landscape as obtained from the
thermodynamic model'® within Kramers® rate theoryzL22 to
study the lifetime of premicellar aggregates. The second ex-
tension of the theory is an examination of aggregate size
fluctuations in the premicellar regime.

In Sec. II we briefly review the thermodynamic model of
Ref. 10 and then extend it to study lifetime and polydisper-
sity. Representative numerical results are presented in Sec.
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III. In Sec. IV we discuss the results and their implications
for the observation of premicellar aggregates.

Il. MODEL
A. Free energy

Our starting point is the two-state thermodynamic model
of micellization presented in detail in Ref. 10. The solution
containing a volume fraction ¢ of amphiphiles is assumed to
consist of two species: monomers with volume fraction ¢,
and aggregates of m molecules with volume fraction (¢
—¢,). The volume fraction of water is (1—¢). Both ¢, and m
are treated as degrees of freedom, i.e., the system can select
the number of aggregates as well as their size, while the total
volume fraction ¢ is the control parameter. The two-state
approximation restricts the validity of the entire approach to
compact (spherical) micelles whose size distribution is rela-
tively narrow.” The free energy of the solution contains a
mixing-entropy contribution and an interaction term. The
former is calculated using a coarse-grained (Flory—Huggins)
lattice scheme, where a water molecule occupies a single
lattice site (of volume a®) and each amphiphile occupies n
sites. The latter term, containing all other contributions to the
free energy of transfer of a monomer from the solution to an
aggregate of size m, is represented by a single phenomeno-
logical function u(m). The resulting free-energy density (per
lattice site) is

F(om, )= 20 g+ 2L gy) — mutm)]
+ (1= @in(l - §). (1)

(All energies in this paper are expressed in units of the ther-
mal energy kgT.) The specific form of u(m) is not crucial for
the analysis; it should merely have a maximum at a finite
value of m to ensure the formation of finite aggregates
(rather than a macroscopic phase) upon increasing ¢. For the
sake of numerical examples we shall use the following
function:'**

u(m) = ug— om™"3 — km?3. (2)

(The physical origins of the terms appearing in Eq. (2) as
well as the rather limited range of relevant values for the
parameters i, o, and « are discussed in Ref. 10.)

Equation (1) defines a free-energy landscape over a two-
dimensional space of macrostates (¢, ,m). Along the ¢, axis
F, is always convex, i.e., it has a single minimum at
@M(m, ¢) for all values of m and for any ¢.'° Along the m
axis the free energy becomes nonconvex above a certain vol-
ume fraction ¢> ¢, with two minima at m=1 and m™" and a
maximum in between at m=m™¥*. In the premicellar regime
of interest ¢; <c, < ¢p<c3, the free energy has a global mini-
mum still at the pure monomeric state []""(m=1),m=1] as
well as a local minimum at the metastable aggregated state
[ (m™™),m™"] (containing mostly monomers and a low
concentration of aggregates). The two minima are separated
by the saddle point [q&rf““(mma"),mm“], which poses a kinetic
barrier for the disintegration of the metastable aggregated
state into the stable monomeric one.
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The following analysis relies on two basic assumptions.
First, we assume that overcoming the barrier at the saddle
point [ @M (m™) ,m™*] is the rate-limiting process in aggre-
gate dissociation, whereas diffusion is much faster. Hence,
the dynamics depends on m alone, advancing at all times ¢
along the path [d)‘l“i“(m(t)),m(t)]. The second assumption
arises from the necessity to relate our coarse-grained model
with single-aggregate properties. Since the model [e.g., Eq.
(1)] does not explicitly consider single aggregates but rather
macrostates containing both monomers and aggregates, we
shall consider instead a fictitious subsystem of volume Vi,
which on average contains a single aggregate of size m™".
The volume of the aggregate itself is na*m™" and the volume
fraction of aggregates is ¢— ¢;. Hence, the subsystem vol-
ume is

na3mmin(¢)

b= B (m™(P))

Vi(g) = 3)

Since ¢—¢p; is very small, V; is far from being microscopic,
and we may apply our coarse-grained description to the sub-
system writing its free energy as

Vi()

a3

F(¢l’m’¢)= Fs’ (4)

where F; is given by Eq. (1). Thus, the dissociation of a
single premicellar aggregate is treated as the transition of a
mesoscopic subsystem from a metastable state, containing
monomers and (on average) one aggregate, to the stable,
purely monomeric state. For brevity the free energy of the
subsystem along the dissociation path [qb'lni“(m(t)),m(t)] is
hereafter referred to as F(m).

B. Aggregate lifetime

We follow the lines of Kramers’ theorym’22 while adapt-

ing it to the case of premicellar aggregates. The main as-
sumptions of this approach are as follows. (i) The energy
barrier between the two states is sufficiently high, leading to
separation of time scales between the fast monomer ex-
change process and the much slower aggregate dissociation.
(ii) The free energy of the final (monomeric) state is much
lower than that of the initial (aggregated) one, ensuring a
practically unidirectional probability current from the aggre-
gated to the monomeric state. The first assumption breaks
down when ¢ is too small, i.e., as it gets too close to c;; in
the examples of Sec. III it becomes invalid already for ¢
=c,. The second assumption fails when ¢ gets close to cj.
Thus, the following calculation is strictly valid only for ¢,
< ¢p<<c;. (The behavior outside this domain of validity will
be commented on separately in Sec. IV.) In addition, we
assume that the aggregation number is large m>1, so that
the discrete changes in m can be replaced to a good approxi-
mation by continuous, infinitesimal ones.

We begin with the master equation for the probability
density function f(m,7) of finding the subsystem around the
state [(ﬁ‘lni"(m) ,m] at time ¢,
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df(m,t
% - f AW (m — k. k) f(m — k1)

- f dkW(m, k) f(m,1)dk, (5)

where W(m,k) is the transition probability per unit time for
the aggregation number to change from m to m+k. Assuming
that large jumps in aggregation number are improbable, we
expand the first integral in Eq. (5) to second order in small &
and get the Fokker—Planck equation

Lo 2L jom) = Al = =D,
©)

The first term in the probability current density j describes a
drift along the aggregation-number axis with velocity A(m)
=[dkkW(m k). The second term represents diffusion along
that axis with a diffusion coefficient

D(m) = % f dkk*W(m, k). (7)

Demanding that f reduce at equilibrium (i.e., when j
=0) to the Boltzmann distribution f,(m)~e™" () one gets
from Eq. (6) a generalized Einstein relation between A and
D9

A(m) ==D(m)F'(m) + D' (m), (8)

where a prime denotes a derivative with respect to m. Sub-
stituting this relation back in Eq. (6), we rewrite the prob-
ability current density as

j==D(m)e "™ f(m,1)eF™]". )

Thanks to the assumed high free-energy barrier and the re-
sulting separation of time scales, steady state can be assumed
practically throughout the entire dissociation process. Thus,
dfldt=3dj/ dm=0, i.e., j=j, independent of m. Equation (9)
can then be integrated over m,

m™ eF min
jSSJ; dm5=_feF|’ln : (10)

The second assumption of a large free-energy difference
between the two states implies that the right-hand side (rhs)
of Eq. (10) is dominated by its value at m™". In addition, we
assume that the subsystem is still mostly in the aggregated
state near m™" at quasiequilibrium and, hence, Sfm,1)
~ ¢~Fm Expanding about m™" we obtain for the normalized
probability density,

min)Z

f(m) —~ [Frr(mmin)/(z 77)]1/26—1/2F”(mmi“)(m -m (1 1)

The rhs therefore, by
_[Fn(mmin)/(z,ﬂ.)]l/ZeF(m

Treating the left-hand side (lhs) of Eq. (10) requires an
estimate for the aggregation-number diffusion coefficient
D(m). We use the definition of this coefficient, Eq. (7), to-

gether with Langer’s formula for the transition probability,24

of Eq. (10) is

miu)

given,
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W(m,k) ~ T(—)l e—kz/(zA) e—l/2[F(m+k)—F(m)]’ (12)

where 7, is a molecular time scale and A is used to suppress
large jumps in the aggregation number. Assuming that jumps
much larger than unity are improbable, we set A=1. We then
expand F(m+k)—F(m) in Eq. (12) to second order in k, nor-
malize the transition probability, and substitute it in Eq. (7)
to obtain

1 4+F'*+2F"

D(m)=—

27 Q+F) (13)

Analysis of Egs. (1)-(4) and (13) shows that for realistic
aggregation numbers m> 1, one has |F|>[In D|. Hence, the
integral on the lhs of Eq. (10) is dominated by a small region
around the maximum of F. We expand F(m) about m™,
integrate, and get for the 1lhs of Eq. (10),
jss[2 ) |Fr/(mmax) |]1/26F(mmax)/D(mmax).

Substituting all these results in Eq. (10), we finally ob-
tain for the micelle lifetime,*

47T F
(1 + Fn(mmax)/z)|Frr(mmin)Frr(mmax)|1/26 ’
(14)

Tm= |jss|_1 =

where F),=F(m™>)—F(m™") is the height of the free-energy
barrier between the aggregated and monomeric states. Equa-
tion (14), combined with Eqgs. (1)—(4), yields the aggregate
lifetime in the metastable premicellar regime.

C. Polydispersity

For a given amphiphile volume fraction in the premicel-
lar regime ¢, < ¢p<c3, the aggregation number of the meta-
stable aggregates m™"(¢) is given by the local minimum of
F, of Eq. (1)."° To examine the polydispersity of the aggre-
gates we should calculate the fluctuations of m around m™"
for a single aggregate. As explained in Sec. II A, within our
coarse-grained framework we calculate instead the fluctua-
tions of m in a subsystem of volume V;. The distribution of
m in that subsystem is given for m close to m™" by Eq. (11).
Thus, we readily get for the mean-square size fluctuation

(6m®y = 1/F"(m™™). (15)
The relative width of the size distribution

~ <5m2>1/2 ~ 1
w= <m> - mmin[Fu(mmin)]l/Z ’

(16)

provides a convenient measure of the polydispersity.

lll. RESULTS

We now demonstrate the results of the model in two
numerical examples representing two amphiphiles of differ-
ing hydrophobicity. The parameters of the amphiphiles are
given in Table I, amphiphile B being the more hydrophobic
of the two. We use here the same two examples whose equi-
librium properties have been thoroughly analyzed in Ref. 10.
Table I lists for these examples the volume-fraction bounds
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TABLE I. Parameters and equilibrium properties of exemplary amphiphiles: n—number of groups in hydro-
carbon tail; uy, o, and k—parameters of u(m), the free energy of transfer in units of kzT [Eq. (2)]; s,
c;—volume-fraction bounds of the premicellar regime; m™"(c,), m™"(c;)—aggregation numbers at these

. 130, 114901 (2009)

boundaries (Ref. 10).

Amphiphile n U o K I 3 mmn(c,) mmn(cs)
A 13 10 11 0.08 8.0x 107 22X1073 53 60
B 20 14 14 0.05 1.6 X107 6.7X 107 118 128

of the premicellar regime ¢, and c; along with the aggrega-
tion numbers at these points, as obtained from the equilib-
rium theory.

In Table II we give the values of the free-energy barrier
for aggregate dissociation at the lower and upper bounds of
the premicellar regime, as calculated from Egs. (1)—(4) using
the parameters of Table 1. At ¢p=c, the barrier is negligible,
of order kzT, yet, as ¢ increases through the premicellar
regime, it becomes much larger than kzT. The resulting life-
times, as calculated from Eq. (14), are given in Table II. As
an estimate for the molecular time scale we have used for
both amphiphiles 7,=10 ns. (This is the diffusion time of a
molecule having a diffusion coefficient of 10 cm?/s along
a distance of 1 nm.) Corresponding to the increase in the
free-energy barrier, the aggregate lifetime increases from
milliseconds at the lower bound of the premicellar region to
practically indefinite time. As already noted in Sec. II B, our
lifetime analysis is strictly valid only for ¢, <<¢<<c; and,
hence, these values should be regarded merely as rough
estimates.

The premicellar aggregate lifetime for amphiphile A,
scaled by the molecular time 7, is depicted as a function of
amphiphile volume fraction in Fig. 1. The roughly exponen-
tial increase in lifetime with concentration stems from the
exponential dependence of 7,, on the barrier height [Eq.
(14)], which is the main source of concentration dependence.
Two additional contributions to the dependence of 7,, on ¢
are included in the prefactor of Eq. (14). The first (I
+F"(m™)/2)~! comes from the aggregation-number diffu-
sion coefficient D(m). This factor is practically concentration
independent since in our examples the curvature of the
saddle point is small, |F"(m™>)|<0.1, and thus D(m™)
=(27,)"'=const. The second pre-exponential factor in Eq.
(14) |F"(m™™) F"(m™*)|~12 depends on concentration prima-
rily through |F”(m™)|, which is an increasing function of ¢.
This factor causes the slightly weaker increase in lifetime
with ¢ at small concentration (Fig. 1).

In Fig. 1 we see that in the case of amphiphile A, assum-
ing 7y~ 10 ns, the aggregate lifetime reaches the order of 1
s for ¢p=1.4c,, whereas the cmc is at c3=2.75¢,. Thus, the

premicellar aggregates remain stable for a macroscopic time
over a significant part of the premicellar regime. In the case
of amphiphile B we find 7,,~1 s for ¢p=1.05¢, while c;
=472c,, i.e., the aggregates are kinetically stable over a
much larger portion (practically all) of the premicellar con-
centration range, as expected for a more hydrophobic am-
phiphile.

Figure 2 shows the mean-square fluctuation of the aggre-
gation number for amphiphile A as a function of volume
fraction. The corresponding relative width of the aggregate
size distribution is presented in the inset. The polydispersity
weakly decreases with concentration, i.e., the premicellar ag-
gregates are nearly as monodisperse as the micelles above
the cmc. In Table II we see that the same conclusions hold
for amphiphile B. The small polydispersity (around 10%) as
well as the slightly increased value for the less hydrophobic
amphiphile (A) are in agreement with the well known trends
for spherical micelles above the cmc, as established
experimentally11 and theoretically.2

IV. DISCUSSION

It has been shown in Sec. III that considerations of ag-
gregate lifetime can reduce the concentration range in which
premicellar aggregates may be experimentally observable
and technologically relevant compared to the range deter-
mined from equilibrium considerations alone.'” In other
words, the apparent concentration, above which an appre-
ciable amount of metastable micelles appears, may be higher
than c¢,. We have demonstrated, nonetheless, that kinetic sta-
bility (i.e., macroscopic lifetime) still exists in most of the
premicellar region. The more hydrophobic the surfactant, the
wider the range of stability. These conclusions are in line
with the results presented in Ref. 20. Although that study
does not deal with premicellar aggregation, it has shown that
the dissociation time of micelles remains very large even
below the cmc.

Our Kramers-type approach, as already mentioned in
Sec. II, relies on two assumptions which are violated near the
edges of the premicellar region. The first assumption of a

TABLE II. Properties of premicellar aggregates: F,—free-energy barrier for dissociation; 7,,—aggregate life-
time; w—relative width of size distribution; ¢,, c;—lower and upper bounds of the premicellar regime. A value
of 7,=10 ns has been used for the molecular time scale.

Fy(cy) Fy(cs3) T,(C2) T,,(c3)
Amphiphile (kgT) (kgT) (s) (s) w(c,) w(cs)
A 1.3 30.4 2.0x107* 1.3x10° 0.18 0.15
B 0.5 112.5 43%1072 1.8X10% 0.11 0.10
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FIG. 1. Lifetime of premicellar aggregates of amphiphile A as a function of
amphiphile volume fraction. The lifetime is scaled by the molecular time
scale 7, (of typical order of 10 ns) and the volume fraction by c¢,, the onset
of premicellar aggregation. The volume fraction corresponding to the cme
(c3) is indicated by an arrow. Parameters of amphiphile A are given in Table
I

high free-energy barrier between the metastable and stable
states is valid in almost the entire region except close to the
lower edge c,, where the barrier may become of order kzT'
only. (See Table II.) The resulting short lifetimes, although
not accurately accounted for by the theory, are of little inter-
est. The second assumption of a large free-energy difference
between the two states holds in nearly the entire range as
well, except very close to the upper edge c;, where, by defi-
nition, the free-energy difference vanishes. The free-energy
difference in units of kg7 becomes large quickly as ¢ gets
smaller than c3, since the considered mesoscopic subsystem
of volume V, contains a large number of molecules (mostly
monomers). In addition, correction of the theory near c; by
considering a probability backflow from the monomeric to
the aggregated state will only increase the stability of the
latter. Therefore, the deficiencies of the theory at the edges of
the premicellar region do not affect our main results.

It should be borne in mind, however, that the stability of
premicellar aggregates implies also that high nucleation bar-
riers may need to be overcome in order for them to form in
the first place. Correspondingly, the more hydrophobic the

T T T
T L L e e e e N A N A I
88 -
N/\SG* =
s | 1
e
84 -
F e -
1.5 2 2.5
82 =
c3/c2
80\\ Pt T P Nt L
1 1.5 2 2.5 3
d/c,

FIG. 2. Mean-square fluctuation of aggregation number for amphiphile A as
a function of amphiphile volume fraction. The volume fraction is scaled by
¢,, the onset of premicellar aggregation. The cmc (c3) is indicated by an
arrow. The inset shows the relative width of the aggregate size distribution
w={(8m>)"2/(m). Parameters of amphiphile A are given in Table 1.

J. Chem. Phys. 130, 114901 (2009)

surfactant, the higher these barriers are. (The issue of high
nucleation barriers for micelle formation above the cmc has
been underlined also in Ref. 20.) Hence, since both the pre-
ceding work'? and the current one have assumed full equili-
bration, their applicability within reasonable time scales
might require in practice either reduction in nucleation bar-
riers through heterogeneous nucleation or overcoming them
by external means (e.g., agitation or sonication).

Finally, we have found narrow size distributions of
premicellar aggregates, i.e., micelles below the cmc should
be only slightly more polydisperse than their counterparts
above the cmc. (See Fig. 2.) This agrees with the monodis-
persity observed in the experiment.6 Thus, polydispersity
does not pose a problem for the applicability of premicellar
aggregation.
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