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PACS. 68.10Jy – Kinetics (evaporation, adsorption, condensation, catalysis, etc.).
PACS. 68.10Cr – Surface energy (surface tension, interface tension, angle of contact, etc.).
PACS. 82.65Dp – Thermodynamics of surfaces and interfaces.

Abstract. – We present a model treating the kinetics of adsorption of soluble surface-active
molecules at the interface between an aqueous solution and another fluid phase. The model
accounts for both the diffusive transport inside the solution and the kinetics taking place
at the interface using a free-energy formulation. In addition, it offers a general method of
calculating dynamic surface tensions. Non-ionic surfactants are shown, in general, to undergo
a diffusion-limited adsorption, in accord with experimental findings.

Surface-active agents (surfactants) play a major role in various fields, including petrochem-
ical technologies, detergents, biological systems, etc. In some important cases, equilibrium
properties of the surfactant adsorption are not sufficient, and knowledge of kinetic processes is
required. In particular, we mention processes of fast wetting, foaming and the stability of liquid
films. The kinetics of surfactant adsorption have been addressed by numerous experimental
and theoretical studies, and various experimental techniques have been devised, primarily
aimed at the measurement of dynamic interfacial tensions [1].

The pioneering theoretical work of Ward and Tordai [2] formulated a time-dependent rela-
tion between the surface density of surfactants adsorbed at an interface and their concentration
at the sub-surface layer of solution, assuming a diffusive transport from the bulk solution.
Consequent theoretical works have focused on providing a second closure relation between
these two variables. Various relations have been suggested, resembling equilibrium isotherms
[3], [4], or having a kinetic differential form [5], [6]. Such theories have been quite successful
in describing the experimentally observed adsorption of common non-ionic surfactants. Yet,
they suffer from several drawbacks: i) The closure relation between the surface density and
sub-surface concentration, which expresses the kinetics taking place just at the interface, is
introduced as an external boundary condition, and does not uniquely arise from the model
itself; ii) the calculated dynamic surface tension relies on an equilibrium equation of state, and
assumes that it also holds out of equilibrium [7]; iii) similar theories cannot be successfully
extended to describe more complicated, ionic surfactant solutions [8]. In the current paper we
would like to briefly present an alternative approach, overcoming these three drawbacks.
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Consider an interface between an aqueous solution of non-ionic surfactants and an air or
oil phase at x = 0. At x→∞, the solution is in contact with a bulk reservoir of surfactants,
where the chemical potential and surfactant volume fraction are fixed to be µb and φb,
respectively. We consider a dilute solution, i.e. the surfactant volume fraction is much smaller
than unity throughout the solution. The concentration is also smaller than the critical micelle
concentration (cmc), so the surfactants are dissolved only as monomers. At the interface itself,
however, the volume fraction may become large.

We write the excess in free energy per unit area due to the interface (i.e. the change in
interfacial tension) as a functional of the surfactant volume fraction in the bulk solution,
φ(x > 0), and its value at the interface, φ0, ∆γ[φ] =

∫∞
0

∆f [φ(x)]dx+ f0(φ0). The first term
is the contribution from the bulk solution, whereas the second is the contribution from the
interface itself. The sharp, “step-like” profile considered has led us to treat the bulk solution
and the interface as two coupled sub-systems, rather than a single one [9]. The bulk sub-system
is considered as an ideal, dilute solution, including only ideal entropy of mixing and the contact
with the reservoir, and neglecting gradient terms,

∆f(φ) = {T [φ lnφ− φ− (φb lnφb − φb)]− µb(φ− φb)}/a3, (1)

where a denotes the surfactant molecular dimension and T the temperature (we set the
Boltzmann constant to unity). However, since φ0 may become much larger than φ(x > 0),
we must take into account at the interface the finite molecular size and interactions between
surfactant molecules,

f0(φ0) = {T [φ0 lnφ0 + (1− φ0) ln(1− φ0)]− αφ0 − (β/2)φ2
0 − µ1φ0}/a2. (2)

The first term is due to the entropy of mixing, recalling that φ0 is not necessarily small;
the second accounts for the energetic preference of the surfactants to lie at the interface; the
third is the energy of lateral attraction between neighbouring surfactants at the interface; and
the last term accounts for the contact with the solution adjacent to the interface, where the
chemical potential is µ1.

Variation of ∆γ with respect to φ(x) yields the excess in chemical potential at a distance x
from the interface, ∆µ(x) = a2δ∆γ/δφ(x) = T lnφ(x)−µb for x > 0, and ∆µ0 = a2δ∆γ/δφ0 =
T ln[φ0/(1−φ0)]−α−βφ0−µ1. From these equations we can deduce, as expected, µb = T lnφb

and µ1 = T lnφ1, where φ1 denotes the sub-surface volume fraction.

Thermodynamic equilibrium. – In equilibrium the chemical potential is equal to µb

throughout the entire system (the variations of ∆γ vanish). From the variation with respect
to φ(x) we obtain the equilibrium profile, φ(x) ≡ φb for x > 0, and from the variation with
respect to φ0 the equilibrium adsorption isotherm,

φ0 = φb/
[
φb + exp[−(α+ βφ0)/T ]

]
. (3)

We have recovered the Frumkin adsorption isotherm, which reduces to the well-known Lang-
muir adsorption isotherm [10] when the interaction term is neglected (β = 0). From
eq. (2) and the above variations one also obtains the equilibrium equation of state, ∆γ =
[T ln(1 − φ0) + (β/2)φ2

0]/a2, expressing the equilibrium dependence of the surface pressure,
Π = −∆γ, on the surface coverage, φ0, according to a lattice-gas model.

Out of Equilibrium. – We assume proportionality between velocities and the chemical-
potential gradient [11], and take the surfactant mobility to be D/T , according to the Einstein
relation (D being the surfactant diffusivity). At positions not adjacent to the interface
we obtain for the surfactant current density j(x) = −φ(D/T )∂µ/∂x = −D∂φ/∂x, and
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applying the continuity condition, ∂φ/∂t = −∂j/∂x, get the ordinary diffusion equation,
∂φ/∂t = D∂2φ/∂x2.

The proximity of the interface requires a more careful treatment. First, we discretize the
expression for ∆γ on a lattice with cells of length a, ∆γ[φ] = a

∑∞
i=1 ∆f(φi) + f0(φ0), where

φi ≡ φ(x = ia). Discretized current densities, ji, can be similarly defined. Since we do not
allow molecules to leave the interface towards the other phase (j0 = 0), we have from continuity
∂φ0/∂t = −j1/a, and can therefore write ∂φ1/∂t = −(j2−j1)/a = (D/a)∂φ/∂x|x=a−∂φ0/∂t .
Applying the Laplace transform to the equations for ∂φ/∂t and ∂φ1/∂t while assuming an
initial uniform state, φ(x, t = 0) ≡ φb, a relation is obtained between the surface coverage and
sub-surface volume fraction,

φ0(t) = (1/a)
√
D/π

[
2φb

√
t−

∫ t

0

φ1(τ)(t− τ)−1/2dτ
]

+ 2φb − φ1 . (4)

This relation is similar to the classical result of Ward and Tordai [2], except for the term
2φb − φ1. The difference is due to fine details we have considered near the interface and our
initial condition, and it vanishes when a goes to zero. Finally, we find the equation determining
the kinetics at the interface itself,

∂φ0/∂t = φ1D(µ1 − µ0)/a2T = (D/a2)φ1{ln[φ1(1− φ0)/φ0] + α/T + βφ0/T} . (5)

Note that the conditions at the interface are very different from those inside the aqueous
solution, and the diffusivities, D, appearing in the equations above, cannot be expected to
have strictly the same value. Solution of eqs. (4) and (5) allows one to find the time-dependent
surface coverage, φ0(t).

By writing the above equations, we have separated the kinetics of the system into two
coupled kinetic processes. The first takes place inside the bulk solution and is described by
eq. (4), whereas the second takes place at the interface and is described by eq. (5). Two
limiting cases correspond to the relative speed of these two processes. i) Diffusion-limited
adsorption applies when the process inside the solution is much slower than the one at the
interface. One can then assume that the interface is in constant equilibrium with the adjacent
solution, i.e. the variation with respect to φ0 vanishes, so φ0 immediately responds to changes
in φ1 via the equilibrium isotherm. ii) Kinetically limited adsorption takes place when the
kinetic process at the interface is the slower one. In this case, the solution is assumed to be in
constant equilibrium with the bulk reservoir, i.e. the variation with respect to φ(x) vanishes
[φ(x > 0) = φb], and φ0 changes with time according to eq. (5).

Looking at eq. (4) we can identify the time scale of diffusion for attaining the equilibrium
coverage, φ0,eq,

τd = (φ0,eq/φb)2a2/D . (6)

Characteristic values of a2/D correspond to very short times (on the order of nanoseconds),
but the prefactor of (φ0,eq/φb)2 is typically very large (on the order of, say, 1011). Thus, the
diffusion time scales may reach minutes, as indeed observed in practice. In order to estimate
the time scale of kinetic adsorption at the interface, we examine the asymptotic behaviour of
eq. (5) close to equilibrium and find (1) φ0,eq − φ0(t) ∼ exp[−t/τk], with

τk ' (φ0,eq/φb)2(a2/D) exp[−(α+ βφ0,eq)/T ] . (7)

(1) Close to equilibrium we can also write eq. (5) as

∂φ0/∂t ' (Dφb/a
2φ0,eq)[exp[(α+ βφ0)/T ]φ1(1− φ0)− φ0] ,

which coincides with the adsorption-desorption form of the Frumkin (or Langmuir, when β = 0)
kinetic equation used by previous authors [5], [6].
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Fig. 1. – A variety of non-ionic surfactants were experimentally found to exhibit diffusion-limited
adsorption. Four examples of dynamic surface tension measurements are given: 9.49 × 10−5 M of
decyl alcohol (open circles), from ref. [12]; 2.32 × 10−5 M of Triton X-100 (squares), from ref. [6];
6 × 10−5 M of C12EO8 (triangles) and 4.35 × 10−4 M of C10 PY (solid circles), both from ref. [13].

Note the asymptotic t−1/2 behaviour, characteristic of a diffusion-limited adsorption, and shown by
the solid fitting lines.

Since the value of D at the interface is not expected to be drastically smaller than that
inside the solution, comparison of eq. (6) and (7) leads to the conclusion that τd > τk. This
result is somewhat expected, since we did not include any potential barrier in f0. Adding
such a barrier, +εφ0, to eq. (2) will result in a factor of exp[ε/T ] in τk, describing a kinetic
limitation. We thus expect, in general, that non-ionic surfactants should exhibit diffusion-
limited adsorption. This, indeed, has been observed for quite a large number of non-ionic
surfactants [1] (2). The “footprint” of diffusion-limited adsorption is the asymptotic time
dependence [4] φ0,eq − φ0(t) ∼

√
τd/t. Any dependence between the surface tension and

surface coverage will lead to a similar asymptotic time dependence of the dynamic surface
tension as well. Four examples of experimental results are given in fig. 1, all exhibiting the
expected asymptotic t−1/2 behaviour.

We return now to the interfacial tension during the process of diffusion-limited adsorption.
As stated above, in this limit the interfacial contribution, f0(φ0), is at its minimum all the
time, and ∆γ is given therefore by

∫∞
0

∆f [φ(x)]dx+[T ln(1−φ0)+(β/2)φ2
0]/a2. If, in addition,

we neglect the bulk contribution (recalling that it completely vanishes at equilibrium) we are
left with the equilibrium equation of state. Therefore, relating the surface tension to surface
coverage via the equilibrium equation of state approximately holds also out of equilibrium.
Note that this statement is valid only in the case of diffusion-limited adsorption, where f0

is at its minimum during the whole process. The dependence of ∆γ on φ0, as defined by
the equation of state, is shown in fig. 2 a). Since φ0 constantly increases with time, we
expect the time dependence of ∆γ to qualitatively resemble the curve depicted in fig. 2 b).
This, indeed, resembles the curves found in experiments (e.g. [6]). Note the almost constant
slope in the beginning of the process; the surface coverage significantly changes without a
corresponding change in the surface tension. It is a result of the competition between the
entropy and interaction terms appearing in the equation of state. The surface tension will
start falling roughly when the second derivative of ∆γ with respect to φ0 changes sign (see

(2) Note that in the discussion above we have completely neglected a third time scale —that
needed for lateral diffusion and molecular re-orientation at the interface. If, however, due to certain
molecular constraints, this time scale is no longer negligible, exceptions to the above conclusions are
to be expected [14].
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Fig. 2. – a) The relation between surface tension and surface coverage in a diffusion-limited adsorption.
The energy constants are set to the (realistic) values α = 12 T and β = 3 T. b) Schematic time
dependence of the surface tension, as expected from a dependence ∆γ(φ0) such as in a).

fig. 2a)), i.e. when 1 − φ0 ∼ (β/T )−1/2. As one examines surfactant solutions of increasing
bulk concentrations, this surface coverage will be attained earlier along the process, and the
initial plateau will shrink, until finally vanishing behind the finite experimental resolution.
This trend is indeed observed experimentally [15].

We have presented above an alternative model for the kinetics of non-ionic surfactant
adsorption at fluid/fluid interfaces. It is a more complete model, in the sense that the
kinetics in the entire system, in the bulk solution as well as at the interface, are described
without the need for an additional, externally inserted boundary condition. We have shown
that relating the dynamic surface tension to surface coverage via the equilibrium equation
of state, a procedure employed by practically all previous authors, is justified only in the
case of diffusion-limited adsorption. Since the adsorption of non-ionic surfactants is generally
limited by diffusion, this assumption did not affect the validity of previous theories. We do not
expect similar theories to be applicable to kinetically limited systems, such as salt-free ionic
surfactant solutions [8]. In contrast, our model allows, using the definition of ∆γ given above,
for the calculation of dynamic surface tensions regardless of such limitations. Like any other
free-energy formulation, the model can be easily extended to include additional interactions.
A natural candidate should be the electrostatic interaction, i.e. extension of the model to
ionic surfactants. This problem will be addressed in a future paper [16].
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