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Abstract

We consider a loss system with a fixed budget for servers. The system owner’s problem is choosing

the price, and selecting the number and quality of the servers, in order to maximize profits, subject to

a budget constraint. We solve the problem with identical and different service rates as well as with pre-

emptive and non-preemptive policies. In addition, when the policy is preemptive we prove the following

conservation law: the distribution of the total service time for a customer entering the slowest server is

hyper-exponential with expectation equal to the average service rate independent of the allocation of the

capacity.

Keywords: queues, capacity allocation; loss system.

1 Introduction

The prevailing view is that pooling demand, i.e., combining queues into a single queue, yields a lower

average waiting time. Some proofs appear in the literature (see, e.g., Rothkopf and Rech [36] and the

references therein; we note that they also present some cases where combining queues is disadvantageous).

An interesting related question that arises in a single queue system with total service capacity µ is how many

servers to employ and how to allocate capacity among them in order to maximize profit. Of course, if the

system allows for an infinite queue, it is best to allocate all capacity to a single server. In this paper we

consider the other extreme where there is no queue, i.e., a loss system.

We consider the problem of determining optimal capacity allocation among servers in a Markovian loss

system, i.e., an M/M/k/k queueing model. We assume that the system manager has a given amount of

capacity µ. The objective is to maximize the profit of the system by properly selecting the number of

servers, k, capacities, µi,
∑

i µi = µ, and a (state-independent) admission fee, p. Customers incur waiting

costs and act strategically by joining the fastest available server if and only if the service value exceeds

expected waiting costs.

Loss systems (also called loss queues) are queueing systems with no waiting positions, i.e., when all servers

are busy new arrivals are rejected. Loss systems model various components in a wide range of applications,
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such as telephone systems, computer networks, optical networks, and cloud computing (see, for example,

[4, 20, 24, 42]).

We study capacity allocation in both preemptive and non-preemptive loss systems. In the preemptive case

it is possible at any time to preempt service of a customer and immediately resume it with a different server

from the same point. We assume no switching costs involved with reassigning customers. This assumption

is often realistic, for example in cloud computing, and these costs are often negligible.

Capacity allocation has been studied in many applications as we describe below.

The formal definition of our model is as follows.

1.1 Model description

We consider an M/M/k/k loss system with arrival rate λ and a fixed budget µ for servers. Specifically,

1. The arrival process is Poisson with rate λ, and the service time of each server is exponentially dis-

tributed. Total service rate is µ.

2. Arriving customers choose between joining the fastest free server or balking. Customers are rejected if

all servers are busy. The number of servers and service rates are public knowledge.

3. Customers are risk neutral, maximizing the expected net benefit.

4. A customer joining the system pays an admission fee p and incurs cost C per unit time in the system.

The customer benefit from completed service is R.

5. The system owner has total available capacity µ. Decision variables are the number of servers k, service

rates µ1, µ2, . . . , µk (
∑k

i=1 µi = µ), and admission fee p.

6. Servers are numbered so that

µ1 ≥ µ2 ≥ · · · ≥ µk. (1)

With preemption allowed, when server i becomes idle, every customer obtaining service from a slower

server j immediately jockeys to server j − 1 (j = i + 1, i + 2, . . . , k), i.e., all customers of servers

i + 1, i + 2, . . . , k (if any), immediately shift one server down. Consequently, at any point in time the

set of active servers is {1, . . . , i} for some i.

Suppose the system has k servers. Optimal admission fee p can be obtained as follows. Clearly, under

an optimal solution all servers are active a positive fraction of the time, meaning an arriving customer will

enter the system even if the only free server is the slowest one. Let W (k) be the total service time of a
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customer who begins service at the slowest server, k. A customer would be ready to join the slowest server

if R ≥ CE(W (k)) + p. To achieve optimal profit, the system owner will increase the admission fee to the

maximum level such that

p(k) = R − CE(W (k)). (2)

Note that the way in which E(W (k)), and with it p(k), is determined depends on whether or not preemption

is allowed. Without preemption, E(W (k)) is simply the expected service time at the slowest server, whereas

with preemption one has to take into consideration the possibility of being reassigned to faster servers.

Let πk denote the steady-state probability that all k servers are busy, and let Z(k)(·) denote profit. Then,

Z(k)(λ, p, πk) = λp(1 − πk). (3)

We also use the following normalized system parameters: ρ = λ/µ, and νe = Rµ
C .

Throughout the paper we use the notation, h(n) = Θ(g(n)) if there exist k1, k2 > 0 and n0 such that for

all n > n0,

k1 · g(n) ≤ h(n) ≤ k2 · g(n).

1.2 Discussion of the modeling assumptions

The main assumption of our model is that customers are not willing to wait and arrivals when all servers

are busy are lost. In the non preemptive model the system manager must balance the desire to fully utilize

all existing capacity when the system is not empty with the desire to reduce customer loss. The first goal

encourages having a small number of fast servers, while the second goal gives incentive for having many

servers. In contrast, the preemptive model does allow for more flexibility and solutions such as M/M/s/s+k

can be implemented by having s fast servers and k additional “servers” with zero capacity.

The Poisson arrival process is commonly accepted as a good description of many real life situations.

We also assume service is exponentially distributed. This assumption is harder to justify, except that it is

commonly used for tractability. However, we don’t use this assumption in Section 2.1 because the probability

that all servers are busy is independent of service distribution, at least when the servers are identical. On

the other hand, we expect the solution of the preemptive model with a general service distribution to be very

different and much more difficult. The reason being that estimating expected time in the system includes

estimates of residual service time of currently engaged servers, based on their number. These estimates are

difficult to obtain, even in the single server case, and it is not even clear whether or not a system with more

busy servers means a longer expected sojourn time. (Similar difficulties already exist in the M/G/1 queue,

3



where the equilibrium joining strategy is not necessarily a threshold strategy. See Altman and Hassin [6]

and Kerner [25].)

We assume there is a fixed amount of capacity to be allocated to servers. A more realistic scenario

would assume that total capacity of the system is also a decision variable. Thus, the model needs to be

complemented by assuming a cost function, C(µ), for acquiring capacity µ. However, the solution to the

problem with fixed capacity is clearly all one needs in order to solve this generalization, and therefore this

is what we focus on.

We assume customers to be risk neutral. This assumption may not generally hold in real life cases, but it

is commonly required to keep the problem tractable. Technically, with a nonlinear utility function even the

simplest formulas, like the amount a customer is ready to pay for service, become complicated expressions

depending on the whole service distribution rather than only on its mean value. This means that we will

not get elegant formulas for the solution as we have now.

We assume the system is observable, i.e., an arriving customer knows the service rate of its intended

server in addition to the queue discipline. An unobservable system will lead to very different analyses and

results. For example, we expect that, unlike in the observable model, in the unobservable case it is never

optimal to allocate capacity evenly among servers. In both cases, faster servers are more highly utilized

and pooling is advantageous, but in the observable case the price is determined according to the slowest

server, and this provides an incentive to equally allocate capacity. In the unobservable case, the price is

determined by the unconditional expected waiting time, and therefore the incentive to increase the capacity

of the slowest server is not as strong. We leave the solution of the unobservable model as an interesting topic

for future research.

1.3 Main results

• The non-preemptive case:

– For identical servers, we find the optimal profit-maximizing number of servers (Theorem 2.4).

– For large scale service systems with identical servers, we compute the asymptotic order of growth

in the optimal number of servers and the service rate (Theorem 2.6).

– For non-identical servers, we derive a necessary and sufficient condition for uniform allocation of

service capacity to be optimal when there are two servers (Theorem 3.2).

– For the case of more than two servers, we conjecture a necessary condition for the existence of an

optimal uniform allocation and provide the numerical support (Conjecture 3.6).
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• The preemptive case:

– We characterize the distribution of the service time, W (k), of a customer who begins service at

the kth server (Theorem 4.1).

– We show that E(W (k)) is the same as in the case of identical servers in the non-preemptive case,

irrespective of the allocation (Corollary 4.2).

– We show that the optimal solution allocates capacity solely to one server, and that uniform

allocation minimizes expected profit (Theorem 4.3).

– We derive the optimal number of servers and show that it is consistent with the social welfare

maximizing buffer size in Naor’s model [34] (Theorem 4.5).

1.4 Literature review

Capacity management has been studied in many contexts, and some relevant applications of which are

described in Schweitzer and Seidmann [37]. Models of capacity allocation assume fixed capacity allocated

among service stations in order to optimize some performance measure. The literature on capacity allocation

can be partitioned into discrete models of optimal allocations of servers among multi-service stations, and

models where the fraction of capacity allocated each station is a continuous decision variable. The first group

includes Rolfe [35], Stecke and Solberg [41], Shanthikumar and Yao [39], Dallery and Stecke [12], Green and

Guha [16], Hillier and So [21], Hung and Posner [23], Baron, Berman and Krass [9], and Zhang, Berman,

Marcotte, and Verter [47].

The present paper belongs to the second group, which we will now describe. A main difference between

these models and ours is that they assume customer routing is independent of the system’s state, whereas

we assume an arriving customer joins the fastest available server. We also consider the option of reassigning

a customer when a faster server becomes available. A similar approach has been followed by Xu and

Shanthikumar [45] who compute the socially optimal admission control policy when servers with given service

rates are indexed (for example, in decreasing order of their service rate) and a new customer is assigned to the

lowest indexed available server, if one exists. In contrast, we consider profit maximization and service rates

to be decision variables. Similar to most of the literature on routing demand to servers (see, for example,

Bell and Stidham [8]), Xu and Shanthikumar do not allow for customer reassignment. Reassignment is

allowed in Akgun, Down, and Righter [2], but in their model capacity allocation is given, and the problem

is to determine the admission policy. Kleinrock [26] finds the vector of service rates µ = (µ1, . . . , µk) in a

Jackson network that minimizes sojourn time per customer, subject to a budget constraint D =
∑

k dkµk,

where dk is the unit cost of capacity at station k, and D is the total available budget. The paper also
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reviews earlier work on capacity assignment. Wein [43] generalizes this result to general arrival and service

time distributions. Ahmadi [1] and Kostami and Ward [31] deal with optimal capacity levels for rides in an

amusement park during different time periods subject to a budget constraint.

Related literature considers combined routing and capacity allocation decisions. However, in our model,

the routing is determined by strategic users whereas in the models below it is determined by the manager.

See Shanthikumar and Xu [38], and §6 in Altman [5]. Korilis, Lazar, and Orda [30] (see also [29]) consider

a finite number of users, each wishing to minimize the expected delay by splitting demand among a set

of parallel heterogeneous M/M/1 servers with known service rates. The manager has an extra amount of

capacity available for allocation among the servers. The minimum total equilibrium wait in this game is

obtained by allocating the additional capacity exclusively to the server having the highest initial capacity.

This result resembles ours for the case of preemptive regime (see Theorem 4.3), though for a different model.

Other related literature deals with dedicated servers, i.e., there are classes of customers or demands, and

a server can serve a specific class. This is in contrast to our model, in which demand is homogenous and

each server can serve each customer. Glasserman [15] considers allocating a given capacity among several

items produced by a manufacturer. Production of each item follows a base-stock policy. The manufacturer’s

objective is to minimize holding costs subject to a service-level constraint. Similarly, Hong and Lee [22]

consider the profit maximizing way of splitting a given capacity between two servers subject to linear demand

function with substitution effects, waiting costs, and lateness penalties imposed when exogenously given delay

guarantees are violated. De Kok [28] considers a packaging facility whose capacity must be allocated among

different package sizes. Almeida, Almeida, Ardagna, Cunha, Francalanci, and Trubian [3] compute optimal

admission of multi-class demand and allocation of a given capacity among the dedicated servers where value

is generated from a customer only when sojourn time does not exceed the service level agreement of its class.

Yolken and Bambos [46] assume the system operator has fixed capacity to be split among N users. User

i dedicates the capacity allocated for serving its own demand. Users delay sensitivity is unknown to the

system operator and allocation of capacity is done through a bidding mechanism.

Some works combine dedicated and non-dedicated servers. For example, Chao, Liu, and Zheng [10] de-

scribe a capacity allocation model motivated by health-care management. There are N service stations, with

a dedicated nonswitchable rate of demand for every station, and also a stream of non-dedicated switchable

customers. Mandjes and Timmer [33] consider competition between two Internet providers. Each competitor

has fixed capacity which it may split among several subnetworks which differ in their capacity and price.

Customers choose one of the offered subnetworks or balk. The authors examine the equilibrium outcomes of

this game. Shumsky and Zhang [40] similarly study a multi-period capacity allocation model. Initially there
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is a given amount of capacity and the decision maker sequentially allocates capacity after observing demand

within each period.

An interesting empirical result appears in the recent paper of Lu, Musalem, Olivares and Schilkrut [32].

They conducted an experiment in a physical queue and found that customers’ decisions of joining the queue

are mainly affected by queue length without any adjustment for service speed. Since pooling multiple queues

into a single queue increases queue length, this leads to higher loss probability and lower revenues. This

empirical finding conforms with our theoretical conclusions.

The asymptotic results in this paper are related to large scale service systems, introduced by Atar [7].

A collection of large scale queue systems is called a heavy traffic regime if ρ(n) → 1 under a second order

condition (see [7] and references therein). In the conventional regime (see Chen and Yao [11]), the number

of servers does not change. In contrast, the regime introduced by Halfin and Whitt [17] considers systems

with a large number of servers, while the individual service rates do not change ([17]). Atar [7] introduces

the α-parametrization and in describing it discusses a single-class queueing model M/M/N with parameters

λn, µn, and Nn, depending on some scaling parameter n. Let the external arrival rate increase as Θ(n).

Given some α ∈ [0, 1], assume the number of servers is Θ(nα), while each individual service rate scales as

n1−α. In addition, let a suitable critical load condition hold and then the extremal cases α = 0 and α = 1

correspond to the conventional and Halfin-Whitt regimes, respectively. The optimal regime in our model is

appropriate (as we show) for the case α = 2
3 .

The rest of the paper is organized as follows. The main results along with with their theoretical devel-

opment, appear in §2, §3 and §4. §5 provides some directions for future research. Appendix A contains the

proofs.

2 Non-preemptive policy: identical service rates

In this section, we assume that the service rates must be equal, i.e., µi = µ/k, i = 1, . . . , k. We remark that

the results in this section also hold for M/G/k/k loss systems.

We denote the system’s profit when using k identical servers by Z̄k, and the optimal number of servers

by k∗, i.e.,

k∗ := argmax{ Z̄k : k = 0, 1, 2, ... }. (4)

Consider a fixed k. Since the servers are identical, the mean service time of a customer is

E(W (k)) =
1

µi
≡ k

µ
. (5)
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Substituting in (2), we obtain that the admission fee is

p(k) = R − Ck

µ
. (6)

Substituting in (3), the profit of the system’s owner is

Z̄k = λp(k)(1 − πk) = λ
(
R − Ck

µ

)
(1 − πk) = Cρ(νe − k)(1 − πk). (7)

For identical servers, πk is given by the well-known Erlang’s loss formula: (see, e.g., [27] page 105):

πk = π̄k ≡ (kρ)k/k!
k∑

l=0

(kρ)l/l!

. (8)

(The bar symbol emphasizes the fact that the servers are identical.) Substituting π̄k in (7) yields

Z̄k = Cρ(νe − k)(1 − π̄k) = Cρ(νe − k)

(
1 − (kρ)k/k!

k∑
l=0

(kρ)l/l!

)
. (9)

It is immediate from (6) that as k increases, the admission fee p(k) decreases and, by Lemma 2.1 below,

the admission probability, 1− π̄k, increases. Namely, there are opposing influences on the profit Z̄k. Hence,

given νe and ρ, it is interesting to find the profit maximizing number k∗ of (identical) servers.

We begin by showing that if the number of servers grows, the probability π̄k that all servers are busy

becomes smaller; recall that all proofs are given in Appendix A.

Lemma 2.1 {π̄k}∞k=0 is a strictly decreasing sequence, lim
k→∞

π̄k = ρ−1
ρ if ρ > 1, and lim

k→∞
π̄k = 0 if ρ ≤ 1.

In particular, for ρ = 1, π̄k = Θ(k−1/2).

The lemma can also be understood along the following reasoning. Let jk be the number of servers with

total rate λ i.e., jk = min
j

{j|j(µ
k ) > λ} or, jk = ⌈kρ⌉. Assuming λ < µ, is for every j ≥ jk, the birth and

death chain representing the number of customers in the queue has a drift left (i.e., towards jk). The number

of states with left drift is ⌊k(1 − ρ)⌋ and it increases to infinity, as k → ∞. As a result lim
k→∞

π̄k = 0.

In addition, π̄k can be interpreted as the probability of abandonment in a system with k servers and

infinite queue, serving extremely impatient customers. It is known (e.g., (2.23) in [44]), that in such systems

(with exponential time to abandonment) the limit for the probability of abandonment is (ρ−1)/ρ. Similarly,

with the many server queues with abandonment can also be used to establish that when ρ = 1 the probability

of abandonment i.e., π̄k grows as a square root (See e.g., Theorem 4 of [14]).

The following function f(·) will play a key role in our analysis; it is used for a characterization of the

optimal number of servers for profit maximizing:
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Definition 2.2

f(k) := k +
1 − π̄k−1

π̄k−1 − π̄k
, k = 1, 2, ...

and let f(0) := 0.

Lemma 2.3 For any ρ > 0, {f(k)}∞k=0 is a strictly increasing sequence, and limk→∞ f(k) = ∞.

Theorem 2.4 Given νe, ρ > 0, an optimal number of identical servers, k∗, satisfies:

f(k∗) ≤ νe < f(k∗ + 1). (10)

Large scale systems

We conclude this section by considering a large scale service system, that is, a collection of loss systems such

that in the nth system, n = 1, 2, ..., the total arrival and service rates are

λ(n) = λ · n + o(n), µ(n) = µ · n + o(n),

and λ = µ.

Therefore,

ρ(n) → 1, ν(n)
e ≡ Rµ(n)

C
= Θ(µ(n)) = Θ(n).

Denote the corresponding optimal number of servers by k(n). By Theorem 2.4 k(n) satisfies the conditions

f(k(n)) ≤ ν(n)
e < f(k(n) + 1). (11)

We further investigate the case ρ = 1. For this purpose, we look at the sequence {π̄k · k
1
2 }∞k=1. We will show

that it converges (to a finite limit.) First of all, it is bounded, since the inequality (30) (from the proof of

Lemma 2.1) is equivalent to

1

2.54
≤ π̄k · k 1

2 ≤ 4. (12)

Next, we will prove that its corresponding ratio sequence,

{
π̄k+1·(k+1)

1
2

π̄k·k
1
2

}∞

k=1

, converges. For this task, note

that we can express its kth element as:

π̄k+1 · (k + 1)
1
2

π̄k · k 1
2

=
π̄k+1

π̄k
·
(

1 +
1

k

) 1
2

.

The right multiplicand converges to 1. As for the left multiplicand, we use the following Lemma, whose

proof relies on a result by Harel [18]:

Lemma 2.5 When ρ = 1, the ratio sequence { π̄k+1

π̄k
}∞k=1 is increasing, and limk→∞

π̄k+1

π̄k
≤ 1.

9



Lemma 2.5 implies that { π̄k+1

π̄k
}∞k=1 converges, hence

{
π̄k+1·(k+1)

1
2

π̄k·k
1
2

}∞

k=1

converges as well. This fact and the

bounds (12) imply that the sequence {π̄k · k
1
2 }∞k=1 converges; denote this limit by b. Then π̄k ≈ b · k− 1

2 , that

is, π̄k = b · k− 1
2 + o(k− 1

2 ). Hence,

f(k) ≈ k +
1 − b√

k−1

b√
k−1

− b√
k

= k +
1
b

√
k2 − k −

√
k√

k −
√

k − 1
·
√

k +
√

k − 1√
k +

√
k − 1

= k + (
1

b

√
k2 − k −

√
k)(

√
k +

√
k − 1) = Θ(k3/2).

Therefore, f(k(n)), f(k(n) + 1) = Θ(k(n)3/2

), so the bounds (11) yield ν
(n)
e = Θ(k(n)3/2

). But ν
(n)
e = Θ(n),

hence we obtain n = Θ(k(n)3/2

) = Θ(µ(n)). Thus, we have established:

Theorem 2.6 When ρ = 1, the optimal number of servers k(n) grows as n2/3 and individual service rate

grows as n1/3.

3 Non-preemptive policy: different service rates

Here we allow the k servers to have different service rates. Recall that the service rates are sorted, that is,

µ1 ≥ µ2 ≥ · · · ≥ µk (µ1 + µ2 + · · · + µk = µ).

We assume that the routing policy is non-preemptive, i.e., after a customer is assigned to a particular server,

he cannot jockey to another server. Hence, the customer’s strategy is to enter the available server with the

highest index i such that R ≥ C
µi

+ p.

Since the kth server is the slowest, E(W (k)) = 1
µk

, so the optimal strategy of the system’s owner is to

set the admission fee by p(k) = R − C
µk

. (see (2)). We seek an optimal allocation, so we assume that all

servers are active, hence µk ≥ C
R and p ≥ 0. The core difficulty of our analysis lies in the computation

of πk; Erlang’s loss formula is no longer valid, since the servers are nonidentical, i.e., πk = πk(µ1, ..., µk).

Substituting in (3), we obtain the following expression of the profit of the system’s owner:

Z(k)(µ1, ..., µk) ≡ Cρ
(
νe −

µ

µk

)
(1 − πk(µ1, ..., µk)). (13)

(Note that µ is not an argument parameter of Z(k) since it is the sum of µ1, ..., µk; alternatively, we could

have used Z(k)(µ2, ..., µk; µ).)

3.1 Normalizing parametrization

In the rest of §3, it will be convenient to use the parametrization obtained by normalizing the rates: Let

d1 =
µ1

µ
, ... , dk =

µk

µ
(d1 + ... + dk = 1, d1 ≥ d2 ≥ · · · ≥ dk > 0.) (14)
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Note that (µ1, ..., µk) 6= ( 1
k , ..., 1

k ) if and only if dk < 1
k .

Adjusting (13) to this parametrization yields:

Z(k)(d2, ..., dk) = Cρ
(
νe −

1

dk

)
(1 − πk(d2, ..., dk)), (15)

where d1 is not an argument of both Z(k) and πk since d1 = 1 −∑k
i=2 di.

We are interested in values of dk for which the profit is positive, hence we assume that νe > k (so 1
νe

< 1
k ),

and denote the relevant domain of Z(k)(·) as follows:

Definition 3.1 Let I(k) ≡
(

1
νe

, 1
k

]
denote the effective domain of Z(k)(·).

3.2 Two servers

Here, the service rates of the two servers are µ1 and µ2 = µ − µ1, where µ1 ≥ µ2 > 0, i.e., 1
2µ ≤ µ1 < µ. Its

corresponding normalizing parametrization (see (14)) is:

d1 =
µ1

µ
, d2 =

µ2

µ
(d1 + d2 = 1, 0 < d2 ≤ 1

2
≤ d1 < 1),

Let π2(d2) denote the steady state probability that both servers are busy (as a function of d2), and let Z(d2)

denote the corresponding system’s profit. Applying (15), we obtain:

Z(d2) ≡ Z(2)(d2) = Cρ

(
νe −

1

d2

)
(1 − π2(d2)). (16)

(For convenience, since in this subsection we only consider two servers, we omit the superscript ‘2’.) Note

that

π

(
1

2

)
= π̄2, Z

(
1

2

)
= Z̄2.

Our goal is to characterize the situations in which the profit of a system with two identical servers is

larger than that of a system with two nonidentical servers (for any allocation of the total capacity).

Theorem 3.2 For all ρ, νe > 0,

Z(d2) < Z̄2 for all 0 < d2 <
1

2
⇐⇒ νe < g(ρ).

where g(ρ) := 8ρ2 + 16ρ + 18 + 8
ρ + 1

ρ2 .

It is easily verified that for any ρ > 0, the difference g(ρ) − f(3) is positive, monotone increasing (in ρ),

and diverges. Thus, the following sufficient condition holds:
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Corollary 3.3 For all ρ, νe > 0,

νe ≤ f(3) =⇒ Z(d2) < Z̄2 for all 0 < d2 <
1

2
.

Although this result is weaker than Theorem 3.2, we state it because we conjecture that it holds for an

arbitrary number of servers as well; see Conjecture 3.5 below.

We conclude our analysis by noting that for any νe, the condition of Theorem 3.2 holds for ρ sufficiently

large. Therefore:

Theorem 3.4 For any νe > 0, lim
ρ→∞

argmax
d2∈( 1

νe
, 1
2 ]

Z(d2) = 1
2 .

As we have seen so far, the various computations for the relatively simple case of k = 2 servers are fairly

involved. Now, we propose two conjectures for an arbitrary number of servers. We provide some preliminary

evidence that motivates them.

Our first conjecture is a straightforward generalization of Corollary 3.3, and provides a sufficient condition

for the superiority of identical servers when their number is fixed. We use the normalizing parametrization

(14) and its corresponding profit expression (15); recall that (µ1, ..., µk) 6= ( 1
k , ..., 1

k ) if and only if dk < 1
k .

Conjecture 3.5 For any fixed number k of servers and ρ > 0, in a non-preemptive policy,

νe ≤ f(k + 1) =⇒ Z(k)(d2, ..., dk) < Z̄k for all 0 < dk <
1

k
.

In addition to its correctness for two servers (Corollary 3.3), further support for its correctness stems from

numerical evidence for the case of k = 3 servers. Specifically, by (15),

Z(3)(d2, d3) = Cρ

(
νe −

1

d3

)
(1 − π3(d2, d3)) ,

where π3(d2, d3) is the probability that all three servers are busy. Using numerical computations, we can see

that Conjecture 3.5 holds in this case, namely, for all ρ > 0,

νe ≤ f(4) =⇒ Z(3)(d2, d3) < Z̄3 for all 0 < d3 <
1

3
. (17)

Our second conjecture concerns situations where k is not specified, i.e., it is a decision variable (as well

as µ1, ..., µk). We conjecture that in this case, the optimal solution consists of identical servers:

Conjecture 3.6 For any ρ, νe > 0, when the policy is non-preemptive, the profit maximizing solution con-

sists of identical servers; their number, k∗, is given in Theorem 2.4.
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We provide some motivation for its correctness by a special case. Let ρ > 0, and assume that νe ≤ f(4) and

k ≤ 3. We will see that in this case, the optimal solution consists of identical servers. We distinguish two

cases depending on the value of νe:

• Case 1. νe ≤ f(3): By Corollary 3.3 , for any 0 < d2 < 1
2 ,

Z(2)(d2) < Z(2)(
1

2
) = Z̄2.

Similarly, since νe ≤ f(4), (17) implies that for any 0 < d3 < 1
3 ,

Z(3)(d3) < Z(3)(
1

3
) = Z̄3.

Let k∗ be the optimal number of identical servers corresponding to ρ, νe (see (4)). By Theorem 2.4,

k∗ ≤ 3 (as νe ≤ f(4)). The claim follows.

• Case 2. f(3) < νe ≤ f(4): By Theorem 2.4, k∗ = 3. First of all, as in Case 1, for any 0 < d3 < 1
3 ,

Z(3)(d3) < Z(3)(
1

3
) = Z̄3.

At this point, it remains to show that no solution of two non-identical servers yields a higher profit,

i.e., for any 0 < d2 < 1
2 ,

Z(2)(d2) < Z̄3. (18)

The approach used in Case 1 turns out to be only partially beneficial; specifically, we verified numer-

ically that there exists 0.1952 < ρ0 < 0.1953 such that ρ > ρ0 ⇔ f(4) < g(ρ). Thus, if ρ > ρ0, then

νe < g(ρ), so Theorem 3.2 implies that for any 0 < d2 < 1
2 ,

Z(2)(d2) < Z(2)(
1

2
) = Z̄2 < Z̄3,

hence the claim follows.

So assume that ρ < ρ0. Then altogether we have f(4) > νe > g(ρ) > f(3) > 3. Substituting (7),(16),

we obtain that (18) is equivalent to:
(

νe −
1

d2

)
(1 − π2(d2)) < (νe − 3)(1 − π̄3). (19)

Note that this inequality involves νe, d2, and ρ so it is not clear how to verify its correctness. However,

we verified numerically that if we let d2 =
√

ρ2 + ρ−ρ, which is the maximizer of 1−π2(d2) by Lemma

A.5(ii), then this inequality holds for the two extreme possible values of νe, i.e., νe ∈ {g(ρ), f(4)};

specifically, for all 1
νe

< ρ < ρ0:
(

g(ρ) − 1√
ρ2 + ρ − ρ

)
(1 − π2(

√
ρ2 + ρ − ρ)) < (g(ρ) − 3)(1 − π̄3),

(
f(4) − 1√

ρ2 + ρ − ρ

)
(1 − π2(

√
ρ2 + ρ − ρ)) < (f(4) − 3)(1 − π̄3).

13



4 Loss systems with preemptive policy

In this section we consider an M/M/k/k loss system with preemptive routing policy. Note that the results

in this section assume that the number of servers, k, is given and fixed.

Recall that W (k) is the total service time of a customer who begins service at the slowest server k. In

our system, W (k) has the following form:

Theorem 4.1 W (k) is a hyper-exponential random variable with density

fW (k)(x) =
k∑

l=1

ul

(
l∑

i=1

µi

)
e−(

Pl
i=1 µi)x, (20)

where u1, . . . , uk are parameters such that
k∑

l=1

ul = 1.

The expected service time, E(W (k)), of a customer who joins the slowest server k is easily computed in

the two extreme cases. Surprisingly, they yield the same quantity, which is the same as in the identical-server

case with non-preemption; see (5) in §2:

• Case 1. All servers have the same rate, i.e., µi = µ
k for all i = 1, . . . , k. This case is equivalent to the

non-preemptive policy due to the memoryless property, so the expectation of a single service time with

rate µ
k is k

µ .

• Case 2. A unique server operates with the total rate µ and all other servers operate with zero rate,

i.e., they function as standby positions. Here, a customer who joins the kth server will leave the system

after k service periods, hence his expected service time is k
µ as well.

It turns out that this expected service time is the same for any allocation of the service rates. This

property is expressed by the following conservation law:

Corollary 4.2 For any allocation µ1 ≥ · · · ≥ µk (
∑k

i=1 = µ),

E(W (k)) =
k

µ1 + · · · + µk
=

k

µ
. (21)

Using this corollary, we can substitute (21) in (2) and obtain that for any allocation µ1, . . . , µk, the optimal

entry fee is

p(k) = R − Ck

µ
. (22)

Note that this is the same as in the identical-server case studied in §2; see (6). Consequently, the corre-

sponding profit of the system’s owner is:

Z̃(k)(µ1, . . . , µk) = λ

(
R − Ck

µ

)
(1 − π̃k(µ1, . . . , µk)), (23)

14



where π̃k(µ1, . . . , µk) is the probability that all servers are busy; the tilde symbol emphasizes that the policy

is preemptive.

It turns out that the optimal allocation in the preemptive case is the exact opposite of the one in the

non-preemptive case, namely, it is optimal to have a single server operating with the full service capacity µ

while all the other k − 1 servers are standby positions, and the equal-allocation is the worst. Formally:

Theorem 4.3 For any µ1 ≥ · · · ≥ µk with
∑k

i=1 µi = µ,

Z̃(k)(µ, 0, 0, . . . , 0) ≥ Z̃(k)(µ1, . . . , µk) ≥ Z̄k,

where Z̄k is the profit of a system with equal service rates as in §2; see (9).

We provide the proof of Theorem 4.3 below (rather than in Appendix A) because we believe that its key step

may be of independent interest. To this end, let µ1, . . . , µk be any allocation with µ1 ≥ · · · ≥ µk,
∑k

i=1 µi = µ.

Due to the memoryless property, π̃k(µ/k, . . . , µ/k) = π̄k (where π̄k is the probability corresponding to equal

service rates in the nonpreemptive policy; see (8).) It then follows from (23) that in order to prove the stated

inequalities, it suffices to show that

1 − π̃k(µ, 0, . . . , 0) ≥ 1 − π̃k(µ1, . . . , µk) ≥ 1 − π̃k(µ/k, . . . , µ/k),

or equivalently,

π̃k(µ, 0, . . . , 0) ≤ π̃k(µ1, . . . , µk) ≤ π̃k(µ/k, . . . , µ/k). (24)

Our method for establishing (24) is by viewing our system as a birth-death process. The shifting mechanism

that was described in the beginning of this section implies that the states of this system are 0, 1, . . . , k,

where state i means that there are i customers who are being served by the first (i.e., fastest) servers. It is

immediate that the birth rates (of states 0, 1, . . . , k − 1) are all λ. As for the death rates, let Sl ∼ exp(µl)

denote the service time of a customer at the lth server, l = 1, . . . , k. Recall that if servers 1, . . . , i are busy,

then the service time of the first of them to finish is distributed as min{S1, . . . , Si} ∼ exp(µ1 + · · · + µi).

Therefore, those rates, corresponding to states 1, 2, . . . , k respectively, are µ1, µ1 +µ2, . . . , µ1 + · · ·+µk−1, µ;

see Figure 1. Consequently, π̃k(µ1, . . . , µk) is exactly the steady-state probability of being in state k (note

that the preemption assumption was used in obtaining the death rates). Hence, it remains to establish:

Lemma 4.4 For the above birth-death process, the inequalities (24) hold for any µ1 ≥ · · · ≥ µk with

∑k
i=1 µi = µ.

See Appendix A for an algebraic proof of this Lemma. In addition, we provide a short intuitive argument as

follows. Let 1 ≤ i < j ≤ k and consider the ith and jth servers. Suppose that µj > 0. Then by transferring
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Figure 1: State diagram for our birth-death process.

some service rate from the jth server to the ith server, the corresponding death rates of states i, . . . , j − 1

increase, while all other are unchanged. Consequently, each of the k death rates is maximized when µ1 is as

large as possible, and is minimized when µk is as large as possible. The allocation (µ1, . . . , µk) = (µ, 0, . . . , 0)

clearly maximizes µ1; the allocation (µ1, . . . , µk) = (µ/k, . . . , µ/k) maximizes µk (due to the condition

µ1 ≥ · · · ≥ µk). This establishes Lemma 4.4 and hence completes the proof of Theorem 4.3.

Thus, Z̃(k)(µ, 0, 0, . . . , 0) is the maximum profit of the system’s owner, while Z̄k is the minimum. In

other words, it is best to allocate the total service capacity µ to a single server, and it is worst to allocate it

equally among all servers.

We conclude this section by analyzing the optimization problem when considering their number as well.

That is, we would like to maximize the profit Z̃(k)(µ1, . . . , µk) given in (23), where k is also a decision

variable. By Theorem 4.3 and (23), this problem reduces to finding the optimal number k∗ of servers that

maximizes:

Z̃(k)(µ, 0, 0, . . . , 0) ≡ λ

(
R − Ck

µ

)
(1 − π̃k(µ, 0, 0, . . . , 0)). (25)

Interestingly enough, this k∗ is equal to the buffer size in Naor’s model [34]; this follows since in this situation,

our model is equivalent to Naor’s. Specifically, we showed that the optimal number of servers consists of a

single server (with the total capacity µ) and k− 1 standby positions. This is equivalent to an M/M/1 queue
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with buffer size k − 1. Therefore, the optimal solution k∗ is equal to the profit maximizing buffer size in

Naor’s model [34]. Thus, we have established:

Theorem 4.5 In an M/M/k/k loss system with preemptive policy,

k∗ = nr,

where nr is the profit maximizing buffer size in Naor’s model [34].

5 Discussion and future research

In this paper we consider a multi-server system with non-preemptive and preemptive policy and show that

optimal solutions for the quality of servers for the two policies are opposite. Under the non-preemptive

policy we provide preliminary evidence that the optimal solution consists of identical servers. Under the

preemptive policy, it is optimal to allocate the total service rate to a single server while the other servers

operate at zero service rate, actually serving as standby positions. Below we present discussion topics and

some possible directions for future research.

1. In §3, we establish a necessary and sufficient condition for the superiority of two identical servers in

the nonpreemptive model when there are two available servers. Conjecture 3.5 suggests a sufficient

condition for the superiority of identical servers when the number of servers is fixed. Conjecture 3.6

suggests that when the number of servers is not fixed it is always optimal to use identical servers. The

corresponding birth-death equations seem fairly complicated. Thus, a challenging direction would be

to try to establish their correctness.

While our conjecture is not proved, we provide support for its validity. In particular, we follow the

conjecture by arguments showing that for ρ > 0.2, νe ≤ f(4) and k ≤ 3, the optimal solution is with

identical servers. As we can see, f(4) is rather large (for example, if ρ = 1 then f(4) = 22.43), so that

in many applications, the condition νe ≤ f(4) is satisfied.

2. Suppose the policy is preemptive, as in §4. However, the joining customer cannot observe the service

rate at a server before joining (i.e., customers cannot observe the number of busy servers), but he

knows the values µ1, . . . , µk and if there is an available server. Of course, the optimal strategy of the

system administrator is to employ faster servers at any time the. As such, customers can compute their

expected service time given there is an available server. This may mean a probabilistic equilibrium

joining strategy in which some customers give up service without trying – as in [13]. Hence, the effective

arrival rate to the system would be Pλ for some P ≤ 1, and the customers take this equilibrium value
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into account. The firm considers this while computing the profit maximizing price. As in §4, the

optimal solution will be a single active server with standby positions.

3. Note that if servers have identical capacities, or customers cannot observe the service rate of a particular

server to whom they are assigned, the optimal price will be such that the expected customer surplus

will be 0. In this case the firm’s strategy is socially optimal, as in [13]. However, when servers have

different capacities which are observable to customers (as in §4), price should be determined by the

slowest server, leaving customers with positive surplus. In this case the firm’s objective differs from

the socially optimal one and the profit maximizing price induces non optimal behavior. It is of interest

to compute the socially optimal price.

4. Recall the shifting mechanism in the preemptive model: whenever a customer completes service from

server i, all customers (if any) at servers j with j > i are simultaneously transferred one server down.

Also recall that the expected service time, E(W (k)), is the same (identically µ/k) for any capacity

allocation (see Corollary 4.2).

An interesting problem is to design a different, non-shifting, mechanism for transferring customers

between servers. For example, whenever a customer completes service at any server i which is not the

slowest (among the busy servers), we could transfer the customer currently being served by the slowest

server to i. By doing so we may be able to decrease E(W (k)), and consequently increase the admission

fee and hence profits (due to (2)). Note also that this will decrease the gap between the monopolistic

and social objectives, and the profit maximizing policy gets closer to optimizing social welfare. Perhaps

a more sophisticated mechanism will achieve equal expected service times, namely, for all i = 0, . . . , k,

E(W (i)) will not depend on i (the number of busy servers). In this case, the profit maximizing solution

is also socially optimal. Obtaining such a mechanism is a challenging combinatorial problem.

5. Other natural extensions include endogenous determination of budgeting for servers, incurring switch-

ing costs, and, of course, allowing for waiting in a queue when all servers are busy.
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A Appendix

Proof of Lemma 2.1 Define ak := π̄−1
k , hence

ak ≡ 1

(kρ)
k
/k!

k∑

l=0

(kρ)l/l!

= 1 +
1

ρ
+

(
1 − 1

k

)
1

ρ2
+

(
1 − 1

k

)(
1 − 2

k

)
1

ρ3
+ · · · +

(
1 − 1

k

)
· · ·
(

1 − k − 1

k

)
1

ρk
.

When k increases, each factor
(
1 − l

k

)
of ak increases. It follows that {ak}∞k=0 is a strictly increasing

sequence, and so {π̄k}∞k=0 is a strictly decreasing sequence.

Suppose ρ > 1. Then ak <
k∑

l=0

(
1
ρ

)l

→ 1
1− 1

ρ

= ρ
ρ−1 . Thus, the sequence {ak}∞k=0 is bounded and

increasing, so it converges to a finite limit, denoted α. Of course, α ≤ ρ
ρ−1 . Now, for every ǫ > 0 and for

every N , there exists k such that
N∑

l=0

(
1
ρ

)l

− ǫ ≤ ak ≤ α ≤ ρ
ρ−1 . Since α is constant, letting ǫ → 0 and k → ∞

gives α = ρ
ρ−1 . Consequently, π̄k → ρ−1

ρ .

Suppose ρ ≤ 1. Then for every N , there exists k such that each of the first 2N terms is larger than 1
2 , so

that, ak > N . Thus, the sequence {ak}∞k=0 is unbounded and increasing, so ak → ∞ and hence π̄k → 0.

Now let ρ = 1. We will show that as2 = Θ(s). It is easy to see that as2 =
s−1∑
t=0

(t+1)s∑
l=ts+1

∏l
i=1

(
1 − i

s2

)
.

Hence,

as2 ≤ s

[
s−1∑

t=0

ts+1∏

i=1

(
1 − i

s2

)]
, (26)

and

s

[
s∑

t=1

ts∏

i=1

(
1 − i

s2

)]
≤ as2 . (27)

By the AM–GM inequality, for every positive integers l, n:

(
l∏

i=1

(
1 − i

n

))1/l

≤ 1

l

l∑

i=1

(
1 − i

n

)
=

1

l

(
l − 1

n

l∑

i=1

i

)
= 1 − l + 1

2n
.

Substituting n = s2 and l = ts + 1, and using the inequality 1 − x ≤ e−x, we obtain:

ts+1∏

i=1

(
1 − i

s2

)
≤
(

1 − ts + 2

2s2

)ts+1

≤ e−
ts+2

2s2 (ts+1) ≤ e−
1
2 t2 .

Using this inequality in (26) yields:

as2 ≤ s
s−1∑

t=0

e−
1
2 t2 = s

s−1∑

t=0

(e−
1
2 )t2 ≤ s

∞∑

t=0

(e−
1
2 )t =

s

1 − e−1/2
. (28)

Now, (27) yields:

as2 ≥ s

[
s∑

t=1

ts∏

i=1

(
1 − i

s2

)]
= s

[
s∏

i=1

(
1 − i

s2

)
+

s∑

t=2

ts∏

i=1

(
1 − i

s2

)]

≥ s

[
s∏

i=1

(
1 − i

s2

)]
≥ s

[
s∏

i=1

(
1 − s

s2

)]
= s

(
1 − s

s2

)s

= s

(
1 − 1

s

)s

. (29)
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Combining (28),(29), we obtain that for all s > 2,

0.25 ≤
(

1 − 1

s

)s

≤ as2

s
≤ 1

1 − e−1/2
= 2.54. (30)

Substituting k = s2, we obtain that 0.25
√

k ≤ ak ≤ 2.54
√

k, which implies that π̄k ≡ a−1
k = Θ(k−1/2). This

completes the proof. 2

Proof of Lemma 2.3 First, we present the following result which was proved by Harel [18]: For any fixed

ρ > 0, π̄k is strictly convex as a function of k, that is, {π̄k − π̄k+1}∞k=0 is monotone decreasing (Theorem 6

in [18]). Recall that f(k) = k + 1−π̄k−1

π̄k−1−π̄k
. In order to establish the monotonicity, consider the second term,

1−π̄k−1

π̄k−1−π̄k
. The numerator is increasing (in k) since by Lemma 2.1, {π̄k}∞k=0 is decreasing. The denominator is

increasing since by Theorem 6 [18], {π̄k − π̄k+1}∞k=0 is decreasing. It follows that {f(k)}∞k=1 is an increasing

sequence.

As for the limit of f(k), note that the first term in f(k), which is k, trivially converges to ∞, and

the second term is nonnegative. As we just proved, {f(k)}∞k=1 is a strictly increasing sequence, hence

limk→∞ f(k) = ∞.

2

Proof of Theorem 2.4 We first show that k∗ is a solution to f(k) ≤ νe ≤ f(k + 1). Recall that Z̄k =

Cρ(νe − k)(1 − π̄k) (see (9)) and that f(k) = k + 1−π̄k−1

π̄k−1−π̄k
for k > 0 and f(0) = 0 (see Definition 2.2).

By definition of k∗, it satisfies (in particular): Z(k∗) ≥ Z(k∗ − 1) and Z(k∗) ≥ Z(k∗ + 1). We derive an

equivalent condition to the first of them:

Z(k∗) ≥ Z(k∗ − 1) ⇐⇒ (νe − k∗)(1 − π̄k∗) ≥ (νe − k∗ + 1)(1 − π̄k∗−1)

⇐⇒ (π̄k∗−1 − π̄k∗)(νe − k∗) ≥ 1 − π̄k∗−1

⇐⇒ νe ≥ k +
1 − π̄k∗−1

π̄k∗−1 − π̄k∗

= f(k∗),

that is, Z(k∗) ≥ Z(k∗ − 1) ⇐⇒ νe ≥ f(k∗). By substituting k∗ + 1 for k∗ and reversing the inequality, we

can obtain:

Z(k∗ + 1) ≤ Z(k∗) ⇐⇒ νe ≤ f(k∗ + 1).

Thus, k∗ is a solution to f(k) ≤ νe ≤ f(k + 1).

We note that if νe = f(l) for some integer l, there are two solutions to f(k) ≤ νe ≤ f(k +1), otherwise it

admits a unique solution. However, in the (unlikely) two-solutions-case, there is no preference of one solution

over the other, so we choose to break ties and take the minimum feasible solution. Therefore, from now on

we assume that k∗ is the (unique) solution to (10).
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2

Proof of Lemma 2.5 Theorem 1 in Harel [18] states that the function

f1(k) :=
k!

kk
·

k−1∑

l=0

kl

l!

is strictly concave in k (k = 1, 2, ...). Define ak := π̄−1
k , that is (recall that ρ = 1):

ak :=
k!

kk
·

k∑

l=0

kl

l!
=

k!

kk
·

k−1∑

l=0

kl

l!
+

k!

kk
· kk

k!
= f1(k) + 1.

It follows that {ak}∞k=1 is concave as well, that is, {ak − ak+1}∞k=1 is increasing. Equivalently, for any k,

2ak > ak−1 + ak+1. (31)

We will show that the ratio sequence {ak+1

ak
}∞k=1 is decreasing. The inequality (31) implies that

ak >
ak−1 + ak+1

2
≥ √

ak−1ak+1,

where the second inequality is the AM–GM inequality. Consequently, a2
k > ak−1ak+1, which is equivalent to

ak

ak−1
>

ak+1

ak
.

Thus, {ak+1

ak
}∞k=1 is decreasing, so { π̄k+1

π̄k
}∞k=1 is increasing.

It remains to establish convergence. The sequence {π̄k}∞k=1 is decreasing by Lemma 2.1, so for any k,

π̄k+1

π̄k
< 1. Thus, { π̄k+1

π̄k
}∞k=1 is increasing and bounded from above by 1, so limk→∞

π̄k+1

π̄k
≤ 1. 2

Proof of Theorem 3.2 We present Lemmas A.1-A.8 (their proofs are given below), in order to prove the

Theorem. We begin by deriving the exact expression for π2(d2) and Z(d2).

Lemma A.1

π2(d2) =
2ρ2

2ρ2 + 2ρ + (4ρ + 2)
d2−d2

2

ρ+d2

. (32)

Substituting in (16) yields:

Z(d2) = Cρ

(
νe −

1

d2

)

1 − 2ρ2

2ρ2 + 2ρ + (4ρ + 2)
d2−d2

2

ρ+d2



 .

Using multiplication and composition of functions, we can express Z(d2) as the following decomposition of

three functions:

Z(d2) = Z1(d2)(Z2(Z3(d2))), (33)

where

Z1(x) = Cρ

(
νe −

1

x

)
, Z2(y) = 1 − 2ρ2

2ρ2 + 2ρ + y
, Z3(z) = (4ρ + 2)

z − z2

ρ + z
. (34)
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It is easily verified that the derivatives of Z1(·), Z2(·), Z3(·) are:

Z ′
1(x) =

Cρ

x2
, Z ′

2(y) =
2ρ2

(2ρ2 + 2ρ + y)2
, Z ′

3(z) = −(4ρ + 2)
(z2 + 2zρ − ρ)

(ρ + z)2
. (35)

We assume that νe > 2 and the effective domain is I(2) ≡
(

1
νe

, 1
2

]
; see Definition 3.1.

Lemma A.2 Let ρ, νe > 0.

(i) Z1(·), Z2(·) are monotone increasing on I(2),

(ii) Z3(·) is monotone increasing on
(

1
νe

,
√

ρ2 + ρ − ρ
]
, and monotone decreasing on

[√
ρ2 + ρ − ρ, 1

2

]
,

(iii) For all ρ, νe > 0, Z(·) is monotone increasing on
(

1
νe

,
√

ρ2 + ρ − ρ
]
.

Part (iii) of this Lemma implies that d∗2, the maximizer of Z(d2), must be in
[√

ρ2 + ρ−ρ, 1
2

]
. We emphasize

that d∗2 need not equal 1
2 , i.e., an equal allocation is not always optimal. However, an equal allocation is

relatively good in the following sense:

Corollary A.3 For all ρ, νe > 0,

0 < d2 ≤ ρ

2ρ + 1
=⇒ Z(d2) < Z(

1

2
) = Z̄2. (36)

In order to further investigate Z(·) in
[√

ρ2 + ρ − ρ, 1
2

]
, we turn to establish some concavity properties.

Definition A.4 Let Z23 := 1 − π2 ≡ Z2 ◦ Z3, that is,

Z23(d2) := 1 − π2(d2) = 1 − 2ρ2

2ρ2 + 2ρ + (4ρ + 2)
d2−d2

2

ρ+d2

.

Lemma A.5 (i) Z1(·), Z2(·), Z3(·) are concave on I(2), (ii) Z23(·) is concave on I(2) and attains a maximum

at
√

ρ2 + ρ − ρ (if this value is inside I(2)).

Corollary A.6 Z(·) is concave on
[√

ρ2 + ρ − ρ, 1
2

]
.

This concavity property implies the following equivalent condition for the superiority of identical servers:

Lemma A.7 For all ρ, νe > 0,

Z(d2) < Z̄2 for all 0 < d2 <
1

2
⇐⇒ Z ′(

1

2
) > 0.

The condition Z ′(1
2 ) > 0 is further reduced to the following condition, which is much simpler to analyze:
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Lemma A.8 For all ρ, νe > 0,

Z ′(
1

2
) > 0 ⇐⇒ νe < g(ρ),

where g(ρ) := 8ρ2 + 16ρ + 18 + 8
ρ + 1

ρ2 .

Combining Lemmas A.7 and A.8 complete the proof.

2

Proof of Lemma A.1 First, we denote by π0(µ1, µ2), π
1
1(µ1, µ2), π

2
1(µ1, µ2) and π2(µ1, µ2), the limiting

probability that the system is empty, the fast server serves a customer, the slow server serves a customer,

and both servers are busy, respectively. The equations for our birth-death system are (we write in short

πi = πi(µ1, µ2))

−λπ0 + µ1π
1
1 + (µ − µ1)π

2
1 = 0,

−(λ + µ1)π
1
1 + λπ0 + (µ − µ1)π2 = 0,

−(λ + (µ − µ1))π
2
1 + µ1π2 = 0,

−µπ2 + λπ1
1 + λπ2

1 = 0,

π0 + π1
1 + π2

1 + π2 = 1.

Equivalently,

−ρπ0 + (1 − d2)π
1
1 + d2π

2
1 = 0,

−(ρ + 1 − d2)π
1
1 + ρπ0 + d2π2 = 0,

−(ρ + d2)π
2
1 + (1 − d2)π2 = 0,

−π2 + ρπ1
1 + ρπ2

1 = 0,

π0 + π1
1 + π2

1 + π2 = 1.

The solution of the system for π2(µ1, µ2) = π2(d2) is π2(d2) := 2ρ2

2ρ2+2ρ+(d2−d2
2)

4ρ+2
ρ+d2

. 2

Proof of Lemma A.2 Parts (i),(ii) follow immediately from the derivatives (35). For part (iii), note that

by parts (i),(ii), all the three functions Z1(·), Z2(·), Z3(·) are monotone increasing on
(

1
νe

,
√

ρ2 + ρ−ρ
]
. The

claim now follows from the decomposition (33) of Z(·) and the fact that multiplication and composition of

positive functions preserve monotonicity. 2

Proof of Corollary A.3 Fix 0 < d2 ≤ ρ
2ρ+1 . First of all, Lemma A.2(iii) implies that Z(d2) ≤ Z( ρ

2ρ+1 )

(it is easily verified that ρ
2ρ+1 <

√
ρ2 + ρ − ρ). To complete the proof, we will show that Z( ρ

2ρ+1 ) < Z(1
2 ).

It is easily verified that Z3(
ρ

2ρ+1 ) = Z3(
1
2 ) = 1, and hence (Z2 ◦ Z3)(

ρ
2ρ+1 ) = (Z2 ◦ Z3)(

1
2 ). However,
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Z1(
ρ

2ρ+1 ) < Z1(
1
2 ) by Lemma A.2(i). Now the inequality immediately follows from the decomposition

Z ≡ Z1(Z2 ◦ Z3) (see (33)). This completes the proof. 2

Proof of Lemma A.5 (i) As for Z1(·), Z2(·), it is clear that Z ′
1(x), Z ′

2(y) (see (35)) are monotone decreasing.

As for Z3(·), it is easily verified that the second derivative is:

Z ′′
3 (z) = −4ρ(2ρ + 1)(ρ + 1)

(ρ + z)3
,

which is negative for any z > 0.

(ii) By part (i), Z2(·), Z3(·) are concave on I(2). By Lemma A.2(i), Z2(·) is increasing on I(2). It follows

that Z23 ≡ Z2 ◦ Z3 is concave in I(2) as well. As for the maximum, this follows immediately from Lemma

A.2(i),(ii), as d2 :=
√

ρ2 + ρ − ρ maximizes Z3(·), and Z2(·) is increasing. 2

Proof of Corollary A.6 We will show that Z ′(·) is decreasing on
[√

ρ2 + ρ− ρ, 1
2

]
. Let x, y ∈

[√
ρ2 + ρ−

ρ, 1
2

]
with x < y. We claim that the following inequality holds:

Z ′(x) = (Z1Z23(x))′ = Z1(x)Z ′
23(x) + Z ′

1(x)Z23(x)

> Z1(y)Z ′
23(y) + Z ′

1(y)Z23(y) = Z ′(y).

Consider the first term. Z23(·) is concave (by Lemma A.5(ii)), so Z ′
23(x) > Z ′

23(y). However, it is easily

verified that Z ′
23(
√

ρ2 + ρ − ρ) = Z ′
3(
√

ρ2 + ρ − ρ) = 0, thus 0 ≥ Z ′
23(x) > Z ′

23(y). Since Z1(x) < Z1(y)

(by Lemma A.2(i)), it follows that Z1(x)Z ′
23(x) > Z1(y)Z ′

23(y). As for the second term, Z ′
1(x) > Z ′

1(y) by

Lemma A.5(i), and Z23(x) > Z23(y) since in
[√

ρ2 + ρ − ρ, 1
2

]
, Z3(·) in decreasing and Z2(·) is increasing

(by Lemma A.2(i),(ii)). This completes the proof. 2

Proof of Lemma A.7 First assume that Z ′(1
2 ) ≤ 0. Then Z(·) is non-increasing on some interval that

contains 1
2 , hence for ǫ > 0 sufficiently small, Z(1

2 − ǫ) ≥ Z(1
2 ).

Now assume that Z ′(1
2 ) > 0. We show that in this case Z(·) is increasing on I(2), and so d2 = 1

2 is the

unique maximizer of Z(·) over I(2). By Lemma A.2(iii), Z(·) is increasing on
(

1
νe

,
√

ρ2 + ρ−ρ
]
. By Corollary

A.6, Z(·) is concave on
[√

ρ2 + ρ − ρ, 1
2

]
, and this implies that Z(·) is increasing on

[√
ρ2 + ρ − ρ, 1

2

]
as

well, since Z ′(x) > Z ′(1
2 ) > 0 for any

√
ρ2 + ρ − ρ ≤ x < 1

2 . This completes the proof. 2

Proof of Lemma A.8 Applying the product rule to the decomposition Z = Z1Z23, we obtain:

Z ′(
1

2
) = Z1(

1

2
)Z ′

23(
1

2
) + Z ′

1(
1

2
)Z23(

1

2
). (37)

24



We proceed by calculating the four elements in the right hand side (using (34),(35)):

Z1(
1

2
) = Cρ(νe − 2),

Z ′
1(

1

2
) = 4Cρ,

Z23(
1

2
) = Z2(Z3(

1

2
)) = Z2(1) = 1 − 2ρ2

2ρ2 + 2ρ + 1
=

2ρ + 1

2ρ2 + 2ρ + 1
,

and it remains to compute Z ′
23(

1
2 ). We specify the required auxiliary computations:

Z ′
2(1) =

2ρ2

(2ρ2 + 2ρ + 1)2
, Z ′

3(
1

2
) = − 1

ρ + 1
2

= − 2

2ρ + 1
.

Using the chain rule:

Z ′
23(

1

2
) = (Z2 ◦ Z3)

′(
1

2
) = Z ′

2(Z3(
1

2
))Z ′

3(
1

2
)

= Z ′
2(1)Z ′

3(
1

2
) = − 4ρ2

(2ρ2 + 2ρ + 1)2(2ρ + 1)
.

Substituting in (37), we obtain:

Z ′(
1

2
) = − 4Cρ3(νe − 2)

(2ρ2 + 2ρ + 1)2(2ρ + 1)
+

4Cρ(2ρ + 1)

2ρ2 + 2ρ + 1

=
−4Cρ3(νe − 2) + 4Cρ(2ρ + 1)2(2ρ2 + 2ρ + 1)

(2ρ2 + 2ρ + 1)2(2ρ + 1)
.

The sign of Z ′(1
2 ) is determined by the numerator of the last expression. Thus,

0 < Z ′(
1

2
) ⇐⇒ 0 < −4Cρ3(νe − 2) + 4Cρ(2ρ + 1)2(2ρ2 + 2ρ + 1)

⇐⇒ 0 < −ρ2(νe − 2) + (2ρ + 1)2(2ρ2 + 2ρ + 1)

⇐⇒ νe < 2 +
(2ρ + 1)2(2ρ2 + 2ρ + 1)

ρ2

⇐⇒ νe < 2 +
8ρ4 + 16ρ3 + 16ρ2 + 8ρ + 1

ρ2

⇐⇒ νe < 8ρ2 + 16ρ + 18 +
8

ρ
+

1

ρ2
≡ g(ρ). (38)

2

Proof of Theorem 4.1 We will establish (20) by induction on k. Though the case k = 1 is trivial, we

choose to describe the case k = 2 in detail.

Induction basis: k = 2. We will show that:

fW (2)(x) =
µ1

µ2
fexp(µ1)(x) +

(
1 − µ1

µ2

)
fexp(µ1+µ2)(x)

=
µ1

µ2
µ1e

−µ1x +

(
1 − µ1

µ2

)
(µ1 + µ2)e

−(µ1+µ2)x, (39)

which is of the form (20) by letting u1 = µ1

µ2
, u2 = 1 − u1.
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Let U be the minimum between the service times of the two servers, and V be the service time of the

fast server. It is well known that, U ∼ exp(µ1 + µ2) and V ∼ exp(µ1). We write W (2) = U + I{ µ1
µ1+µ2

}V

where I{ µ1
µ1+µ2

} is Bernoulli random variable with success probability µ1

µ1+µ2
, and present the distribution

functions:

FU (x) =

{
1 − e−(µ1+µ2)x x > 0,

0 x ≤ 0,

FI
{

µ1
µ1+µ2

}
V (x) =





1 − µ1

µ1+µ2
e−µ1x x > 0,

µ2

µ1+µ2
x = 0,

0 x < 0.

Now, we compute the density of W (2) at x via convolution between

fU (x − y) =

{
(µ1 + µ2)e

−(µ1+µ2)(x−y) x ≥ y > 0,

0 otherwise,
and fI

{
µ1

µ1+µ2
}
V (y) =






µ2
1

µ1+µ2
e−µ1y y > 0,

µ2

µ1+µ2
y = 0,

0 y < 0,

where x > 0. Since there is discontinuity at 0, and the probability P (I{ µ1
µ1+µ2

}V = 0) is positive, we first

consider the range (0, x] and then add the density of the event {U = x, I{ µ1
µ1+µ2

}V = 0}. Thus:

x∫

0+

fU (x − y)fI
{

µ1
µ1+µ2

}
V (y)dy =

x∫

0+

µ2
1e

−(µ1+µ2)(x−y)e−µ1ydy = µ2
1e

−(µ1+µ2)x

x∫

0+

eµ2ydy

=
µ2

1

µ2
e−(µ1+µ2)x(eµ2x − 1) =

µ1

µ2
µ1e

−µ1x − µ2
1

µ2
e−(µ1+µ2)x,

and

P (I{ µ1
µ1+µ2

}V = 0)(µ1 + µ2)e
−(µ1+µ2)x =

µ2

µ1 + µ2
(µ1 + µ2)e

−(µ1+µ2)x = µ2e
−(µ1+µ2)x.

Now (20) follows by summing the last two expressions.

Induction step: We assume that (20) holds for k − 1 servers and show that it holds for k servers as well.

We assume that the theorem is valid for W (k−1) representing the total service time of customer who starts

a service at the (k − 1)st server. Let Uk be the minimum service time of k servers, Uk ∼ exp(µ1 + · · ·+ µk).

The waiting time for k servers is given by W (k) = Uk + I{ µ1+···+µk−1
µ }W

(k−1). We compute the density of

W (k):

x∫

0+

fUk(x − y)fI
{

µ1+···+µk−1
µ

}
W (k−1)(y)dy =

x∫

0+

µe−µ(x−y) µ − µk

µ

k−1∑

l=1

ul(

l∑

i=1

µi)e
−(

Pl
i=1 µi)ydy

=
k−1∑

l=1

ul(µ − µk)(
l∑

i=1

µi)e
−µx

x∫

0+

e[µ−(
Pl

i=1 µi)]ydy

=

k−1∑

l=1

ul(µ − µk)

∑l
i=1 µi

µ − (
∑l

i=1 µi)

(
e−(

Pl
i=1 µi)x − e−µx

)
.
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Since the probability P (I{µ1+···+µk−1
µ }W

(k−1) = 0) > 0, we have to add the density of the event {Uk =

x, I{ µ1+···+µk−1
µ }W

(k−1) = 0}:

P (I{µ1+···+µk−1
µ }W

(k−1) = 0)µe−µx =
µk

µ
µe−µx.

Hence,

fW (k)(x) =

k−1∑

l=1

ul

(
(µ − µk)

∑l
i=1 µi

µ − (
∑l

i=1 µi)
e−(

Pl
i=1 µi)x − (µ − µk)

∑l
i=1 µi

µ − (
∑l

i=1 µi)
e−µx +

µk

µ
µe−µx

)

=

k−1∑

l=1

ul

(
µ − µk

µ − (
∑l

i=1 µi)
·

l∑

i=1

µie
−(

Pl
i=1 µi)x +

µk − (
∑l

i=1 µi)

µ − (
∑l

i=1 µi)
· µe−µx

)

=

k∑

l=1

u′
lfexp(

P

l
i=1 µi)

(x),

where u′
l are coefficients of the random variables exp(

l∑
i=1

µi), l = 1, . . . , k. By the following equations

µ − µk

µ − (
∑l

i=1 µi)
+

µk − (
∑l

i=1 µi)

µ − (
∑l

i=1 µi)
= 1,

k−1∑

l=1

ul = 1,

the sum of the coefficients u′
l, l = 1, . . . , k is equal to one. This completes the proof. 2

Proof of Corollary 4.2 We use induction again. By (39), E(W (2)) = 2
µ . For any k, we assume that

E(W (k−1)) = k−1
µ−µk

. Clearly, E(Uk) = 1
µ and the claim follows from E(W (k)) = E(Uk) + µ−µk

µ E(W (k−1)).

2

Proof of Lemma 4.4 For convenience, let π̃k ≡ π̃k(µ1, ..., µk). Recall that for a k-state birth-death process

with birth rates α0, ..., αk−1 and death rates β1, ..., βk, the steady-state probabilities are:

π̃i =
α0α1 · · ·αi−1

β1β2 · · ·βi
π̃0 , i = 1, ..., k,

where

π̃0 =




k∑

j=0

α0α1 · · ·αj−1

β1β2 · · ·βj




−1

.

(The first term in the summation, corresponding to j = 0, is 1.) Thus, the inverse of π̃k is:

π̃−1
k =

∑k
j=0

α0α1···αj−1

β1β2···βj(
α0α1···αk−1

β1β2···βk

) =

k∑

j=0

βj+1βj+2 · · ·βk

αjαj+1 · · ·αk−1
.

Substituting α0 = ... = αk−1 = λ and βj = µ1 + ... + µj (j = 1, ..., k), we obtain:

π̃−1
k =

k∑

j=0

(µ1 + ... + µj+1) · ... · (µ1 + ... + µk)

λk−j
. (40)
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Thus, we would like to solve the two optimization problems:

max / min H(µ1, ..., µk) ≡
k∑

j=0

λj−k(µ1 + ... + µj+1) · ... · (µ1 + ... + µk)

s.t. µ1 + ... + µk = µ

µ1 ≥ ... ≥ µk ≥ 0.

These two problems can be solved by standard nonlinear programming methods such as Lagrange multipliers

and KKT conditions; however, we take a simpler approach using elementary tools. We will show that the

maximizer and minimizer are (µ1, ..., µk) = (µ, 0, 0, ..., 0) and (µ1, ..., µk) = (µ/k, ..., µ/k), respectively, by

showing that they are uniformly the maximizer and minimizer of each term in the objective function. Thus,

consider the optimization problems corresponding to the jth term:

max / min hj(µ1, ..., µk) ≡ λj−k(µ1 + · · · + µj+1) · · · · · (µ1 + · · · + µk)

s.t. µ1 + · · · + µk = µ

µ1 ≥ · · · ≥ µk ≥ 0.

Solution of the maximization problem

Note that each multiplicand of hj(·) is at most µ. It follows that (µ1, ..., µk) = (µ, 0, 0, ..., 0) is a maximizer

that does not depend on j. (The maximum depends on j, it is
(

µ
λ

)k−j
= ρj−k).

Solution of the minimization problem

Denote Sj+1 := µ1 + ... + µj+1. Then we can rewrite:

hj(µ1, ..., µk) = Sj+1(Sj+1 + µj+2) · ... · (Sj+1 + µj+2 + · · · + µk).

Observe that for each i = j + 2, ..., k, µi appears in exactly k − i + 1 multiplicands. It follows that any

minimizing solution must satisfy µj+2 ≤ µj+3 ≤ ... ≤ µk (otherwise there exists an adjacent pair µi > µi+1,

buy swapping their values yields a better solution). Together with the inequality conditions, we obtain that

µj+2 = µj+3 = ... = µk. Since Sj+1 appears in all k − j multiplicands, it should be minimized. But by the

equality condition, Sj+1 +
∑k

i=j+2 µi = µ. Thus, minimizing Sj+1 is equivalent to maximizing
∑k

i=j+2 µi,

and this is achieved by assigning µk, and hence µj+2, ..., µk−1, its largest possible value, which is µ/k (this

is immediate from the two conditions). Consequently, (µ1, ..., µk) = (µ/k, ..., µ/k) is a minimizer that does

not depend on j. (The minimum depends on j, it is k!µ
j!(λk)k−j ).

Since these solutions are optimal for each hj(µ1, ..., µk), it follows that they are optimal for H(µ1, ..., µk)

as well. Thus, for any feasible µ1, ..., µk: π̃−1
k (µ, 0, ..., 0) ≥ π̃−1

k (µ1, ..., µk) ≥ π̃−1
k (µ/k, ..., µ/k), which is

equivalent to (24). 2
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