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Unstable topography of biphasic surfactant monolayers
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Abstract. – We study the conformation of a heterogeneous surfactant monolayer at a fluid-
fluid interface, near a boundary between two lateral regions of differing elastic properties. The
monolayer attains a conformation of shallow, steep “mesas” with a height difference of up
to 10 nm. If the monolayer is progressively compressed (e.g., in a Langmuir trough), the
profile develops overhangs and finally becomes unstable at a surface tension of about K(δc0)

2,
where δc0 is the difference in spontaneous curvature and K a bending stiffness. We discuss the
relevance of this instability to recently observed folding behavior in lung surfactant monolayers,
and to the absence of domain structures in films separating oil and water in emulsions.

Insoluble (Langmuir) monolayers of amphiphilic molecules, lying at water-air or water-oil
interfaces, have been extensively studied in the past decades [1]. Such monolayers are found in
many applications, including, e.g., surface-tension reduction, emulsification and coating. Of
particular interest are phospholipid monolayers, which are used in various studies to model the
surface of cell membranes [2]. Lipid monolayers are encountered in other biological systems,
such as the lung surfactant monolayer coating the alveoli in lungs [3].

An interesting issue is the departure of a monolayer, upon lateral compression, from a flat,
two-dimensional conformation to a buckled, three-dimensional one. This aspect is particularly
important in the case of lung surfactant monolayers, which undergo compression/expansion
cycles during breathing. The buckling transition was theoretically studied in previous works
[4–6]. These studies focused on the overall conformation of the entire monolayer, seeking an
instability with respect to a single extended mode (or a prescribed combination of modes [6])
of undulation. They yield a buckling transition at a practically vanishing surface tension (i.e.,
very high compression).

In many circumstances the monolayer is inhomogeneous. The heterogeneity may arise in
single-component monolayers from the coexistence of expanded and condensed domains [7];
multi-component monolayers may phase-separate to form domains of different composition.
The coupling between conformation and inhomogeneous composition was thoroughly studied
as well [6, 8–13], usually focusing on bilayer membranes. These works considered annealed
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variations in composition, leading to spontaneous formation of ripples, modulated phases and
shape transformations.

Unlike symmetric bilayers, lipid monolayers usually have a finite spontaneous curvature,
arising either from the asymmetry of the lipid molecule itself, or from electrostatic interactions
(i.e., the dielectric asymmetry between the aqueous and the non-polar air or oil phases) [14].
The common picture is that below the buckling transition the monolayer conformation is
flat despite the spontaneous curvature. The reason is that the bending energy per unit area
to be gained by a curved conformation (typically a few tenths of kBT per nm2, kBT being
the thermal energy) is much smaller than the required work against surface tension (usually
more than 10 kBT per nm2). Hence, only at very low tension (i.e., high compression) is the
monolayer expected to depart from a flat conformation and buckle. This argument, however,
applies to the overall spatial behavior of a homogeneous monolayer.

In the current work we ask a different question: what is the local response of a Langmuir
monolayer to a fixed profile in mechanical properties as arising from a lateral domain structure.
There are four important length scales in the system: the typical domain size, L, the thickness
of a domain boundary, d, the spontaneous radius of curvature, c−1

0 , and the elastic length,
λ = (K/γ)1/2 determining the lateral length scale of height variations (K being the bending
rigidity and γ the surface tension). The discussion in this letter is much simplified by assuming
L � λ � d (the value of c0 remains unrestricted). Since L is of order 10 µm and λ is
typically 1–10 nm, the first inequality is well justified. It allows us to isolate a single, straight
boundary, separating two infinite domains. The second assumption, λ � d, allows us to treat
the domain boundary as infinitely sharp. In practice, for a biphasic layer far from its critical
point, d is typically the size of a few headgroups, roughly 1 nm (though it may exceed the
scale of λ in some circumstances). For typical d we find that the infinitely sharp limit is a
good approximation [15]. An additional requirement is that the monolayer surface maintain
its integrity throughout the compression. This is generally not the case in practice; lipid
monolayers often fracture and form multi-layers at a finite pressure [16]. This occurs as the
monolayer yields to vertical shear stresses, brought about by the lateral pressure combined
with small curvature. Another mechanism encountered in practice is the ejection of vesicles
into the aqueous phase [17]. However, the presence of certain additives in natural and model
lung surfactants was found to suppress these microscopic types of collapse [18].

Using these observations, we can find the shape of the surface as a function of its projected
area or surface tension, without the usual assumption of a moderate, single-valued height
function. Thus, we implicitly take into account all modes of response and allow for overhangs.
(A related calculation was previously presented for studying different domain shapes [19].
Being restricted to linear response, this model yielded mild height modulations in the form
of stable “caplets”, rather than the sharp “mesas” and conformation instability found in the
current work.)

We represent the boundary region of two large domains as a surface whose left and right
halves differ in bending rigidity K and spontaneous curvature c0. On the left half K = K1

and c0 = c01; on the right half the values are K2 and c02. The resulting surface is uniform in
the direction parallel to the domain boundary but curved in the perpendicular direction, as
shown in fig. 1b. We may thus represent the surface by its intersection with a vertical plane
perpendicular to the boundary. We define the monolayer conformation by the local angle
θ(s) between the surface and a reference plane at curvilinear distance s from the domain
boundary (see fig. 1b). The bending energy U of the monolayer can thus be written as
U = L

∫ 0

−∞ ds[12K1θ̇
2(s)−K1c01θ̇(s)] +L

∫ ∞
0

ds[12K2θ̇
2(s)−K2c02θ̇(s)]. Here L is the length

of the domain boundary and θ̇ ≡ dθ/ds is the local curvature. We require that θ(s) be
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Fig. 1 – a) Slope angle profiles near a domain wall as compression is increased. The curves are
obtained from eqs. (2)-(3) using the following parameters (from bottom to top): v = 0.1, 0.5, 1, 1.5, 2;
λ1 = 0.1, 0.5, 1, 1.5, 2; λ2 = 0.2, 1, 2, 3, 4. (The proportions v:λ1:λ2 are kept fixed so as to simulate a
compression process, decreasing γ while keeping all other parameters constant.) b) The corresponding
spatial conformations. The units of length are arbitrary (they are typically of order 10 nm). The
inset shows a schematic three-dimensional sketch of the monolayer shape for θ0 < π/2.

continuous at s = 0, so that the surface is smooth everywhere. The state of minimum U
(without including tension) is a curled surface with curvature c01 on the left and c02 on the
right. Only a net tension γ in the monolayer allows the surface to approach a flat conformation.
This tension adds a term −γAp to the energy, where Ap is the projected area of the surface,
shown as a shaded plane in fig. 1b. The element of projected area is ds cos θ, so that the full
energy to be minimized can be written as G ≡ U + γL

∫ ∞
−∞ ds[1− cos θ(s)].

Thus our system is equivalent to a pre-curled sheet of paper of length L joined at one
edge to a more strongly curled sheet and then subjected to a tensile force γL acting so as to
straighten the curling. Even under large tensions, there is a non-zero departure from the flat
state. To demonstrate this departure, we consider the bending moments of the two sheets
across the junction line. The left side exerts a moment on the right side equal to δU/δθ̇(0−) =
LK1[θ̇(0−)− c01]. This must equal the moment acting from the right side, LK2[θ̇(0+)− c02].
Hence the curvatures on the two sides are in general unequal: K1θ̇(0−)−K2θ̇(0+) = K1c01 −
K2c02 ≡ ∆, where the parameter ∆ (having dimensions of force) characterizes the extent of
heterogeneity. The non-zero curvature θ̇(0) at the boundary relaxes to zero on a distance λ
(to be determined), producing a net slope angle θ0 ≡ θ(s = 0) ∼ λθ̇(0) with bending energy
KLλθ̇(0)2. For small θ0 the associated loss of projected area is of order Lλθ2

0, with energy
γLλ[λθ̇(0)]2. The decay length λ is that which minimizes the total energy, i.e., λ ∼ (K/γ)1/2

as anticipated above. For K1 = K2 the angle θ0 is proportional to the difference in spontaneous
curvature, δc0 ≡ c01 − c02: θ0 ∼ (∆/K)λ ∼ (K/γ)1/2δc0.

To show the explicit profile and the buckling instability, we rewrite the energy per unit
length by integrating the linear term in θ̇ while requiring that the monolayer be flat far away
from the boundary (i.e., at the centers of the two contiguous domains), θ(s → ±∞) = 0,

g[θ(s)] ≡ G/L =
∫

ds[(K/2)θ̇2 + γ(1− cos θ)]− θ0∆. (1)

Equation (1) has the familiar form of a physical pendulum action (with s as imaginary time).
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Variation with respect to θ(s �= 0) gives the sine-Gordon equation, Kiθ̈ = γ sin θ, i = 1, 2,
whose first integration yields θ̇2 = 4λ−2

i sin2(θ/2). Second integration leads to soliton profiles
on both sides of the boundary,

tan(θ/4) =

{
tan(θ0/4)es/λ1 , s < 0 ,

tan(θ0/4)e−s/λ2 , s > 0 .
(2)

Finally, the condition for the jump in curvature at the boundary (e.g., as found above from a
moment balance argument, or by variation of g with respect to θ0) is K1θ̇(0−)−K2θ̇(0+) = ∆,
which determines θ0 as

sin(θ0/2) = ∆/[2
√

γ(
√

K1 +
√

K2)] ≡ v/2. (3)

Thus, for any finite ∆, the monolayer has a sigmoidal shape whose maximum slope angle is
given by θ0 of eq. (3). The total height difference is given by

h =
∫ ∞

−∞
ds sin θ = ∆/γ. (4)

Substituting the obtained profile back in eq. (1), we find the energy of the conformation,

g/∆ = 2 tan(θ0/4)− θ0 = 4(1−
√
1− v2/4)/v − 2 sin−1(v/2). (5)

The relation between the projected area and surface tension is found by imposing the area
constraint, Ap = L

∫
ds cos θ, or, equivalently, by taking the derivative of g with respect to γ,

δL ≡ (A − Ap)/L = ∂g/∂γ = [2(
√

K1 +
√

K2)2/∆]v(1−
√
1− v2/4). (6)

According to eqs. (3)-(6), as compression is increased, i.e., δL is increased or γ is decreased
(depending on the experimental scenario), the step profile becomes sharper (larger θ0), higher
(larger h), and more favorable (lower g). The process is demonstrated in fig. 1. At a certain
stage θ0 becomes larger than π/2 and an overhang forms. However, as is evident from eqs. (3)-
(6), there is a critical value of compression beyond which the profile equations have no solution.
Beyond this point our physical pendulum goes over the top and our model surface curls up.
This happens when θ0 reaches π, corresponding to vc = 2, or

γc = [∆/2(
√

K1 +
√

K2)]2 
 (K/16)(δc0)2, δLc = 4(
√

K1 +
√

K2)2/∆ 
 16/|δc0|. (7)

(The approximate expressions assume that the heterogeneity is mainly manifested in different
c0 rather than different K.) The dimensions of the step are finite at the critical compression,
hc = δLc 
 16/δc0. Yet, the lateral compressibility diverges, ∂δL/∂γ ∼ (vc−v)−1/2 as v → vc,
implying instability; extra area can be pulled into the inflected region without resistance, and
the monolayer tries to curl up. (Detailed description of this critical response, however, is
beyond the scope of the current model.) Macroscopically, the instability should show up as a
plateau in the pressure-area isotherm of the monolayer.

Substituting typical values for phospholipid monolayers [20] —γ 
 10–50 erg/cm2, K 

10–50 kBT , c−1

0 
 5–10 nm— we get λ 
 1–10 nm, v 
 0.1–1, and h 
 0.1–10 nm. Hence,
the mesas are sharp but shallow. The numerical value of v ∼ 1 implies that the predicted
instability may be encountered for attainable pressures. Furthermore, the energy per unit
length gained by departing from a flat conformation is g 
 ∆ 
 1–10 kBT/nm (or a few
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Fig. 2 – Pressure-area isotherm for a mixed monolayer of DPPC and POPG, as measured during a
compression/expansion cycle in a Langmuir trough. The mole ratio is DPPC:POPG=7:3 and the
temperature 25◦C. The folding instability is indicated by an arrow.

piconewtons). Hence, for a typical domain size of about 1–10 µm, the sigmoidal conformation
is robust to thermal fluctuations (1).

In recent experiments on model lung surfactant monolayers a new type of instability has
been observed [18]. As the monolayer is compressed into the coexistence region, containing
domains of different composition, there is a critical lateral pressure at which it locally folds
towards the aqueous phase. Similar folding has been observed in simpler phospholipid mix-
tures as well [18]. Figure 2 shows a pressure-area isotherm as measured for a mixed monolayer
of dipalmitoylphosphatidylcholine (DPPC) and palmitoyloleoylphosphatidylglycerol (POPG).
The folding is manifested by a plateau in the isotherm, occurring, for this system, at a very
low surface tension. (The same phenomenon, however, was observed in DPPG monolayers at
a much higher surface tension [18].) Figure 3 presents a sequence of fluorescence microscopy
snapshots of the monolayer just before and just after the instability. A micron-scale fold ap-
pears in between domain walls, subsequently propagating to nearby domains. The folding, as
compared to other collapse mechanisms, significantly reduces irreversibility and loss of surfac-
tant during a compression/expansion cycle. It is believed, therefore, to be of importance for
the function of lungs. We suggest that the observed folding might be initiated by the confor-
mation instability as found from the model. According to the model, the folding should follow
the domain boundary, unlike the straight fold in fig. 3. Nevertheless, the surface shear viscos-
ity of such monolayers is of order 1 surface poise (dyn s/cm) [21]. For surface pressures smaller
than 102 dyn/cm this suggests a shear relaxation time larger than 10−2 s. Since the fold forms
on a time scale of about 10−2 s (see fig. 3), the monolayer may respond to the instability like
an elastic sheet, thus inhibiting curved folds. Certainly, more experiments are required before
a clear relation between the observed folding and theoretical instability can be established.

In summary, we find that a Langmuir monolayer should exhibit inflected profiles in the
vicinity of domain boundaries. These profiles are the elastic response to the contrast in

(1)One might worry about the gravitational energy cost of displacing water from the flat interface. This
energy per unit area is about δρgh2 ∼ 104 kBT/cm2, where δρ is the difference in density of the two phases
and g the gravitational acceleration. Thus, due to the small height differences, gravity is negligible over all
relevant lateral length scales (up to meters). Beyond the instability, however, the monolayer may become
much more folded, and gravity may have a significant stabilizing role.
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a) b)

c) d)

Fig. 3 – Fluorescence microscopy images of the folding instability. a) Section of the monolayer just
before folding (t = 0), exhibiting the biphasic domain structure. Dark regions are DPPC-rich; bright
ones are POPG-rich. b) The same section at t =1/30 s. A micron-scale fold appears in between
domain walls (indicated by arrow). The image is blurred because of monolayer movement during
folding. The inset shows a contrast-enhanced image of the fold, magnified by 50 percent. c) The
fold at t =2/30 s, having propagated to nearby domains. d) The fold at t =4/30 s, after the fast
monolayer movement has ceased.

spontaneous curvature and/or bending rigidity between the two domains. For a monolayer
composed of many coexisting domains, this leads to an overall conformation of “mesas”,
where the domains of higher Kc0 stick down towards the aqueous phase. As the monolayer
is compressed, the mesas grow more pronounced, subsequently developing small overhangs at
their edges, and finally becoming unstable. Within the current model we could obtain the
folding point only from an instability criterion. In practice, the folded structure may become
favorable before the instability (i.e., for θ0 < π), whereupon folded regions would coexist
with unfolded ones. (In addition, the shape instability might be pre-empted by other collapse
mechanisms, as mentioned in the introduction.)

Apart from the folding instability, two rather general conclusions arise from this analysis.
First, a biphasic Langmuir monolayer at a water-air or water-oil interface should practically
never be completely flat; a conformation of mesas should appear for any finite surface ten-
sion. Such mesas are expected to exist, therefore, in many experimental and natural systems.
Conversely, monolayers at water-oil interfaces in emulsions, microemulsions or L3 phases [20],
whose surface tension practically vanishes, cannot have contiguous regions of differing elastic
properties. At a vanishing tension any such heterogeneity would necessarily yield a shape
instability. Indeed, to the best of our knowledge, no microdomain structures have ever been
observed in those systems, as opposed to Langmuir monolayers.

Several issues remain to be examined. One is the stability of a straight domain boundary
(i.e., possible rippling of the mesa wall). Another is the effect of introducing a domain
boundary of finite thickness. These issues will be addressed in a forthcoming publication [15].
Finally, it should be noted that the theoretical findings presented here do not conform with the
conventional picture of flat lipid monolayers below the buckling transition. Since the model
relies on very few, plausible assumptions, we believe that the inferred conformation of mesas
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should be observed in practice. Such an observation, however, may be difficult in view of the
small height differences involved, and the fluid interface on which the monolayer is deposited.
We hope that this work will motivate experiments in this new, intriguing direction.
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[13] Jülicher F. and Lipowsky R., Phys. Rev. E, 53 (1996) 2670; Sunil Kumar P. B. and Rao
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