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Abstract. In view of recent microrheology experiments we re-examine the problem of a rigid sphere oscil-
lating inside a dilute polymer network. The network and its solvent are treated using the two-fluid model.
We show that the dynamics of the medium can be decomposed into two independent incompressible flows.
The first, dominant at large distances and obeying the Stokes equation, corresponds to the collective flow
of the two components as a whole. The other, governing the dynamics over an intermediate range of dis-
tances and following the Brinkman equation, describes the flow of the network and solvent relative to one
another. The crossover between these two regions occurs at a dynamic length scale which is much larger
than the network’s mesh size. The analysis focuses on the spatial structure of the medium’s response and
the role played by the dynamic crossover length. We examine different boundary conditions at the sphere
surface. The large-distance collective flow is shown to be independent of boundary conditions and network
compressibility, establishing the robustness of two-point microrheology at large separations. The bound-
ary conditions that fit the experimental results for inert spheres in entangled F-actin networks are those
of a free network, which does not interact directly with the sphere. Closed-form expressions and scaling
relations are derived, allowing for the extraction of material parameters from a combination of one- and
two-point microrheology. We discuss a basic deficiency of the two-fluid model and a way to bypass it when
analyzing microrheological data.

1 Introduction

In the past two decades the technique of microrheology has
been used to characterize the dynamic response of soft and
biological matter [1]. In one-point microrheology [2] the
viscoelastic moduli of the material are inferred from the
displacements of a tracer particle in response to an exter-
nal force (active microrheology), or its displacement auto-
correlations under thermal fluctuations (passive microrhe-
ology). Such measurements rely on a generalized Stokes
relation (GSR, active) or generalized Stokes-Einstein re-
lation (GSER, passive), asserting that the particle’s re-
sponse has the same form as in a viscous fluid, with the
fluid’s shear viscosity η replaced by ηb(ω) = Gb(ω)/(iω).
Here Gb(ω) is the frequency-dependent complex shear
modulus of the bulk material. Subsequently, two-point mi-
crorheology was introduced as well [3]. In this technique
the moduli are deduced from the displacements of one par-
ticle in response to a force exerted on another (active), or
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the displacement cross-correlations of fluctuating particle
pairs (passive), as a function of their mutual distance. The
two-point measurements are based on a “generalized Os-
een tensor”, assuming that the spatial response at large
distances is the same as in a viscous fluid, with the afore-
mentioned replacement. Although it is considered more
reliable than the one-point technique, two-point microrhe-
ology has not been used as widely, mainly because of the
difficulty to accumulate enough statistics for particle pairs
at each given separation.

When results from one-point microrheology are com-
pared with macrorheology and two-point microrheology,
discrepancies are found for various materials [3–8]. One-
point measurements commonly yield much smaller moduli
than the other two techniques. The disagreement has been
attributed to differences between the particle’s immedi-
ate environment and the bulk material, leading to devi-
ations from the GSR/GSER. Indeed, one-point measure-
ments were found to be sensitive to the surface chemistry
of the tracer particle [4, 8], whereas two-point measure-
ments were not [8]. Theoretical attempts to account for
such local effects have included modifying the boundary
conditions at the particle surface between no slip, partial
slip, and full slip [7, 9], and the introduction of a shell
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of different viscoelastic properties surrounding the parti-
cle [10,11].

A recent study, applying two-point microrheology to
entangled F-actin networks [12,13], revealed a wide range
of distances, intermediate between the microscopic scale
(the network’s mesh size ξ) and the macroscopic (asymp-
totically large) one, in which the dynamic pair correlations
were qualitatively different from those at larger distances.
This intermediate behavior ended at a distinct dynamic
length, �c, much larger than ξ, which marked the crossover
to the macroscopic response. Theoretical arguments given
in ref. [12] showed that the intermediate response was fun-
damentally different from the macroscopic one, in that it
was related to mass transport, rather than momentum
transport, of the fluid. As we shall see below, the inter-
mediate region corresponds to the relative motion of the
material’s two components (network and solvent), whereas
in the asymptotic region the material moves collectively,
as a whole. The application of these ideas to a combina-
tion of one- and two-point measurements gives rise to an
extension of microrheology, allowing for better characteri-
zation of complex fluids (e.g., extracting their correlation
length) [12,13].

In the present article we elaborate on, and extend, the
theoretical results briefly presented in ref. [12]. We begin
in sect. 2 by defining the problem, which is the analogue
of Stokes’ problem for the motion of a rigid sphere, with
the viscous fluid replaced by a two-fluid medium [14–19].
An approximate treatment of the dynamics of a bead em-
bedded in such a medium was presented by Levine and
Lubensky [18]. The exact solution of the Stokes-analogous
problem has already been derived by Fu et al. [9]. In sect. 3
we solve it again from a slightly different perspective, pro-
viding additional physical insight. We derive the general
solution and extract from it several general properties,
which are independent of boundary conditions. In sect. 4
we present the particular solutions for three different sets
of boundary conditions. The first two, corresponding to
no slip and full slip of the network over the sphere sur-
face, were treated in ref. [9] as limiting cases of a general
slip condition. For these cases the present analysis offers
expressions of different experimental utility. The third set
of boundary conditions, which describes a network having
no direct interaction with the sphere, has not been treated
before. The properties of this particular solution are sub-
stantially different from the other two. We show that they
match the experimental observations for entangled F-actin
networks. In sect. 4 we also derive scaling relations, which
can facilitate the analysis of experimental data and the
extraction of material parameters from them. Section 5
discusses in detail the results and their implications.

The analyses in refs. [9–11,18] focused on the response
of the sphere as a function of frequency. We emphasize the
spatial response of the medium, its relation to basic con-
servation laws, and its dependencies on distance, sphere
radius, and the material’s characteristic lengths. We high-
light, in particular, the key role played by the dynamic
crossover length �c.

U 

a 

Fig. 1. Schematic view of the system.

2 The problem

Figure 1 shows a schematic view of the system. A rigid
sphere of radius a moves with velocity U inside a poly-
mer network. As done in earlier studies, we use the two-
fluid model [14–19] to describe the medium. The main
advantage of this model is that it is sufficiently simple to
be treated analytically while delivering the key features
of a complex fluid — emergent correlation length ξ and
bulk viscoelastic modulus Gb(ω). Its main disadvantage
is that it is a continuous, linear, hydrodynamic model,
neglecting effects of thermal fluctuations, small-scale het-
erogeneities, and nonlinear advection. An additional fun-
damental shortcoming of the model will be discussed in
sect. 5.

In the presentation below all fields are position- and
time-dependent, and we Fourier-transform them from the
time to the frequency domain,

f(r, t) → f(r, ω) =
∫ ∞

−∞
dte−iωtf(r, t).

The model has two components. The first is a
(visco)elastic network, having a volume fraction field
φu(r, ω), displacement field u(r, ω), and the stress tensor

σ
(u)
ij = 2G[uij − (ukk/3)δij ] + Kukkδij , (1)

where uij ≡ 1
2 (∂iuj + ∂jui) is the network’s strain tensor,

and G and K its shear and compression moduli, which
may be frequency-dependent. The second component is a
viscous fluid, having a volume fraction field φv(r, ω), flow
velocity field v(r, ω), pressure field p(r, ω), and the stress
tensor

σ
(v)
ij = −pδij + 2η[vij − (vkk/3)δij ] + ζvkkδij , (2)

where vij ≡ 1
2 (∂ivj +∂jvi) is the fluid’s strain-rate tensor,

and η and ζ are its shear and compression viscosities. The
two components are coupled via mutual friction charac-
terized by a coefficient Γ . The five governing equations
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for the five fields (u,v, p, φu, φv) are as follows:

−ω2ρuu = ∇ · σ(u) − Γ (iωu − v) + fu
= G∇2u + (K + G/3)∇(∇ · u)

−Γ (iωu − v) + fu, (3)

iωρvv = ∇ · σ(v) − Γ (v − iωu) + fv
= −∇p + η∇2v + (ζ + η/3)∇(∇ · v)

−Γ (v − iωu) + fv, (4)

0 = φu + ∇ · (φuu), (5)

0 = iωφv + ∇ · (φvv) (6)
1 = φu + φv, (7)

where ρu, ρv are the mass densities of the two components,
and fu(r, ω), fv(r, ω) are external force densities exerted on
them. The first two equations, together, reflect the conser-
vation of momentum in the composite material; the third
and fourth — the conservation of mass of each component
separately; and the last — the assumption of incompress-
ibility for the composite.

We employ the following simplifications. i) Inertial ef-
fects are omitted; they are negligible at sufficiently low fre-
quencies and can easily be included if needed [18]. ii) The
network is taken as semidilute, φu � φv � 1. iii) We
specialize to the case of no external forces, fu = fv = 0.
Under these assumptions the governing equations attain
the much simpler form

0 = G∇2u + (K + G/3)∇(∇ · u) − Γ (iωu − v), (8)
0 = −∇p + η∇2v − Γ (v − iωu), (9)
0 = ∇ · v. (10)

The perturbation that we introduce is in the form of
a rigid sphere, centered at the origin and moving in the
z direction with velocity U = U(ω)ẑ. Under these condi-
tions the problem has azimuthal symmetry. Hence, using
spherical coordinates (r, θ, φ), all the fields depend on r
and θ alone, and the vector fields have only r and θ com-
ponents. Consequently, the stresses of eqs. (1) and (2) take
the form

σ(u)
rr = K

[
1
r2

∂r(r2ur) +
1

r sin θ
∂θ(uθ sin θ)

]

+
2G

3

[
2r∂r(ur/r) − 1

r sin θ
∂θ(uθ sin θ)

]
,

σ
(u)
rθ = G

[
r∂r(uθ/r) +

1
r
∂θur

]
,

σ(v)
rr = −p + 2η∂rvr,

σ
(v)
rθ = η

[
r∂r(vθ/r) +

1
r
∂θvr

]
. (11)

We consider an unbounded medium, which is unper-
turbed and stationary far away from the sphere. The
boundary conditions at infinity are, therefore

u(r → ∞, θ) = v(r → ∞, θ) = ∇p(r → ∞, θ) = 0. (12)

As to the boundary conditions at the surface of the sphere,
we will examine various possibilities in sect. 4.

3 General solution

3.1 Decoupled flows

First, we take the divergence of eq. (9) and use eq. (10) to
obtain a relation between the compressive stresses of the
two components

∇ · u =
1

iωΓ
∇2p. (13)

The next step is to decouple the equations for the two
vector fields, u and v. We apply the following linear trans-
formation:

V(c) =
(

1 − η

ηb

) (
iωu +

η

ηb − η
v − 1

Γ
∇p

)
, (14)

V(r) =
(

ηb

η
− 1

) (
iωu − v − 1

Γ
∇p

)
, (15)

P = p − λ2∇2p, (16)

whereupon eqs. (8)–(10) turn into

0 = −∇P + ηb∇2V(c), (17)

0 = −∇P + η
(
∇2V(r) − ξ−2V(r)

)
, (18)

0 = ∇ · V(c) = ∇ · V(r). (19)

In these equations we have introduced the following bulk
viscosity and characteristic lengths:

ηb ≡ G/(iω) + η, (20)

ξ ≡
(

Gη

iωΓηb

)1/2

, (21)

λ ≡
(

K + 4G/3
iωΓ

)1/2

=
[
2(1 − ν)
1 − 2ν

ηb

η

]1/2

ξ, (22)

where ν is the network’s Poisson ratio.
Thus, the dynamics of the two-fluid model (eqs. (8)–

(10)) have been decomposed into two independent incom-
pressible flows, V(c), and V(r). The former, in which v
and iωu appear with the same sign, describes the collec-
tive flow of the network-fluid composite. This flow satisfies
the scale-free Stokes equation (17) with viscosity given by
the bulk viscosity ηb(ω). The latter, containing v and iωu
with opposite signs, corresponds to the relative flow of
the two components. It obeys the Brinkman equation for
a fluid embedded in a porous medium [20], eq. (18), de-
pending on the fluid viscosity η and characteristic pore size
ξ. Hence, ξ is identified with the network’s mesh size [10],
up to a proportionality factor close to unity [12, 13]. It
also characterizes the spatial decay of transverse (shear)
stresses due to the friction between the two components
and, therefore, decreases with increasing Γ . The second
length, λ, characterizes the decay of longitudinal (com-
pressive) stresses and diverges in the limit of an incom-
pressible network (K → ∞ or ν = 1/2). In addition, we
define another dynamic length

�c ≡
(

ηb

η

)1/2

ξ. (23)
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As we shall see, �c plays a crucial role in the dynamics
of the medium. It is proportional to λ but remains finite
in the limit of an incompressible network. We note the
hierarchy ξ < �c < λ. Usually (e.g., for sufficiently low
frequencies), ηb � G/(iω) � η, and then ξ � �c < λ. Ad-
ditionally, for a network close to the incompressible limit,
we have the complete separation of scales ξ � �c � λ.

3.2 Stream functions and resulting solution

Following Stokes’ original scheme, we express the vector
flows in terms of scalar stream functions

V(c,r) = − 1
r2 sin θ

∂θψ
(c,r)r̂ +

1
r sin θ

∂rψ
(c,r)θ̂, (24)

and assume the following separation of variables:

ψ(c,r)(r, θ) = f (c,r)(r) sin2 θ, (25)

p(r, θ) = f (p)(r) cos θ. (26)

Substituting eqs. (24) and (25) in eq. (17) (after taking
the curl of the latter to eliminate ∇P ), we get the equation
for f (c)

0 = r4(f (c))′′′′ − 4r2(f (c))′′ + 8r(f (c))′ − 8f (c). (27)

Its solution is

f (c)(r) = C
(c)
1 r +

C
(c)
2

r
, (28)

where we have omitted terms which do not decay to zero
after division by r2, to ensure a vanishing V(c) at infinity.
The resulting collective flow is

V(c) = −2

(
C

(c)
1

r
+

C
(c)
2

r3

)
cos θr̂+

(
C

(c)
1

r
− C

(c)
2

r3

)
sin θθ̂.

(29)
The collective flow contains the 1/r and 1/r3 terms known
from azimuthally symmetric solutions of the Stokes equa-
tion, the first arising from the transverse component of a
momentum monopole, and the second from a combination
of a momentum quadrupole and a mass dipole [12].

Repeating the same procedure for the relative flow, we
get, instead of eqs. (27)–(29)

0 = r4ξ2(f (r))′′′′ − r2(r2 + 4ξ2)(f (r))′′

+ 8rξ2(f (r))′ + 2(r2 − 4ξ2)f (r), (30)

f (r)(r) =
C

(r)
1

r
+ C

(r)
2 (1 + ξ/r)e−r/ξ, (31)

V(r) = −2

(
C

(r)
1

r3
+

C
(r)
2 (r + ξ)

r3
e−r/ξ

)
cos θr̂

−
(

C
(r)
1

r3
+

C
(r)
2 (r2 + ξr + ξ2)

ξr3
e−r/ξ

)
sin θθ̂.

(32)

The relative flow contains the 1/r3 and exponentially
small terms known from solutions of the Brinkman equa-
tion, the former arising from a mass dipole, and the latter
from the spatially decaying transverse momentum, whose
decay length is ξ [21–23].

We substitute eqs. (16), (26), and (29) in eq. (17) to
find the equation for f (p)

0 = λ2r2(f (p))′′ + 2λ2r(f (p))′ − (r2 + 2λ2)f (p) − 2ηbC
(c)
1 ,

(33)
whose solution is

f (p)(r) = −2ηbC
(c)
1

r2
+

C(p)(r + λ)
r2

e−r/λ, (34)

where we have omitted a term that diverges at infinity.
The resulting pressure is

p =

(
−2ηbC

(c)
1

r2
+

C(p)(r + λ)
r2

e−r/λ

)
cos θ. (35)

It contains a 1/r2 term, arising from the longitudinal com-
ponent of a momentum monopole, and exponentially small
terms, corresponding to spatially decaying longitudinal
stresses whose decay length is λ. The transformed pres-
sure P (eq. (16)) contains only the 1/r2 term.

We can use eq. (18) for the relative flow, rather than
eq. (17) for the collective one, and obtain another expres-
sion for f (p). Equating the two expressions gives a relation
between C

(r)
1 and C

(c)
1

C
(r)
1 = (2ηbξ2/η)C(c)

1 = 2�2cC
(c)
1 . (36)

This is the first explicit appearance of the dynamic length
�c, relating the leading terms in the collective and relative
flows.

The general solution that is regular at infinity contains
four integration constants (C(c)

1 , C
(c)
2 , C

(r)
2 , C(p)) to be de-

termined in sect. 4 from boundary conditions. However,
we first present several quantities of interest in terms of
the undetermined constants. We use them to derive prop-
erties stemming from the fundamental response of the
medium — in fact, any isotropic viscoelastic medium —
independent of specific boundary conditions.

3.3 Properties of the general solution

The general solution for V(c,r), eqs. (29) and (32), can be
substituted back in eqs. (14) and (15) to obtain the orig-
inal fields, u(r, θ) and v(r, θ). The resulting expressions
can be found in the Supplementary Material [24].

The first quantity of interest is the total force F exerted
on the sphere. We substitute the general solution for u
and v in the stress tensors, eq. (11), and integrate the
stresses over the surface of the sphere to obtain the force.
The separate network and fluid contributions to the force
are found in ref. [24]. Once they are added together, most
terms vanish, leaving

F = −8πηbC
(c)
1 ẑ. (37)



Eur. Phys. J. E (2015) 38: 32 Page 5 of 11

Recall that C
(c)
1 is associated with the long-range 1/r term

in the collective flow, eq. (29), and the corresponding long-
range 1/r2 term in the pressure, eq. (35). The simple form
of eq. (37) stems from momentum conservation — at large
distances, only the 1/r collective flow is at play, and it
corresponds to the flow due to a momentum monopole F,
with effective viscosity ηb.

Let us examine the large-distance behavior of the flows
in more detail. The asymptotic term in eq. (29), as well
as those extracted from the expressions for u and v are

V(c,0) = v(0) = iωu(0) = −C
(c)
1

r

(
2 cos θr̂− sin θθ̂

)
,

(38)
whereas V(r,0) = 0. Thus, far away from the perturbation
the two components flow together. Combining eqs. (37)
and (38), we find that, in terms of the force F, the large-
distance flow has a universal form independent of bound-
ary conditions, mesh size, and compressibility

V(c,0) = v(0) = iωu(0) =
1

8πηbr

(
2Fr r̂ + Fθθ̂

)
. (39)

It represents a generalized Oseen tensor, with ηb replacing
η, which is the basis of the original two-point microrheol-
ogy [3]. Its universality stems, once again, from the conser-
vation at large distance of transverse momentum emanat-
ing from the source F. The Oseen tensor describes a longi-
tudinal flow response (relation between the r-components
of the force and velocity) and a transverse response (rela-
tion between the θ-components), which are both positive.
That is, if a second particle is placed along or perpendic-
ular to the direction of the sphere’s motion, in both cases
it will be advected in the same direction. The general re-
sult expressed in eq. (39) disagrees with earlier theoretical
ones concerning the far-field flow [9–11]. In refs. [10, 11]
the far field was found to depend on network compress-
ibility. (Indeed, it was suggested as a means to extract the
compressibility from two-point correlations.) In ref. [9] it
was shown to depend on network compressibility, as well
as the specific choice of boundary conditions, thus under-
mining the universality of asymptotic two-point microrhe-
ology. The apparent contradictions between these results
and ours are discussed, and resolved, in sect. 5.

We are interested also in the sub-asymptotic 1/r3

terms

V(c,1) = −C
(c)
2

r3

(
2 cos θr̂ + sin θθ̂

)
,

V(r,1) = −2�2cC
(c)
1

r3

(
2 cos θr̂ + sin θθ̂

)
, (40)

where we have used eq. (36) to replace C
(r)
1 with C

(c)
1 .

The sub-asymptotic terms describe also relative motion
of the two components. The terms in the collective and
relative flows depend on different coefficients. In the case
of the relative flow, we can use eq. (37) to substitute C

(c)
1

in eq. (40) and obtain a universal form in terms of F

V(r,1) =
�2c

4πηbr3

(
2Fr r̂ − Fθθ̂

)
. (41)

This expression describes the flow created by a mass dipole
equal to −(�2c/ηb)F = −(ξ2/η)F. It is the large-distance
flow caused by a point force in a Brinkman fluid [21–23].
One of its footprints is its sign, implying a positive effect
on the longitudinal response and a negative effect on the
transverse one. Comparing eqs. (39) and (41), we identify√

2 �c as the distance at which the leading terms in the
collective and relative flows become equal.

The original flow fields, which are more accessible
experimentally, contain combinations of sub-asymptotic
terms from both the collective and relative flows

v(1) = −C
(c)
2 − 2ξ2C

(c)
1

r3

(
2 cos θr̂ + sin θθ̂

)
, (42)

iωu(1) = −C
(c)
2 − 2(�2c + ξ2)C(c)

1

r3

(
2 cos θr̂ + sin θθ̂

)
,

such that v(1) − iωu(1) = V(r,1), the universal expres-
sion of eq. (41). Because of these combinations, the ob-
served distances of crossover between the sub-asymptotic
and asymptotic behaviors do not necessarily coincide with
�c. Hence, we define two such distances, r

(v)
c and r

(u)
c , as

those at which |v(0)| = |v(1)| and |u(0)| = |u(1)|, respec-
tively. According to eqs. (38) and (42) this occurs for

r(v)
c = [(r(u)

c )2 + 2�2c ]
1/2 = |C(c)

2 /C
(c)
1 − 2ξ2|1/2. (43)

4 Particular solutions for different boundary
conditions

The general solution obtained in the preceding section,
after imposing the boundary conditions at infinity, con-
tains four integration constants, (C(c)

1 , C
(c)
2 , C

(r)
2 , C(p)).

Four boundary conditions are required, therefore, at the
sphere surface. In the following we consider three cases
for these boundary conditions. They correspond to dif-
ferent physical conditions for the interaction between the
sphere and the network, as will be discussed in sect. 5.
Other cases can be readily studied using the file provided
as Supplementary Material [24].

4.1 Sticking fluid and network

The first case that we study is stick boundary conditions
for both network and fluid, i.e., the velocities of the two
components at the sphere surface are equal to the velocity
of the sphere,

v(a, θ) = iωu(a, θ) = U ẑ. (44)

We substitute these four conditions in the expressions for
u and v, and solve for the four constants [24].

Using eq. (37), we find for the total friction coefficient,
γ ≡ F/U

γ

6πηba
= 1 − �2c − ξ2

a2 + 2λ2 + 2λa + ξa + �2c
. (45)



Page 6 of 11 Eur. Phys. J. E (2015) 38: 32

Recalling the hierarchy ξ < �c < λ, we find that deviations
from the GSR can only be negative, and we also identify
two relevant limits. For a very large sphere

a � �c : γ � 6πηba, (46)

γ obeys, as expected, the generalized Stokes relation
(GSR) with viscosity ηb(ω). The condition for eq. (46)
to hold, however, is harder to fulfill than what is usually
assumed, since �c may be much larger than the mesh size
ξ. For smaller spheres

a � �c :
γ

6πηba
� 1 − �2c

2λ2 + �2c
=

4(1 − ν)
5 − 6ν

, (47)

where we have used eqs. (22) and (23). Equation (47) de-
scribes the decrease of γ due to network compressibility.
(See fig. 2(a).) The reduction is not sharp; for a Poisson
ratio ν = 0.4 it amounts to less than 10%. In the limit of
an incompressible network, for these boundary conditions,
the GSR holds for any value of a.

Note that the transition from eq. (46) to eq. (47) upon
decreasing a can be recast as a transition with decreasing
frequency; as ω gets smaller, the ratio ηb(ω)/η increases,
making eq. (47) with its compressibility correction the
valid one. This is in line with the picture presented in
ref. [9].

The asymptotic flow has its universal form, eq. (39).
The full expressions for the sub-asymptotic flow and the
resulting crossover lengths are given in ref. [24]. Assuming
that ξ is the smallest length, there are two limiting cases.
For a large sphere

a � �c : iωu(1) � v(1) � − a2

24πηbr3

(
2Fr r̂ − Fθθ̂

)
,

r(v)
c � r(u)

c � a/
√

3. (48)

Thus, in this limit, also the sub-asymptotic terms describe
collective flow of the two components together. (This is
only approximate, though, since there is always the uni-
versal relative flow of eq. (41).) These terms set in only
in the near field and, therefore, are not of much interest.
Equations (39) and (48) are identical to the Stokes flow
due to a sphere moving in a fluid of viscosity ηb. For a
smaller sphere

a � �c : v(1) � − a2

48(1 − ν)πηbr3

(
2Fr r̂ − Fθθ̂

)
,

iωu(1) � − �2c
4πηbr3

(
2Fr r̂ − Fθθ̂

)
,

r(v)
c � a/

√
6(1 − ν),

r(u)
c �

√
2 �c. (49)

In this limit the two components flow with different ve-
locities. The network flow is larger and crosses over to
the asymptotic one at a larger distance. The sign of the
sub-asymptotic terms in eqs. (48) and (49) indicates the
dominance of the force-quadrupole contribution to these
terms [12], leading to a negative correction to the longitu-
dinal response and a positive correction to the transverse
one.

4.2 Sticking fluid and slipping network

If the network is allowed to fully slip over the sphere sur-
face, the four boundary conditions become

v(a, θ) = U ẑ, iωur(a, θ) = U cos θ, σ
(u)
rθ (a, θ) = 0. (50)

The friction coefficient in this case turns out as

γ

6πηba
= 1 − (�2c − ξ2)(a2 + 2λ2 + 2aλ + 2�2c)

(a2 + 2λ2 + 2λa)(aξ + 3�2c) + 2�2c(aξ + �2c)
.

(51)

Analysis of eq. (51) leads to the following three lim-
its. For a sufficiently large sphere, satisfying either a �
max(�2c/ξ, λ) or �2c/ξ � a � λ, we obtain the GSR of
eq. (46). This condition is even harder to fulfill than the
one in sect. 4.1. For a smaller sphere, we obtain a modified
relation

a � min(�2c/ξ, λ) :
γ

6πηba
� 2λ2

3λ2 + �2c
=

4(1 − ν)
7 − 8ν

. (52)

In the limit of an incompressible network this expression
describes a sphere with slip boundary conditions in a fluid
of viscosity ηb(ω), γ = 4πηba. The third limit, λ � a �
�2c/ξ, gives the same compressibility-independent full-slip
result. Note again that the same change from the GSR
(eq. (46)) to a slip- and compressibility-dependent relation
(eq. (52)) is achieved also by decreasing ω, as noted in
ref. [9].

The asymptotic flow remains that of eq. (39). We
give the full expressions for the sub-asymptotic flow and
crossover lengths in ref. [24]. Assuming again that ξ is the
smallest length, there are two limiting cases. For a very
large sphere

a � λ : v(1) � −1
2
iωu(1) � �2c

12πηbr3

(
2Fr r̂ − Fθθ̂

)

r(v)
c � r(u)

c /
√

2 �
√

2/3 �c. (53)

For a smaller sphere,

a � λ : v(1) � a2(1 − 2ν)
48(1 − ν)πηbr3

(
2Fr r̂ − Fθθ̂

)

iωu(1) � − �2c
4πηbr3

(
2Fr r̂ − Fθθ̂

)

r(v)
c �

√
(1 − 2ν)/[6(1 − ν)] a

r(u)
c �

√
2 �c. (54)

Therefore, for the case of a slipping network we find in
the sub-asymptotic region relative flow of the two com-
ponents. Note the change of sign of the sub-asymptotic
v(1) in eqs. (53) and (54) as compared to sect. 4.1. This
marks the dominance of the mass-dipole effect in these
1/r3 terms, leading to a positive correction to the longitu-
dinal response and a negative correction to the transverse
one. Yet, as in sect. 4.1, these effects are of limited rele-
vance as they set in at distances comparable to the particle
size.
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4.3 Sticking fluid and free network

The third and last case that we consider is a free net-
work, i.e., one that does not directly exchange stresses
with the sphere. The network moves only because of its
coupling to the fluid. Discussing the physical relevance of
these conditions is deferred to sect. 5. The corresponding
four boundary conditions are

v(a, θ) = U ẑ, σ(u)
rr (a, θ) = σ

(u)
rθ (a, θ) = 0. (55)

Here, the force exerted on the sphere comes solely from
the fluid component, without contribution from the net-
work. The friction coefficient turns out as

γ

6πηba
=

a2λ(a + λ)(aξ + ξ2 + 2�2c)+
a2λ(a + λ)(aξ + 3�2c)+

· · ·

· · · + 2�2cξ(a + 3λ)(2a + 3λ)(a + ξ)
+ 2�2c(a + 3λ)(2a + 3λ)(aξ + �2c)

. (56)

The condition of a free network should be appropriate, in
particular, for beads smaller than the mesh size. Hence,
unlike the preceding two sub-sections, we do not assume
that ξ is the smallest scale. This leads to three limit-
ing cases. For a very large sphere, satisfying either a �
max(�2c/ξ, λ) or �2c/ξ � a � λ, the GSR of eq. (46) is re-
covered. For smaller spheres, where �c � a � min(�2c/ξ, λ)
or λ � a � �2c/ξ, the effective-slip result is obtained,
γ � 4πηba. For yet smaller spheres, we get

a � �c : γ � 6πηa
[
a2/(9ξ2) + a/ξ + 1

]
. (57)

For the current boundary conditions, and spheres smaller
than the mesh size, eq. (57) enables us to recover the or-
dinary Stokes relation, γ � 6πηa. For spheres of interme-
diate size, ξ � a � �c, a different relation is obtained
from eq. (57), γ � (2/3)πηa3/ξ2. Note that both of these
limiting expressions are independent of compressibility.

The asymptotic flow remains in its universal form,
eq. (39). The full expressions for the sub-asymptotic flows
and crossover distances are found in ref. [24]. We present
results in the following two opposite limits. For very large
spheres the sub-asymptotic flows and crossover distances
coincide with those of a sphere in an ordinary Stokes flow
as found in sect. 4.1, eq. (48). For small spheres, however,
we obtain

a � �c : v(1) � 3�2c [a
2 + 3ξ(a + ξ)]

4πηb[a2 + 9ξ(a + ξ)]r3

(
2Fr r̂ − Fθθ̂

)

iωu(1) � �2ca
2

2πηb[a2 + 9ξ(a + ξ)]r3

(
2Fr r̂ − Fθθ̂

)

r(v)
c �

(
6[a2 + 3ξ(a + ξ)]
a2 + 9ξ(a + ξ)

)1/2

�c

r(u)
c � 2a

[a2 + 9ξ(a + ξ)]1/2
�c. (58)

As in sect. 4.2, the sign of the sub-asymptotic flows for
a � �c indicates the dominance of the mass-dipole contri-
bution to the 1/r3 terms. However, in the present case, the

effect is amplified by a much larger mass dipole, propor-
tional to �2c/ηb = ξ2/η. This is because the bead displaces
only the local fluid as it oscillates without contact with
the network. Consequently, we expect large positive and
negative corrections, respectively, to the longitudinal and
transverse responses, pushing the crossover between the
sub-asymptotic and asymptotic behaviors further away to
a distance ∼ �c, much larger than both ξ and a.

4.4 Scaling relations

The problem which we have been studying depends on
three lengths — a, ξ, λ — and two viscosities — η, ηb.
(Equivalently, one of the viscosities can be traded for the
fourth length �c.) Any quantity of interest, such as γ,
r3v(1), or r

(u,v)
c , once properly scaled, can be expressed

as a dimensionless function of ξ/a, λ/a, and ηb/η. If we
assume the limits of large λ/a and ηb/η (both satisfied in
most practical circumstances), we are left with functions
of ξ/a ≡ x alone. Such single-variable scaling functions are
useful for comparison between experiment and theory [12]
and for reliable extraction of material parameters, such as
the correlation length ξ [13]. We concentrate on the prop-
erties γ, v(1), and r

(v)
c , in the limit a � �c, as these are

the most relevant experimentally.
We begin with the sphere’s friction coefficient γ, which

is directly measured in one-point microrheology. We define
the scaling function γ̃i ≡ γi/(6πηba), where the index i =
1, 2, 3 corresponds to the three sets of boundary conditions
treated in sects. 4.1, 4.2, and 4.3. From eqs. (47), (52), and
(57) we find, respectively,

γ̃1(x) = 4(1 − ν)/(5 − 6ν) = const
γ̃2(x) = 4(1 − ν)/(7 − 8ν) = const

(ηb/η)γ̃3(x) = [1/9 + x(1 + x)]/x2. (59)

We turn next to the sub-asymptotic flow v(1) and fo-
cus on its radial component at zero angle, v

(1)
r (r, 0). This

function can be measured from the longitudinal displace-
ment correlations of particle pairs in the extended two-
point technique [12, 13]. We define the scaling function
ṽ
(1)
i ≡ [4πηb/(a2Fr)]r3v

(1)
r,i . Equations (49), (54), and (58)

yield, respectively,

ṽ
(1)
1 (x) = −1/[6(1 − ν)] = const

ṽ
(1)
2 (x) = (1 − 2ν)/[6(1 − ν)] = const

(η/ηb)ṽ(1)
3 (x) = 6x2[1 + 3x(1 + x)]/[1 + 9x(1 + x)]. (60)

Finally, we address the crossover distance r
(v)
c . Defin-

ing r̃
(v)
c,i ≡ r

(v)
c,i /a, we find from eqs. (49), (54) and (58) the

simple relation

r̃
(v)
c,i (x) =

∣∣∣ṽ(1)
i (x)

∣∣∣1/2

, (61)

where the functions ṽ
(1)
i (x) are given in eq. (60).
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In the case of the third set of boundary condi-
tions (sticking fluid and free network) the rescaled sub-
asymptotic flow and crossover distance, ṽ

(1)
3 and r̃

(v)
c,3 , de-

pend on the fluid viscosity η. As will be discussed in sect. 5,
this makes comparison between the two-fluid model and
experiment problematic. We would like to replace the sol-
vent’s η with the effective local viscosity sensed by the
sphere, ηl, e.g., as inferred from one-point microrheology
using the definition ηl ≡ γ/(6πa). Using eq. (57) we make
this replacement and obtain

(r̃(v)
c,3 )2 = ṽ

(1)
3 = 2(ηb/ηl)(x2 + x + 1/3). (62)

5 Discussion

5.1 Network-particle boundary conditions

We have formulated the particle-medium coupling in
terms of boundary conditions at the sphere surface, with-
out abandoning the continuum description. While the sol-
vent has been assumed to satisfy the stick boundary condi-
tion, three different sets of boundary conditions have been
assumed for the network. On top of the previously studied
network stick and slip [9], we have introduced boundary
conditions corresponding to a free network that does not
exchange stresses directly with the sphere. We expect the
different boundary conditions to hold in different exper-
imental scenarios. In cases where the network is bound
to the sphere, stick boundary conditions should clearly
hold. In scenarios where the sphere is surrounded by sol-
vent without direct contact with the network, the free-
network boundary conditions should be valid. This will
happen, for example, for particles much smaller than the
network mesh size and for those moving inside a solvent
“cage”. It is unclear what boundary conditions should be
used in-between these two extremes of strong contact and
no contact. For flexible polymer networks, which are nei-
ther bound to nor depleted from the bead, the appropri-
ate boundary conditions might be those of full or partial
slip [7].

We have focused on the effect of these different
particle-medium couplings on the following dynamic prop-
erties: (a) the sphere’s friction coefficient γ (equivalently,
its displacement autocorrelation in equilibrium); (b) the
asymptotically far flow field v(0) created by the sphere’s
motion (equivalently, the displacement pair correlation
function at large separations); (c) the sub-asymptotic flow
field v(1) (displacement pair correlation function at in-
termediate separations). All three properties are directly
accessible by microrheology — the first through one-point
measurements, and the other two through two-point ones.
We now discuss the results for these three properties.

5.2 Local dynamics

The results for γ underline the sensitivity of this one-point
property to the immediate environment of the particle,

as was indicated by earlier studies [3, 5, 7, 9–11, 18]. We
find that the GSR — the assumption underlying one-point
microrheology — is generally violated. It is valid only in
two quite strict limits: (a) a very large sphere, whose size
exceeds �c or λ, i.e., a length proportional to the mesh
size times a large factor dependent on ηb(ω)/η; or (b) a
smaller sphere comparable to the mesh size together with
a very high frequency, such that ηb(ω) � η. Otherwise,
there are significant deviations from the GSR, as given by
eqs. (47), (52), and (57). Naturally, the deviation is par-
ticularly large for the free-network boundary conditions
(eq. (57)), where the bulk viscosity ηb(ω) is replaced by
a local viscosity which is usually much smaller. (Theoret-
ically, according to eq. (57), it should be the solvent vis-
cosity η; yet, this is not so in practice. See the discussion
below.)

5.3 Far flow

The results for v(0), by contrast, are universal. The asymp-
totic flow always obeys, exactly, a generalized Oseen ten-
sor for a fluid with effective shear viscosity ηb(ω), eq. (39),
which is independent of boundary conditions and network
compressibility. This finding is in apparent contradiction
with earlier theoretical results, which we now discuss in
detail.

Levine and Lubensky observed that the component of
the two-point correlations perpendicular to the line con-
necting the two points, at large separations, depended on
compressibility [10, 11]. They suggested, therefore, to ex-
tract the compressibility from the ratio of perpendicular to
parallel components of two-point measurements. The rea-
son for the appearance of compressibility in their asymp-
totic expressions was that they considered a compressible
viscoelastic bulk, whereas in the two-fluid model there is
a background of incompressible fluid. As shown above,
at large distances the network and its solvent move to-
gether; the relevant compressibility, therefore, is that of
the medium as a whole (essentially the solvent’s), which
is, to a very good approximation, zero. The suggestion
made in refs. [10, 11] was subsequently tried experimen-
tally [6, 25]. A Poisson ratio of 0.5 (negligible compress-
ibility) was measured for actin networks [6, 25], and a
slightly smaller value for a mixture of actin and micro-
tubules [25]. Thus, a reliable microrheology measurement
of the compressibility of biopolymer networks has not been
achieved [26]. According to our analysis (eq. (39)) this is
simply because the 1/r pair correlations at large distances
do not depend at all on network compressibility; the ratio
of perpendicular to parallel components of this correlation
is invariably 1/2.

According to Fu et al. [9] the far flow depends on the
particular choice of boundary conditions at the sphere sur-
face. This disagreement with our results is readily resolved
once we notice that the universality of the far flow ap-
pears when we prescribe the force F acting on the sphere,
whereas they prescribed the sphere’s velocity. In other
words, the dependence of the far flow on boundary condi-
tions in ref. [9] arises only from the dependence of γ (i.e.,
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the single-particle force-velocity relation) on those bound-
ary conditions. We note that the flow velocity as a function
of force is the one related to the particles’ pair mobility
and, hence, the one relevant to two-point measurements.

On the one hand, the universality of v(0) reinforces
the robustness of asymptotic two-point microrheology for
measuring bulk shear moduli. On the other hand, the pair
correlations at asymptotically large distances cannot re-
veal separate properties of the network and solvent such
as network compressibility. A way to measure the com-
pressibility is outlined below in sect. 5.7.

5.4 Intermediate flow

The form of the relative flow at intermediate distances
is universal as well, assuming that one knows �c =
(ηb/η)1/2ξ; cf. eq. (41). However, the sub-asymptotic flow
accessible to two-point experiments, v(1), does depend on
boundary conditions. In the case of sticking or slipping
network it is of limited interest since it sets in at distances
comparable to the particle size. In the free-network case
the mass-dipole effect causing the sub-asymptotic flow is
strongly enhanced, as the bulk viscosity is replaced by the
local one. This makes the 1/r3 corrections to the asymp-
totic 1/r terms significant far from the sphere, making
them manifest in two-point microrheology [12].

5.5 Biopolymer networks

The results for the three sets of boundary conditions,
therefore, differ considerably. In particular, the free-
network case strongly deviates from those of sticking and
slipping networks. This is demonstrated in fig. 2 for the de-
pendence of the friction coefficient γ on network compress-
ibility, and the dependence of the observable crossover dis-
tance r

(v)
c on the mesh size ξ.

In the special case of entangled F-actin networks, the
appropriate boundary conditions, even for spheres signif-
icantly larger than the mesh size, are those of a free net-
work. The strong evidence for this unintuitive result comes
from agreement with experiments [12, 13] concerning the
large prefactor of ηb(ω)/η, which enhances the interme-
diate flow v(1) and squared crossover length (r(v)

c )2 com-
pared to the other boundary conditions. (See eqs. (58)
and (60).) Given the large differences in the results be-
tween the free-network conditions and the other two sets
(see fig. 2, for example), there is no way that stick or slip
boundary conditions could fit the experimental data. The
same seems to hold for microtubule networks, where a
crossover length much larger than the mesh size was ob-
served as well [25]. As mentioned above, the free-network
boundary condition leads also to the largest downward de-
viation of γ from the GSR. This accounts for the orders-
of-magnitude discrepancies found between one- and two-
point (or macroscopic) measurements in actin [3,5–7] and
microtubule [25] networks, as well as the sensitivity of
one-point measurements to the surface chemistry of the
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Fig. 2. (a) Friction coefficient, scaled by its value for an in-
compressible network, as a function of network Poisson ratio.
(b) Observable crossover distance as a function of correlation
length, both scaled by the bead’s radius. In both panels the
three curves, from bottom to top, correspond to the three
boundary conditions of sticking, slipping, and free network,
respectively. The free-network case is practically independent
of network compressibility (a) and characterized by a large
crossover distance (b). Parameters: ηb/η = 100, ξ/a = 1 (a),
ν = 0.45 (b).

beads [4, 8]. It may be related also to the unexpectedly
deep penetration of inert beads into actin networks [4].

In addition to the insensitivity of v(0) to network com-
pressibility, under the free-network boundary conditions
the one-point γ is also practically independent of com-
pressibility (fig. 2(a)). We are led to the conclusion that
measuring this parameter for biopolymer networks using
inert beads is probably impossible.

One should be able to reproduce the results obtained
above for the case of free-network boundary conditions
by introducing local heterogeneity. For example, extend-
ing the work of refs. [10, 11], one can consider a finite
shell of solvent surrounding the bead and apply the two-
fluid model outside the shell. This, however, adds another
length parameter to the model, which does not seem nec-
essary to account for experiments.
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The physical origin of the “phantom network” con-
dition — the lack of contact between a semiflexible net-
work and a bead larger than its mesh size — remains un-
clear. A depletion layer resulting from sphere-network re-
pulsion, be it a result of a genuine interaction potential
or an entropy-induced effect, would not prevent direct ex-
change of stresses over the experimentally relevant time
scales. For dilute semiflexible networks that do not bind
to the beads these stresses are apparently inconsequen-
tial.

5.6 The intermediate dynamic length

The entire analysis highlights the key role played by an in-
termediate dynamic length, �c(ω) ≡ [ηb(ω)/η]1/2ξ, which
was first pointed out in ref. [12]. It is the crossover dis-
tance separating the intermediate, relative (Brinkman)
flow from the asymptotic, collective (Stokes) flow. Unless
the frequency is very high such that ηb(ω) � η, �c is much
larger than the mesh size ξ. This length affects various
dynamic properties. For example, for the GSR to hold, we
have found that the bead must be larger than �c, not ξ.
This is true for all boundary conditions studied, even in
the case of a sticking network. (The bead should be even
larger, a � �2c/ξ in the cases of slipping or free networks.)
This underlines again the problem in using one-point mi-
crorheology based on the GSR or GSER. The distance �c,
although always affecting the crossover between the rela-
tive and collective flows, may be masked by a mixture of
terms when the crossover distance of the observable flow,
r
(v)
c , is measured. However, in the case of free-network

boundary conditions, as in actin networks, r
(v)
c is propor-

tional to �c, pushing the observed crossover to a distance
much larger than ξ, as demonstrated in fig. 2(b), and as
confirmed experimentally [12,13].

5.7 Further experimental consequences

The scaling relations derived in sect. 4.4 suggest ways to
sensitively extract various elusive parameters through ex-
tended microrheology combining one- and two-point mea-
surements. For example, to get the network’s Poisson ra-
tio (which may be frequency-dependent), one should use
a bead with surface groups that bind the network [4, 8],
to ensure stick boundary conditions, for which the sen-
sitivity of γ to ν is maximum (fig. 2(a)). One may then
apply the first relation in eq. (59) to extract ν. Here, the
one-point and two-point measurements are needed to get
γ and a reliable ηb(ω), respectively. Another example is
the ability to extract the network’s correlation length and
its dependence on parameters other than network concen-
tration, using eq. (62). This has already been successfully
demonstrated in refs. [12,13].

5.8 Open issues

We conclude with three broader issues raised by the
present study.

The first problem concerns a deficiency in the two-
fluid model. There is a certain inconsistency in the way
the model is constructed. On the one hand, it should break
down at length scales smaller than the mesh size ξ, where,
obviously, the network cannot be treated as a viscoelas-
tic continuum. On the other hand, one of the model pa-
rameters used at all scales is the solvent viscosity η, al-
though it is physically meaningful only at scales smaller
than ξ. In the case of the free-network boundary condi-
tions (sect. 4.3), the model seems to correctly cover the
entire range from a/ξ → ∞ down to a/ξ → 0; eq. (56) ap-
propriately reproduces γ = 6πηba in the former limit, and
γ = 6πηa in the latter. The validity question can be posed
in the following practical terms: can one extract the sol-
vent viscosity by tracking the motion of a bead larger than
ξ? If one believes the expressions derived in sect. 4, the an-
swer is evidently positive; for example, to get η one could
fit one-point measurements in actin networks to eq. (56),
or two-point measurements to eq. (58). In practice, at-
tempts to do so yielded unreasonable results [27]. At least
in this restricted sense of the meaning of η, the failure of
the model extends to lengths (e.g., particle sizes) much
larger than ξ and, therefore, is unrelated to the break-
down of the continuum limit. When using a combination
of one- and two-point measurements, there is a way to by-
pass this problem, which was demonstrated to work well
in the case of actin networks [12,13]. As already mentioned
in sect. 4.4, one can use the one-point measurement to de-
fine a local viscosity as sensed by the bead, ηl ≡ γ/(6πa),
and substitute it for η in the expressions relevant to two-
point measurements, such as v(1) and r

(u,v)
c . Since the one-

point property γ depends on particle size and frequency,
so does the local viscosity, ηl = ηl(a/ξ, ω), with the two
limits ηl(0, ω) = η and η(∞, ω) = ηb(ω). The necessity
to define the length-scale-dependent ηl indicates that an
actual complex fluid is not fully characterized by uniform
moduli as assumed by the two-fluid model. Instead, one
should introduce wavevector-dependent viscosities.

The second issue has to do with the emergence of
the mass-dipole term governing the relative, intermedi-
ate flow. The mass dipole in eq. (41), proportional to
�2c/ηb = ξ2/η, is independent of the particle size. This
is curious, because a vanishingly small particle obviously
cannot displace any fluid mass. The way in which an effec-
tive mass dipole builds up within a correlation “pore” of
characteristic size ξ, and what happens when there are
many such characteristic lengths, or none at all (as in
a fractal structure), are interesting questions to be an-
swered.

Finally, we would like to point out a possible relation
between the dynamic length �c discussed here and the di-
vergent dynamic length in polymer gelation and colloidal
glass transitions (and, perhaps, amorphous solidification
in general [28]). We notice that, as the material solidifies
and ηb(ω → 0) diverges, so does �c. Within the description
laid out here, the physics accompanying this transition is
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intuitively clear. As the crossover length �c(ω → 0) di-
verges, the intermediate, Brinkman region stretches out
to infinity. The fluid, flowing relative to the network at all
distances, loses its translational invariance, and the net-
work turns into a solid porous matrix.

I am indebted to Adar Sonn-Segev and Yael Roichman for
a fruitful collaboration and many discussions. Helpful discus-
sions with Yitzhak Rabin and Tom Witten are gratefully ac-
knowledged. This research was supported by the Israel Science
Foundation under Grants No. 8/10 and No. 164/14.

References

1. T.M. Squires, T.G. Mason, Annu. Rev. Fluid Mech. 42,
413 (2010).

2. T.G. Mason, D.A. Weitz, Phys. Rev. Lett. 74, 1250 (1995).
3. J.C. Crocker, M.T. Valentine, E.R. Weeks, T. Gisler, P.D.

Kaplan, A.G. Yodh, D.A. Weitz, Phys. Rev. Lett. 85, 888
(2000).

4. J.L. McGrath, J.H. Hartwig, S.C. Kuo, Biophys. J. 17,
3258 (2000).

5. D.T. Chen, E.R. Weeks, J.C. Crocker, M.F. Islam, R.
Verma, J. Gruber, A.J. Levine, T.C. Lubensky, A.G. Yodh,
Phys. Rev. Lett. 90, 108301 (2003).

6. M.L. Gardel, M.T. Valentine, J.C. Crocker, A.R. Bausch,
D.A. Weitz, Phys. Rev. Lett. 91, 158302 (2003).

7. L. Starrs, P. Bartlett, Faraday Discuss. 123, 323 (2003).

8. M.T. Valentine, Z.E. Perlman, M.L. Gardel, J.H. Shin, P.
Matsudaira, T.J. Mitchison, D.A. Weitz, Biophys. J. 86,
4004 (2004).

9. H.C. Fu, V.B. Shenoy, T.R. Powers, Phys. Rev. E 78,
061503 (2008).

10. A.J. Levine, T.C. Lubensky, Phys. Rev. Lett. 85, 1774
(2000).

11. A.J. Levine, T.C. Lubensky, Phys. Rev. E 65, 011501
(2001).

12. A. Sonn-Segev, A. Bernheim-Groswasser, H. Diamant, Y.
Roichman, Phys. Rev. Lett. 112, 088301 (2014).

13. A. Sonn-Segev, A. Bernheim-Groswasser, Y. Roichman,
Soft Matter 10, 8324 (2014).

14. P.-G. de Gennes, Macromolecules 9, 587 (1976).
15. P.-G. de Gennes, Macromolecules 9, 594 (1976).
16. M. Doi, A. Onuki, J. Phys. II 2, 1631 (1992).
17. S.T. Milner, Phys. Rev. E 48, 3674 (1993).
18. A.J. Levine, T.C. Lubensky, Phys. Rev. E 63, 041510

(2001).
19. R. Bruinsma, A.Y. Grosberg, Y. Rabin, A. Zidovska, Bio-

phys. J. 106, 1871 (2014).
20. H.C. Brinkman, Appl. Sci. Res. A1, 27 (1947).
21. D. Long, A. Ajdari, Eur. Phys. J. E 4, 29 (2001).
22. H. Diamant, Isr. J. Chem. 47, 225 (2007).
23. H. Diamant, J. Phys. Soc. Jpn. 78, 041002 (2009).
24. See Mathematica c© and PDF files provided on-line as Sup-

plementary Material.
25. V. Pelletier, N. Gal, P. Fournier, M.L. Kilfoil, Phys. Rev.

Lett. 102, 188303 (2009).
26. F.C. MacKintosh, A.J. Levine, Phys. Rev. Lett. 100,

018104 (2008).
27. A. Sonn-Segev, Y. Roichman, private communication.
28. H. Diamant, arXiv:1406.2508


