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We consider a single server queueing system in which service shuts down when there are no customers present,

and is resumed only when the queue length reaches a given critical length. We analyze the strategic response

of customers to this mechanism and compare it to the overall optimal behavior, with and without information

on delay. The results are significantly different from those obtained when the server is continuously available.

We show that there may exist multiple equilibria in such a system and the optimal arrival rate may be

greater or smaller than that of the decentralized equilibrium. Finally, the critical length is taken as a decision

variable and the optimal operations policy is discussed by taking strategic customers into consideration.
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1. Introduction

Customers who arrive at a queueing system can respond strategically to delay by deciding whether

they wish to join or balk, maximizing their individual welfare. Such decentralized behavior results

in an equilibrium arrival pattern. From the viewpoint of society as a whole, it is well known that

this equilibrium may be suboptimal. When a customer joins a first-come first-served queue, his/her

decision does not affect earlier arrivals, but may increase the delay for future arrivals. This effect

is called negative externality. Social welfare maximization takes such effects into consideration and

a toll can be used by social planners to induce optimal decentralized behavior.

In some systems, an increase in congestion may actually benefit the customers. Our daily expe-

riences exemplify this; for example, a shuttle may only leave after all of the seats are occupied.

Consequently, a shuttle passenger may anxiously wait for more passengers to arrive. When we wait

in a bank lineup, a long queue may induce the opening of additional service counters and thus,
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the queue will move progressively faster. We may also have similar experiences at check out in a

grocery store. In the border-crossing system, where both security and customer satisfaction need to

be considered, managers usually use congestion-based staffing policy (see Zhang, 2006) where some

extra inspection servers are opened when the size of a queue is larger than the upper threshold

level and closed when the size drops to a lower threshold level.

This phenomenon also exists in service systems with unobservable queues. For example, many

call centers adopt call blending systems in which an agent can make both inbound and outbound

calls. Inbound calls to a call center may have to wait for the agent to switch back to service

after finishing an outbound call. A longer inbound call queue can stimulate the server to switch

back faster and thus benefit the customers in that queue. (In some call centers, customers can be

provided with information on the real-time delay such as queue length or expected waiting time.

The queue in those types of call centers is still ‘observable’.) In a combination of make-to-stock

and make-to-order systems, the facility is not switched back to process customer orders until the

number of orders reaches a critical level. More examples can be found in a survey on polling systems

by Takagi (2000).

Such service systems belong to a broad class of queues called vacation queues or queues with

removable servers. The book of Tian and Zhang (2006) is devoted to such systems and their

applications. Although there exist multiple settings for such service systems, our focus here is on

the analysis of the joining behavior of customers in such systems. Therefore, we have focused on a

relatively simple one: a vacation queue with an N -policy and exhaustive service; that is, the server

starts to work when the queue reaches a size N and once the server starts to work, it finishes all

the work in the system before taking its next ‘vacation’. With this device, we can derive many

insights on the decentralized behavior and social optimal requirements of customers. Our results

shed light on decentralized customer behavior and social optimization in general systems where

congestion could be beneficial for customers.

There exist fundamental differences between a regular and vacation queue with an N -policy.

When a customer arrives and sees the server on vacation, s/he must consider both the customers
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waiting in front of him/her and future arrivals. Therefore, s/he may prefer to join a longer queue,

in anticipation that the service will start sooner. Moreover, a customer may be more compelled to

join a queue with an idle server if s/he knows that future arrivals have a higher tendency to join

the queue when the server is idle. This type of behavior is dubbed by Hassin and Haviv (1997)

as follow the crowd (FTC), which is in contrast to avoid the crowd (ATC), a common behavior in

which a customer tries to avoid others and finds it increasingly less attractive to join as the number

of people who join increases. Several examples of FTC behavior are described by Hassin and Haviv

(2003). Our model is special in that both types of behaviors exist in our system: It may be FTC

in some states (namely, those with an idle server) and ATC in others. The result is an unusual

pattern of behavior, both in the decentralized case and under social optimization. It is interesting

to note that in the work of Hassin and Haviv (1997), the number of equilibrium solutions is in

general unbounded, whereas in our model, there can only be a small number of solutions, due to

the existence of the ATC region.

By joining a queue with an idle server, the customer shortens the time that current customers

need to wait for the server to start working and hence reduces their waiting time. Therefore, positive

externalities exist in such a system. Moreover, joining at a busy state can bring both negative and

positive externalities to future customers. On the one hand, they might have to wait as a joining

customer receives service, but on the other hand, this act keeps the server busy for a longer time

and increases the chances for future customers to avoid an idle server. Multiple equilibria may exist

because the best response function of a player may increase with the actions of other players (see

Hassin and Haviv 1997, 2003). A socially optimal arrival rate could be larger or smaller than the

equilibrium arrival rate. We note that some of these features are common to our model and the

shuttle model in Hassin and Haviv (2003) §1.5. The shuttle can be viewed as a server with vacations

and instantaneous service.

We first study customer equilibrium behavior in a vacation queue. We assume that customers

are identical and consider two cases of information availability. With no information, the queue

is unobservable and customers have no real-time information on the status of the server. The
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anticipation of waiting time is based on their long-term experience. With full information, the queue

length and the status of the server are observable to the arriving customers. We will also study the

socially optimal behavior for both cases. Finally, we compare the decentralized equilibrium with a

socially optimal solution.

With no information, the expected waiting time first decreases with the arrival rate and then,

after a certain level, increases. Therefore, both FTC and ATC behaviors exist, which depend on

the heaviness of the traffic flow. Consequently, multiple equilibria exist; among which, some are

stable and others are not. With full information, customers adopt a threshold strategy to join the

system. We obtain closed-form expressions for the equilibrium thresholds.

We show that there exists a unique optimal arrival rate for the social optimization problem in the

no-information case. Due to the existence of positive externality, the socially optimal arrival rate

could be larger than the equilibrium rates. There is an interesting difference between the observable

and unobservable models. In the former, it may happen that the socially optimal solution requires

that some customers join even when their expected utility is negative. This cannot happen in the

latter case. We also observe that a simple uniform price may not be enough to induce the optimal

behavior of customers in an observable case.

After obtaining the decentralized and optimal arrival rates under each scenario, we study how

the server can increase social welfare by controlling the arrival rate and activation value N . For

example, in the call blending system, the system designer may need to decide on the optimal trigger

point for an agent to switch from making outbound call to handling inbound calls. If both variables

can be costlessly controlled then it is obvious that in the resulting first-best solution N = 1 and

nothing can be gained by increasing N . However, given that customers are strategic and the arrival

rates are decentralized, it is of greater interest to compute the second best optimal threshold value

N which maximizes social welfare. Analytically, we will show that with no information and no

set-up and shut-down costs, the maximization of social welfare in the system requires a paradoxical

operating policy for the server: When the utilization is light, the server should be always available
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to shorten customers’ waiting time; when the utilization is large, N should be large. We find that

it is optimal to set the server as always available in the full information case.

The paper is organized as follows: Section 2 provides the literature review. Section 3 introduces

the model and assumptions. Sections 4-5 study the equilibrium and optimal arrival rates and

optimal N with no information and full information, respectively. Section 6 provides the concluding

remarks. The supplement contains proofs and other technical material, and is available in the

e-companion.

2. Related Literature

Study on customers’ decentralized behavior and socially optimal control of arrivals was pioneered

by Naor (1969) with a single-server system with an observable queue, i.e., upon arrival, a customer

is informed about the queue length before a decision is made to join. Edelson and Hildebrand

(1975) considered the unobservable case. There is more related work in the survey book by Hassin

and Haviv (2003).

Most of the literature on vacation queues does not allow for the strategic behavior of customers.

We know of two exceptions. Burnetas and Economou (2007) assumed N = 1 and an exponential

setup time when the server starts a new busy period. They considered the strategic behavior of

customers under different levels of information which may include the queue length and/or the

state of the server (during setup or busy). In particular, if only the queue length is known and

the setup time is considerably long, the FTC behavior of customers is observed. In this paper we

assume that customers are aware of the service policy, in particular the threshold N , and react

to it in a strategic way. We also consider a social optimization problem. Economou and Kanta

(2008) considered strategic customer behavior in an observable queue with server vacations due to

breakdowns. In this model, the length of the vacation is independent of the queue size.

This paper is also related to some recent work on the decentralized equilibrium in service systems

where both negative and positive externalities exist. Veeraraghavan and Debo (2009) considered

situations where queue length indicates not only congestion but also service quality. They showed
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that when the service rates and unknown service values are negatively correlated, customers prefer

to join longer queues. When the service rates are positively correlated with unknown service values,

customers might join shorter queues. Johari and Kumar (2008) considered a type of network service

such as an on-line gaming system, where users form a club. In such a system, both negative and

positive externalities exist. They characterize the size of the club for self-interested users to form

autonomously and they showed that the decentralized size is always smaller than the one chosen

by the service manager.

3. Formulation and Preliminaries

We assume that potential customers arrive in accordance to a Poisson process with rate Λ. There is

a single server, and the service times are independent and exponentially distributed with mean µ−1.

The server uses an N -policy, that is, it shuts down when the system becomes empty of customers

and resumes service after N arrivals. Unless otherwise stated, assume that N > 1, otherwise, it

becomes a regular queue.

Suppose that the utility of a customer consists of a reward for receiving service minus a waiting

cost. This waiting cost is linear and depends on the customer-specific parameter and the waiting

time. The waiting time means the total sojourn time in the system. We also consider an additive

social utility composed of the sum of individual utilities of all served customers. A solution that

maximizes the social utility is socially optimal, or simply optimal. Specifically, define

• W = expected waiting time in system.

• Wi= conditional expected waiting time given information state i.

• θ = customer-type delay-sensitivity parameter, indicating his cost per time unit spent in the

system.

• R = reward to the customer for receiving service, R ≥ 0.

• U = the expected utility for a customer who joins the system: U = R−θW in the unobservable

queue; U = R− θWi for a customer who joins at state i in the observable case.

• ν = Rµ
θ

the upper bound on the number of service epochs that a customer is ready to wait.

• ρ = Λ
µ

the system utilization factor when every potential customer joins.
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4. Unobservable vacation queues with N -policy

Consider symmetric equilibrium strategies. For the pure strategies, either all of the customers join

the queue or all balk. With a mixed strategy, an arriving customer joins with a certain probability,

α, and the effective arrival rate, or joining rate, is λ = Λα.

Obviously, “all balk” is always an equilibrium strategy; if all others choose balk, the server will

never return from vacation and the best choice for the customer is to balk too. (Here, we use the

assumption that N > 1.) Therefore, λ = 0 is always an equilibrium arrival rate. Below, we restrict

our attention to positive equilibrium arrival rates.

4.1. Equilibrium

In a single server vacation queue, the stationary waiting time can be decomposed into a sum of two

independent random variables. One is the corresponding waiting time in a regular queue without

vacation and the other is additional delay due to vacation (see, e.g., Doshi 1986). For an M/M/1

queue with an N -policy and arrival rate λ (λ < µ), we can express the waiting time explicitly (see

Yadin and Naor, 1963) as:

W (λ) =
1

µ−λ
+

N − 1

2λ
, (1)

where 1
µ−λ

is the expected waiting time in a standard M/M/1 queue and N−1
2λ

is the expected extra

waiting time for the server to begin to work. This can be interpreted as follows. The former term

means that an increasing arrival rate increases the average waiting time such as that in a regular

queue M/M/1 (negative externality). The second term means that an increase in the arrival rate

decreases the idle time for the server and reduces the average waiting time (positive externality).

The function W (λ) is strictly convex in λ, with a minimum value of:

W (λ̃) =
1

µ

(

1+

√

N − 1

2

)2

at λ̃ =
µ
√

N−1
2

1+
√

N−1
2

. (2)

Using (1), Λ is an equilibrium arrival rate if Λ < µ and

R≥ θ

(

1

µ−Λ
+

N − 1

2Λ

)

.
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The above inequality can be equivalently written as

ν ≥ 1

1− ρ
+

N − 1

2ρ
.

Otherwise, an equilibrium arrival rate 0 < λ < Λ solves the equation:

R = θ

(

1

µ−λ
+

N − 1

2λ

)

, (3)

or

ν =
1

1− ρ
+

N − 1

2ρ
.

Equation (3) may have no, one or two solutions. In the latter case, the two solutions λ1 and λ2

satisfy 0≤ λ1 ≤ λ̃≤ λ2, where

λ1 =
Rµ− 3−N

2
θ−

√

R2µ2 + (3−N)2

4
θ2 − (N +1)µθR

2R
,

and

λ2 =
Rµ− 3−N

2
θ +

√

R2µ2 + (3−N)2

4
θ2 − (N +1)µθR

2R
.

The feasibility of these solutions to be equilibrium arrival rates depends on their value relative to

µ. Using (2), the condition R > (=,<)θW (λ̃) is equivalent to ν > (=,<)
(

1+
√

N−1
2

)2

. This gives

the following characterization of the equilibrium solutions:

Proposition 1.

(a) If ν <
(

1+
√

N−1
2

)2

, there exists no positive equilibrium arrival rate;

(b) if ν =
(

1+
√

N−1
2

)2

, there exist one positive equilibrium arrival rate λe = λ̃ iff λ̃≤Λ;

(c) if ν >
(

1+
√

N−1
2

)2

, λ1, λ2 and Λ could all be an equilibrium arrival rate. Specifically, there

exist two positive equilibrium arrival rates λe = (λ1, λ2) if λ2 ≤ Λ; two positive equilibrium arrival

rates λe = (λ1,Λ) if λ1 < Λ < λ2 (which reduces to one if λ1 = Λ); and no positive equilibrium

arrival rate if Λ < λ1.

For the two equilibrium arrival rates in Case (c), the solution with λ2 or Λ are stable; that is,

if there is a small perturbation to λ, the system will converge back to λ. The equilibrium with 0
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is also stable. However, the equilibrium with λ1 is unstable. With any small increase of the arrival

rate, the expected waiting time decreases and more customers will arrive in the system. This will

further increase λ.

We illustrate Case (c) of Proposition 1 in Figure 1. We observe two positive equilibrium solutions

for the continuous curve where Λ > λ2. The equilibrium solutions change when we move the vertical

line at Λ to the left. In the rang of λ1 < Λ ≤ λ2, the larger one becomes Λ; when Λ = λ1, the

two positive equilibrium solutions reduce to be only one; when Λ < λ1, there exist no positive

equilibrium solutions. Note that the positive equilibrium on the left is not stable.

Figure 1 Equilibrium arrival rates in the unobservable case

4.2. Optimal arrival rate

The goal of a social planner is to maximize overall social welfare; that is, the sum of customer

utility and the payoff of the server. Here, the control variables are the arrival rate and N .



Guo and Hassin: Strategic Behavior and Social Optimization in Vacation Queues

10 Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!)

We first assume a fixed N and consider that the decision maker will set an arrival rate λ so that

social welfare, SW (λ), is maximized, where:

SW (λ) = λ

[

R− θ

(

1

µ−λ
+

N − 1

2λ

)]

. (4)

Note that the price, p, does not appear in the above objective function because it is considered

an internal transfer of welfare in the system.

This social welfare function is concave and the optimality condition of (4) is:

SW ′(λ) = R− µθ

(µ−λ)2
= 0.

Solving this equation yields the unique optimal solution:

λ̄ = µ−
√

µθ/R. (5)

It is interesting that λ̄ does not depend on N. Note that W (λ) in (1) is the sum of two terms 1
µ−λ

and N−1
2λ

where the second term measures the positive externality of increasing λ. In the social

objective function, the positive externality part becomes a constant N−1
2

, and does not affect the

decision on λ.

We now give bounds on λ̄.

Proposition 2. If R > θW (λ̃) then λ̃ < λ̄ < λ2.

To understand the bounds on λ̄ intuitively, note that λ < λ̃ is not optimal since λ = λ̃ has a

greater arrival rate with a smaller expected waiting time for each customer. λ > λ2 is also not

optimal since the individual utilities are negative in this range.

Social welfare at λ̄ is:

SW (λ̄) = µR−
√

µθR+ θ

(

1−
√

µR

θ

)

− θ
N − 1

2

= θ

(

µR

θ
− 2

√

µR

θ
− N − 3

2

)

. (6)

We see that SW (λ̄) is monotone decreasing in N. Therefore, even though the optimal solution λ̄

does not depend on N , the welfare does.
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The optimal arrival rate for the system can be expressed as a function of λ̄, which depends on

the different conditions in the parameters.

Proposition 3.

(a) If ν <
(

1+
√

N−1
2

)2

, there exists a unique optimal arrival rate λ∗ = 0;

(b) if ν =
(

1+
√

N−1
2

)2

, there exist two optimal arrival rates λ∗ = {0, λ̃};

(c) if ν >
(

1+
√

N−1
2

)2

, there exists a unique optimal arrival rate λ∗ = min{λ̄,Λ}.

In Cases (a) and (b) of Proposition 3, the decentralized equilibrium is optimal. Since λ1 < λ̄ < λ2,

the optimal arrival rate in Case (c) may be smaller or greater than the equilibrium rate. Therefore,

it is unclear whether the social planner wants a tax to discourage arrivals or a subsidy to encourage

arrivals. However, if only a stable and positive equilibrium arrival rate is of interest, a toll is needed

as in the M/M/1 model.

Also, since λ̄ < λ2, no customers obtain negative utility in a socially optimal solution. This is easy

to understand. Since customers are identical, if one customer obtains a negative utility, everyone

gets a negative utility. This will obviously not happen in social optimization.

4.3. Optimal N

Often, control over arrival rates may not be feasible. A more convenient and implicit way to regulate

arrivals is through the use of an activation value N to maximize social welfare. We now study this

problem.

Unlike the price variable which does not appear in the social welfare function, as it is just an

internal transfer of welfare in the system, N shall be included as it is associated with the operation

costs of the server. A larger N decreases the operation cost of the server but also increases customer

waiting time and turns away some customers. Therefore, an optimal decision on N needs to consider

the trade-off between saving on operation cost and losing customers.

Of course, the operation costs associated with N can be complex and may include a set-up and

shut-down cost. To simplify our analysis, we assume zero set-up and shut-down costs, and only
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consider a busy-period cost, cb. Thus, the average operating cost per unit time, C(N), can be

expressed as:

C(N) = cbPbusy,

where Pbusy is the busy probability for the server.1

In previous sections, we obtained the expression for customer welfare given a certain N , SW (N).

The social welfare function here can be expressed as the difference between SW (N) and C(N);

that is, SW (N)−C(N).

Proposition 1 has three cases. In the first case, λe = 0. The second case assumes that ν and N

exactly satisfy a specific relation, which is unlikely to hold with general data. In the third case,

ν >
(

1+
√

N−1
2

)2

or equivalently, N ≤ N̄ , where:

N̄ =
⌊

2
(√

ν − 1
)2
⌋

+1.

In this case, there are three equilibrium solutions. Among them, 0 is obviously not interesting, and

λ1 is unstable. A small perturbation which is caused, for example, by a short-term promotion, will

attract more arrivals which will reduce waiting time even further, and subsequently, induce even

more arrivals. This continues until a stable equilibrium min(λ2,Λ) is reached. Therefore, we assume

the third equilibrium when we compute an optimal N . The optimization problem becomes:

max
N

λe

[

R− θ

(

1

µ−λe

+
N − 1

2λe

)]

−C(N), (7)

where λe = min(λ2,Λ) and

λ2 =
Rµ− 3−N

2
θ +

√

R2µ2 + (3−N)2

4
θ2 − (N +1)µθR

2R
.

The busy probability for the M/M/1 with an N -policy and arrival rate λe is:

Pbusy =
λe

µ
,

1 Suppose that there is also a positive idle-period cost ci. Then C(N) = cbPbusy + ci(1−Pbusy) = (cb − ci)Pbusy + ci.
The only term that affects the decision on N is the difference (cb − ci). Therefore, assuming ci = 0 is without loss of
generality.
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which is independent of N (N just changes the length of the busy and idle cycles, but not their

ratio). Thus, the cost C(N) can be expressed as:

C(N) = cb

λe

µ
. (8)

We then have the following analytical result.

Proposition 4. If ρ≤ 1− 1√
ν
, then N ∗ = 1; if ρ≥ 1− 1

ν
, then N ∗ = N̄ .

The first part of Proposition 4 means that when the arrival rate is small enough and all of

the customers join with any N ≤ N̄ , the optimal decision is to set the server as always available.

The second part means that when the system workload is heavy such that there exist balking

customers even if the server is set as always available, the optimal decision is to set N as large as

possible while sustaining the equilibrium. This is sort of paradoxical and reflects the inefficiency

of regulating arrivals with N . When the utilization is heavy and customer waiting time is long,

we want to decrease the waiting time by using a small N , but in doing so, more customers will

come and everybody still obtains 0 utility. For instance, in the shuttle bus example, N corresponds

to the capacity of the bus. When the traffic flow is light, the bus company will use small-sized

buses; otherwise, it will use large-sized buses. One can expect a similar two-operations regime

when customers are heterogeneous on delay sensitivity. On the one hand, when the utilization is

so light that even the most impatient customer joins with a large N , N can be further reduced to

shorten customers’ waiting time while keeping the operation cost unchanged; on the other hand,

if the utilization is very heavy such that there exists balking customers for high type of impatient

customers when N = 1, N can be increased to a certain level so that that impatient customers all

balk while the expected waiting time is unchanged. In doing so, customers’ utilities are unchanged

for each type but the operation cost is reduced.

We are still unclear about the optimal N in the range
[

1− 1√
ν
,1− 1

ν

]

. Therefore, we conducted

a numerical study and observed that there exists a threshold for ρ in this range, such that below

this point, N ∗ = 1 and above it, N ∗ = N̄ .
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Proposition (4) relies on the assumption of zero set-up and shut-down cost for the server and

the fact that N does not affect the busy probability in an M/M/1 queue with an N -policy. If such

set-up and shut-down costs exist, then C(N) is a function of the regeneration cycle length, which

is increasing in N . In that case, it is likely that N ∗ > 1.

5. Observable vacation queues with an N -policy

In this section we assume that customers have information on the queue length when they make

their decision to join or balk. We assume that a customer who is indifferent between joining and

balking joins. We use superscripts − and + to distinguish between states with idle and busy server,

respectively, when both states are possible. Thus, the set of the states is

{

0,1−, . . . , (N − 1)−,1+,2+, . . . , (N − 1)+,N,N +1, . . .
}

,

where m− means that the system occupancy is m and the server is idle, and m+ means that the

system occupancy is m and the server is busy.

In general, the strategy to never join is always an equilibrium when N > 1, since if this policy

is adopted by others, the expected wait for a customer who joins at state 0 is infinite, and thus

balking at this state is the best response. In this case, the server is never active.2 We concentrate

on the existence of other equilibrium strategies in which the server is busy for at least a positive

fraction of the time. We refer to such as a solution with an active server.

A threshold strategy with a threshold n is a strategy where customers join if and only if they

find at most n− 1 customers in the system upon arrival. Thus the maximum number of customers

in the system at any time is n. We will see that indeed, the equilibrium solutions are threshold

strategies. However, the optimal strategy may have a more general structure, although it also

involves a threshold.

2 The conditions for equilibrium are actually milder; for example, it suffices that customers balk at state 1− to ensure
that balking at 0 is an optimal response. We avoid a thorough analysis of this subject and in particular, a description
of all equilibria and subgame perfect solutions. The reader is referred to §1.5 in Hassin and Haviv (2003) for an
example of such analysis.
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5.1. Equilibrium

The next sentence is not exact. In a regular queue we require naturally that R > θ/µ

and this is sufficient for the server to be busy a positive fraction of the time. Without

this condition nobody joins. So in the vacation queue we also have a condition but it

is stronger as explained below

In a regular queue, an incoming customer always joins an idle queue, as the waiting time is zero.

However, this need not hold in the observable vacation queue. For the server to be active, the set

of states in which customers join must include all the states where the server is idle. This requires

that the expected utility in each of these states is nonnegative, given that all of the customers join

in these states. This condition depends on the relationship between Λ and µ. When Λ > µ, the

longest expected waiting time for a customer who arrives when the server is idle, is when there are

N −1 customers waiting in front of him/her; hence, the waiting time is N
µ
. When Λ < µ, the longest

waiting happens when a customer joins an empty system; the waiting time is N−1
Λ

+ 1
µ
. Customers

join an idle queue if their reward is at least as great as the worst waiting cost. We summarize the

sufficient conditions for a server to be active in the following proposition.

Proposition 5. There exists an equilibrium solution with an active server if and only if either (i)

ρ≥ 1, and ν ≥N , or (ii) ρ≤ 1 and ν ≥ N−1
ρ

+1.

We now assume that the conditions for an active server as given in Proposition 5 are satisfied.

Observe that an arrival at state m+ is associated with a lower expected waiting time than arriving

at m−. It follows that in equilibrium with an active server, all join when the number of customers

observed upon arrival is at most N − 1. The equilibrium strategy is therefore characterized by a

threshold value ne ≥ N . A customer who observes state m+ is motivated to join if R ≥ θ m+1
µ

, or

m≤ Rµ
θ
−1. Therefore, ne =

⌊

Rµ
θ

⌋

. The conditions of Proposition 5 indeed guarantee that this value

is at least N . We summarize the equilibrium threshold solution in the following proposition.

Proposition 6. Suppose that the conditions of Proposition 5 are satisfied. Then the unique equi-

librium threshold is ne = bνc ≥N .
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5.2. Optimal arrival rates

We now show that, unlike in the unobservable case, an optimal strategy may induce customers to

join even in some states where their individual expected utility is negative. The reason is that when

a customer joins, s/he may reduce the expected waiting time of previous arrivals by shortening the

time until the server turns on. This can even bring positive externality to future customers as the

joining behavior prevents the server from idling. In particular, it may so happen that all arrivals

join when the server is idle, whereas balking is more easily tolerated when the server is busy. An

extreme case is when Λ and N are both large. When the server is idle, all should join, but when it

is busy, balking should start at low state values due to the high expected arrival rate.

By the assumption, a customer joins if his/her utility is 0. Since it is assumed that the customers

are identical, the state-dependent arrival rates are either 0 or Λ. In the idle states, obviously, it is

never optimal to set any arrival rate to be 0; otherwise, the system will stay idle forever. Therefore,

the choice for the social planner is left to decide which states will have Λ when the server is busy.

Consider two adjacent states n+ and (n + 1)+. Obviously, when n ≥ N , it will never be possible

that the arrival rate on n+ is 0 while the one on (n + 1)+ is Λ as the state (n + 1)+ can not be

reached. However, when n < N , state (n + 1)+ is reachable from state (n + 2)+ even though the

arrival rate at n+ is 0. But the case with the arrival rate on n+ to be 0 and on (n+1)+ to be Λ is

not optimal, as we can simply consider a similar system with the arrival rate being Λ on both n+

and (n+1)+. The latter system can generate higher average utility for customers, as those who join

at n+ obtain the minimal expected waiting time, and also it keeps the system away from idleness.

Similarly, it is better to have the arrival rate of Λ on (n− 1)+ too and so on. This is an intuitive

argument. One can also follow the approach in Stidham and Weber (1989) by directly obtaining

the optimality equations on arrival rates through uniformization technique and then show that the

optimal arrival rates are non-increasing in the state variable. Hence, the second-best control over

arrival rates requires customers to join when the queue is below a threshold.

Denote the optimal threshold by n∗. If social welfare is positive, then there are two cases:1.

n∗ ≥N ; 2. n∗ ∈ {1, . . . ,N − 1}.
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Case 2 means that if the server is idle, customers always join, and when the server is busy,

customers are not allowed to join if the system occupancy is n∗ or larger. To find the threshold,

we first solve the stable distribution for the system states and then obtain the expression for the

social welfare. Then, we can solve the optimization problem. The maximum social welfare obtained

in Cases 1 and 2 is denote by SW1 and SW2, respectively. The optimal solution value is then

SW = max{SW1, SW2}. In the following analysis, we present the results with ρ 6= 1. One can easily

derive the results for the degenerate case with ρ = 1.

Case 1, n∗ ≥N

The state transition diagram is shown in Figure 2. The corresponding balance equations and the

derivation of the expected number of customers are detailed in the Appendix.

Λ

...

...

...
µ µ 

µ 

µ µ µ 

µ 

N

1 2

1 2 (N−1)

(N+1)0

(N−1)− − −

+ + +

n*
Λ 

Λ Λ Λ

Λ

Λ Λ

Λ

ΛΛ

Figure 2 State Transition Diagram of Case 1

The social welfare problem is to compute a threshold n which maximizes

SW1(n) = (R− θW )Λ(1− pn) = RΛ(1− pn)− θL,

where3

L =
p

0

1− ρ
· (N − 1)N

2
+ p

0
ρ
(1− ρ)N + ρn+1(1− ρ−N)(n(1− ρ)+ 1)

(1− ρ)3

3 For the computational study, we use parameters ρ, v,N , which have SW1 = θ[ρv(1− p
n
)−L], and normalize θ = 1.
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is the expected number of customers in the system,

pn =
ρn−N+1(1− ρN)

1− ρ
p0

is the steady state probability that the queue is at its maximum size, and

p
0
=

(1− ρ)2

N −Nρ− ρn−N+2 + ρn+2

is the steady state probability that the system is empty.

Case 2, n∗ ∈ {1, . . . ,N − 1}

Note that this case is possible when ρ is very large. In fact when ρ and N are large, we might

have n∗ = 2 to keep the server active. This is in contrast to Naor’s M/M/1 analysis (Naor, 1969)

where n∗ = 1 when ρ is large.

The state transition diagram is shown in Figure 3.

Λ

...

...µ 

µ µ µ 

µ 

N

1 2

1 2 (N−1)

0

(N−1)− − −

+ + +

n*

Λ

Λ Λ Λ

Λ

Λ

Figure 3 State Transition Diagram of Case 2

The social welfare problem (see supplement for details) is to compute a threshold n which

maximizes4

SW2(n) = (R− θW )Λ(1− p
(n)+

− p
(n+1)+

− · · ·− p
N

)

= RΛ

(

1− ρ(1− ρn)

1− ρ
p0 − ρ(N −n)p0

)

− θL,

4 For the computational study we use SW2 = θ
n

ρν
h

1− ρ(1−ρn)
1−ρ

p0 − ρ(N −n)p0

i

−L
o

and normalize θ = 1.
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where

L = p
0
· (N − 1)N

2
+

p
0
ρ

1− ρ

(

n(n+1)

2
+

−ρ+(n+1)ρn+1 −nρn+2

(1− ρ)2

)

+ρp
0

(n+N +1)(N −n)

2
.

is the expected number of customers in the system, and

p
0
=

(1− ρ)2

N −Nρ− (N −n+1)ρ2 +(N −n)ρ3 + ρn+2

is the steady state probability that the system is empty.

Define SW (n) as SW1(n) if n≥N and SW2(N) otherwise. The following proposition shows that

SW (n) is unimodal and therefore, n∗ is unique.

Proposition 7. The social welfare function SW (n) is unimodal.

It is interesting to observe that a simple tax (positive or negative, uniform over all customers and

states) may not be sufficient to induce customers to behave in accordance to the optimal strategy.

In particular, suppose that n∗ ∈ {1, . . . ,N −1}. This means that we want customers to join at state

(N − 2)− and balk at (N − 2)+. However, with any tax that is uniformly imposed on all joining

customers, the expected utility of a customer who joins at state (N − 2)− is strictly lower than

his or her utility if s/he joins at state (N − 2)+. Hence, in contrast with Naor’s findings for the

corresponding M/M/1 model, a simple tax cannot induce customers to behave optimally. The tax

should discriminate, for example, customers who join the system while the server is busy from

those that join in idle states. PG: The next several sentences are required to be expanded

to include more details. Please see the following paragraph on it.

It seems that there is some repetition in the beginning

Even when n∗ > N , a uniform tax may not be sufficient. The tax needs to deter arrivals in state

n∗ while allowing arrivals at state n∗ − 1 and at any state when the server is idle. If Λ > µ, the

longest waiting when the server is idle occurs at state (N − 1)− and the expected waiting time is

N/µ, which is not greater than the expected waiting time at state n∗ − 1. In this case, a uniform
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tax p such that R− θn∗

µ
< p≤R− θ(n∗−1)/

µ
achieves socially optimal behavior. If Λ < µ, the longest

waiting when the server is idle is at state 0 and the expected waiting time is N−1
Λ

+ 1
µ
. In this case,

only when n∗ ≥ µN−1
Λ

+2, N−1
Λ

+ 1
µ
≤ n∗−1

µ
and the uniform tax will be adequate.

Even when n∗ > N , a uniform tax may not be enough. To be sufficient, a uniform tax needs to

satisfy three conditions: 1. deterring arrivals at state n∗, that is, p > R− θn∗

µ
; 2. allowing arrivals

at state n∗ − 1, that is, p ≤ R − θ(n∗−1)

µ
; 3. allowing arrivals at any state when the server is idle.

Since the longest waiting when the server is idle occurs at either state (N − 1)− or state 0, the

third condition can be expressed as p ≤ R − θmax{N−1
Λ

+ 1
µ
, N

µ
}. If Λ ≥ µ, n∗−1

µ
≥ N

µ
≥ N−1

Λ
+ 1

µ
.

In this case, condition 2 implies condition 3. In this case, a uniform tax p such that R − θn∗

µ
<

p ≤ R − θ(n∗−1)

µ
achieves socially optimal behavior. If Λ < µ, the longest waiting when the server

is idle is at state 0 and the expected waiting time is N−1
Λ

+ 1
µ
. In this case, when n∗ ≤ 1 + (N−1)µ

Λ
,

R − θ
(

N−1
Λ

+ 1
µ

)

≤ R − θn∗

µ
, and conditions 1 and 3 can never be satisfied simultaneously with a

uniform tax; when 1+ (N−1)µ

Λ
< n∗ ≤ 2+ (N−1)µ

Λ
,

R− θn∗

µ
< R− θ

(

N − 1

Λ
+

1

µ

)

≤ R− θ
n∗ − 1

µ
,

the uniform tax such that R − θn∗

µ
< p ≤ R − θ

(

N−1
Λ

+ 1
µ

)

is adequate; when n∗ > 2 + (N−1)µ

Λ
,

R− θ
(

N−1
Λ

+ 1
µ

)

> R− θn∗−1
µ

and the uniform tax such that R− θn∗

µ
< p≤R− θ n∗−1

µ
is adequate.

Figures 4- 6 present some numerical results (in Figure 6, the equilibrium threshold is represented

by the the integer part of the 45-degree line). We see that for larger values of N , Case 2 with

n∗ < N is obtained. As expected, social welfare under n∗ decreases with N and increases with v

and ρ. As in queues without vacations (N = 1), n∗ ≤ ne in spite of the positive externalities. The

difference increases with v and decreases with N . In Figure 5, the server is busy in equilibrium for

points (ρ,Λ) above the upper curve. The server is busy in the optimal solution for points above

the lower curve. We see that the solution with a busy server is obtained less easily in equilibrium,

and larger values of Λ or ρ are required for this to happen in contrast to those under an optimal

solution.
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Figure 4 Social welfare and optimal thresholds: optimal thresholds for ν = 12 and ρ = 0.3 (upper-left), social

welfare for different ν and ρ = 0.3 (upper-right), optimal thresholds for ν = 12 and ρ = 0.8 (lower-left),

social welfare for different ν and ρ = 0.8 (lower-right)

5.3. Optimal N

Proposition 5 provides the conditions for equilibrium with an active server. Proposition 6 shows

that in this case, customers follow a threshold strategy where they join if and only if the number

of customers in the system is at most ne − 1 where ne = bνc . The social problem is to compute an

activation value N ∗ which maximizes

(R− θW )Λ(1− pne)−C(N),

where pne is the probability for the state to be ne.

Similar to the analysis in Case 1 of §4.1.2, we obtain:
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Figure 5 Equilibrium and optimal requirement for busy server: the boundary curve for N = 3 (left) and for N = 12

(right)
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Figure 6 Equilibrium and optimal thresholds: the 45-degree line (dashed) represents the equilibrium threshold

and other curves represent the optimal threshold.

p
0
=

(1− ρ)2

N −Nρ− ρne−N+2 + ρne+2
.

Thus,

Pidle = p0 + p1− + · · ·+ p(N−1)− = Np0 =
N(1− ρ)2

N −Nρ− ρne−N+2 + ρne+2
.

We also obtain

pne =
ρne−N+1(1− ρN)

1− ρ
p0 =

(1− ρ)(ρne−N+1 − ρne+1)

N(1− ρ)− ρne−N+2 + ρne+2
. (9)

A comparison of expressions of Pidle and pne yields the following equation:5

1−Pidle = Λ
1− pne

µ
.

5 This formula can also be directly obtained with a sample path analysis. Denote by NT the number of customers
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Then, the social welfare in a system with N can be expressed as:

Λ(1− pne)

{

R− θW − cb

µ

}

. (10)

We assume R ≥ θW + cb/µ; otherwise, the server will not work at all.

We now provide a lemma on the monotonicity of pne and W with respect to N .

Lemma 1. In an M/M/1/n queue with N-policy, both pn and W are increasing in N .

Lemma 1 implies that the welfare function (10) is decreasing in N . Thus, the decision maker

should make N the smallest; that is, N ∗ = 1 as summarized in the following proposition.

Proposition 8. When the queue is observable, N ∗ = 1.

One may believe that there exists a trade off between the operation cost and customer welfare

associated with the decision of N . Although setting a larger N can turn away some customers, it

may save on operation costs for the server due to a lighter workload. However, when the utilization

is reduced by a certain percentage and thus the cost is also reduced accordingly, the system has

exactly the same percentage of welfare loss due to the balking of customers who would join with a

smaller N . The amount of cost saving cannot cover the loss of welfare as long as it is optimal for

the system to be active. Moreover, a larger N also reduces the welfare for customers who join the

system, due to greater expected waiting time.

A comparison of Proposition 4 and Proposition 8 allows us to see that the decision of the server

is different in the two cases when the traffic is heavy. In the unobservable case, customers always

obtain utility 0 when the traffic is heavy enough. In that case, driving away some customers results

in zero loss of customer welfare, but a decrease of the operation cost.

N∗ = 1 means that the server starts service as long as there is one customer. This is similar to

the base-stock policy in inventory management. However, if set-up and shut-down costs exist, one

should expect a larger N ∗ as that will reduce the frequency of setting up and shutting down.

who joined the system in a time period T . Then,

1−Pidle = lim
T→∞

NT /µ

T
= Λ

1− pne

µ.
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6. Conclusions

In this paper, we studied the decentralized behavior of customers and social optimization in a queue

with a threshold policy called the N−policy. We considered two scenarios based on the availability

of information on delay; no information and full information.

With no information, the game among customers is a supermodular game when the effective

arrival rate is below a certain level; that is, the joining behavior of a customer is encouraged by the

joining decisions of others. We have shown that multiple equilibria exist, and among them, some

are stable while others are not. We have demonstrated that a unique optimal arrival rate exists for

the social optimization problem. In contrast with a regular queue where the optimal arrival rate is

smaller than the equilibrium one, we show that the optimal arrival rate could be larger than some

of the equilibrium arrival rates.

With full information, we have shown that customers use a threshold strategy for their joining

decisions. We derived the conditions for the system to be active, that is, the effective arrival rate

is positive when the server is on vacation. Closed-form expressions for the individually optimal

thresholds are derived and the socially optimal thresholds are calculated.

Finally, we have studied the effect of controlling threshold N with the assumption that the

customers are strategic. In assuming that start-up and shut-down costs are costless, we show that

with no information, the optimal decision on N is either 1 or a large number, which depends on

the utilization of the system. With information, the optimal N is always 1.

To transform our model into an amenable one, we make several simplified assumptions that need

not be fully actualized in real situations. For example, we assume that the system’s parameters,

such as the arrival and service rates, are common knowledge, and that the service is memoryless

so that the decision of the customer to join is not adaptive, but rather, irrevocable. A relaxation

of these assumptions would lead to interesting developments, but the price would be a significant

complication of the analysis. As is common in the scientific literature, we believe that our qual-

itative conclusions are of value under more general settings, but of course, one should take into

consideration that they are obtained under simplified assumptions.
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EC.1. Social optimization with informed identical customers

Case 1: n∗ ≥N . The balance equations are:

p
0
Λ = p

1+
µ;

p
m−

= p
(m+1)−

, 0≤m≤N − 2;

p
0
Λ+ p

m+
Λ = p

(m+1)+
µ, 0 < m < N ; (p

N+
≡ p

N
)

pmΛ = p
m+1

µ, N < m < n∗.

Then,

p
m+

=
ρ− ρm+1

1− ρ
p

0
, 0 < m≤N ; (EC.1)

p
m−

= p
0
, 0 < m < N ; (EC.2)

p
N+j

= ρjp
N

, 1≤ j ≤ n∗ −N. (EC.3)

We also have the normalization condition:

p
0
+

N−1
∑

m=1

p
m−

+
N−1
∑

m=1

p
m+

+
n∗−N
∑

j=0

ρjp
N

= 1.

This can be simplified to be:

N −Nρ− ρn∗−N+2 + ρn∗+2

(1− ρ)2
p

0
= 1. (EC.4)

Note that:

n
∑

j=1

jρj =
ρ− (n+1)ρn+1 +nρn+2

(1− ρ)2
.

With that, we can obtain the expected number of customers in the system as:

L =
N−1
∑

j=1

j
(

p
j−

+ p
j+

)

+
n∗−N
∑

j=0

(j +N)p
j+N

=
N−1
∑

j=1

j

(

p
0
+

ρ− ρj+1

1− ρ
p

0

)

+
n∗−N
∑

j=0

(j +N)ρj ρ− ρN+1

1− ρ
p

0

=
N−1
∑

j=1

j
p

0

1− ρ
− p

0
ρ

1− ρ

N−1
∑

j=1

jρj +
p

0
(ρ− ρN+1)

1− ρ

n∗−N
∑

j=1

jρj +N
p

0
(ρ− ρN+1)

1− ρ

n∗−N
∑

j=0

ρj
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=
p

0

1− ρ
· (N − 1)N

2
− p

0
ρ

1− ρ
· ρ−NρN +(N − 1)ρN+1

(1− ρ)2

+
p

0
(ρ− ρN+1)

1− ρ
· ρ− (n∗ −N +1)ρn∗−N+1 +(n∗ −N)ρn∗−N+2

(1− ρ)2

+N
p

0
(ρ− ρN+1)

1− ρ
· 1− ρn∗−N+1

1− ρ

=
p

0

1− ρ
· (N − 1)N

2
− p

0
ρ

1− ρ
· ρ−NρN +(N − 1)ρN+1

(1− ρ)2

+
p

0
(ρ− ρN+1)

1− ρ
· N +(1−N)ρ− (n∗ +1)ρn∗−N+1 +n∗ρn∗−N+2

(1− ρ)2

=
p

0

1− ρ
· (N − 1)N

2
+ p

0
ρ
(1− ρ)N + ρn∗+1(1− ρ−N)(n∗(1− ρ)+ 1)

(1− ρ)3
.

The expected waiting time is:

W =
L

Λ(1− p
n∗

)
. (EC.5)

Case 2: n∗ ∈ {1, . . . ,N − 1}.

The balance equations are (with p
N+

≡ p
N

)

p
0
Λ = p

1+
µ;

p
m−

= p
(m+1)−

, 0≤m≤N − 2;

p
0
Λ+ p

m+
Λ = p

(m+1)+
µ, 0 < m < n∗;

p
0
Λ = p

m+
µ; n∗ < m≤N.

This can be simplified to:

p
m+

=
ρ(1− ρm)

1− ρ
p

0
, 0 < m≤ n∗; (EC.6)

p
m−

= p
0
, 0 < m < N ; (EC.7)

p
m+

= ρp
0
, n∗ < m≤N. (EC.8)

By the normalization condition, we obtain:

N −Nρ− (N −n∗ +1)ρ2 +(N −n∗)ρ3 + ρn∗+2

(1− ρ)2
p

0
= 1. (EC.9)

We can obtain the expected number of customers in the system:

L =
N−1
∑

j=1

j
(

p
j−

+ p
j+

)

+Np
N
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=
N−1
∑

j=1

jp
0
+

n∗

∑

j=1

j · ρ(1− ρj)

1− ρ
p

0
+

N
∑

j=n∗+1

jρp
0

= p
0
· (N − 1)N

2
+

p
0
ρ

1− ρ

(

n∗(n∗ +1)

2
+

−ρ+(n∗ +1)ρn∗+1 −n∗ρn∗+2

(1− ρ)2

)

+ρp
0

(n∗ +N +1)(N −n∗)

2
.

The expected waiting time is:

W =
L

Λ(1− p
(n∗)+

− p
(n∗+1)+

− · · ·− p
N

)
.

Proofs of Statements

EC.2. Proof of Proposition 2

Proof A direct verification is possible through a comparison of λ̄ with λ̃ and λ2. Alternatively,

one can look at the derivative of SW at the boundary points.

SW ′(λ̃) = R− θW (λ̃)− λ̃θW ′(λ̃)

= R− θW (λ̃) > 0,

and

SW ′(λ2) = R− θW (λ2)−λ2θW ′(λ2)

= −λ2θW ′(λ2) < 0.

Therefore, λ̄ must be in the interval (λ̃, λ2). �

EC.3. Proof of Proposition 3

Proof Case (a) is easy. If Rµ
θ

<
(

1+
√

(N − 1)/2
)2

, the utility is always negative for customers.

For Case (b), note that customers cannot obtain positive utility if Rµ
θ

=
(

1+
√

(N − 1)/2
)2

.

Hence, the optimal arrival rate is either 0 or λ̃.

The proof for Case (c) is trivial. �
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EC.4. Proof of Proposition 4

Proof Note that the condition ρ < 1− 1√
ν

is equivalent to Λ < λ̃(N̄). Since we assume N ≤ N̄ ,

and since λ2(N) is decreasing with N , this condition implies that Λ < λ̃(N̄) ≤ λ2(N̄) ≤ λ2(N),

and therefore, λe(N) = min{λ2(N),Λ} = Λ. Thus the busy probability for the server equals ρ,

which is independent of N . Therefore, the second term of the objective function (7), C(N), is a

constant, and independent of N . Consequently, maximizing the objective function (7) is equivalent

to maximizing SW (N), and this results in N ∗ = 1.

Observe that when N = 1, λ2
µ

= 1− 1
ν
. Therefore, ρ≥ 1− 1

ν
implies that λe = λ2 ≤Λ. In this case,

all customers obtain the same utility as those who balk; namely, 0. Therefore, the first term of the

objective function (7) becomes 0. Maximizing the objective function (7) is equivalent to minimizing

C(N), giving N ∗ = N̄ . �

EC.5. Proof of Proposition 7

Proof We mainly follow the approach in Knudsen (1972). Consider two systems that are denoted

as (n) and (n+ 1) with thresholds n and n +1, respectively. To prove that SW is unimodal in n,

we only need to demonstrate that SW (n)−SW (n− 1)≤ 0 implies SW (n+1)−SW (n)≤ 0.

We first show that the following equation holds for all n

SW (n+1) =
p0(n+1)

p0(n)
SW (n)+ pn(n+1)Λ(R− θWn). (EC.10)

We consider three cases. First, consider n ≥ N . Then SW (n) and SW (n + 1) are SW1(n), and

SW1(n+1), respectively. By the balance equations (EC.1)-(EC.3):

pi(n+1)

pi(n)
=

p0(n+1)

p0(n)
,

for all i∈Ω where Ω≡{0,1+, . . . , (N −1)+,1−, . . . , (N −1)−,N, . . . , n}. The social welfare function

can be expressed as

SW1(n+1) =
∑

i∈Ω

pi(n+1)Λ(R− θWi).
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With this expression, we obtain:

SW1(n+1) =
∑

i∈Ω

pi(n+1)Λ(R− θWi)

=
p0(n+1)

p0(n)

∑

i∈Ω\{n}
pi(n)Λ(R− θWi)+ pn(n+1)Λ(R− θWn)

=
p0(n+1)

p0(n)
SW1(n)+ pn(n+1)Λ(R− θWn).

Second, we consider the situation n < N −1. SW (n) and SW (n+1) are SW2(n), and SW2(n+1),

respectively. By the balance equations (EC.6)-(EC.8),

pi(n+1)

pi(n)
=

p0(n+1)

p0(n)
,

for all i∈ {0,1−, . . . , (N − 1)−,1+, . . . , n+}.

In this case, customers balk when they see state variable within {n+, (n + 1)+, . . . ,N}. Hence,

the social welfare function can be expressed as

SW2(n) =
∑

i∈{0,1−,...,(N−1)−,1+,...,(n−1)+}

pi(n)Λ(R− θWi).

Hence,

SW2(n+1) =
p0(n+1)

p0(n)
SW2(n)+ pn+(n+1)Λ(R− θWn+). (EC.11)

Third, we consider the situation n = N −1. SW (n) becomes SW2(N −1) and SW (n+1) becomes

SW1(N). Still it holds that

SW1(N) =
∑

i∈{0,1−,...,(N−1)−,1+,...,(N−1)+}

pi(N)Λ(R− θWi)

=
p0(N)

p0(N − 1)

∑

i∈{0,...,(N−2)+}

pi(N − 1)Λ(R− θWi)+ p(N−1)+(N)Λ(R− θW(N−1)+)

=
p0(N)

p0(N − 1)
SW2(N − 1)+ p(N−1)+(N)Λ(R− θW(N−1)+),

where the second equality holds by noting that probabilities expressions in (EC.1) and (EC.2) are

in the same form as in (EC.6) and (EC.7).
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Therefore (EC.10) always hold. Similarly,

SW (n)−SW (n− 1) =
p0(n)− p0(n− 1)

p0(n− 1)
SW (n− 1)+ pn−1(n)(R− θWn−1). (EC.12)

Multiplying both sides of (EC.12) by a factor
(

p0(n+1)−p0(n)

p0(n)

)(

p0(n−1)

p0(n)−p0(n−1)

)

yields

(

p0(n+1)− p0(n)

p0(n)

)(

p0(n− 1)

p0(n)− p0(n− 1)

)

(SW (n)−SW (n− 1))=

(

p0(n+1)− p0(n)

p0(n)

)

SW (n− 1)

+

(

p0(n+1)− p0(n)

p0(n)

)(

p0(n− 1)

p0(n)− p0(n− 1)

)

pn−1(n)(R− θWn−1). (EC.13)

By (EC.1) - (EC.3) and (EC.6) - (EC.8), it can be shown that the following always holds

(

p0(n+1)− p0(n)

p0(n)

)(

p0(n− 1)

p0(n)− p0(n− 1)

)

pn−1(n) = pn(n+1).

From the two equations (EC.10) and (EC.13) and, after some manipulation, one obtains:

SW (n+1)−SW (n) =
p0(n+1)− p0(n)

p0(n)− p0(n− 1)
(SW (n)−SW (n− 1))− pn(n+1)θ(Wn −Wn−1).

By (EC.4) and (EC.9), it can be shown that p0(n+1) < p0(n) for all n. Hence, the first term on

the right-hand side is negative since SW (n)−SW (n− 1)≤ 0 by the assumption; the second term

is negative as Wn > Wn−1. Consequently, SW (n+1)−SW (n)≤ 0. �

EC.6. Proof of Lemma 1

Proof From (9), it follows that:

pn =
1

N
ρn+1(ρ−N−1)

− ρ
1−ρ

,

when ρ 6= 1. Since ρN > 1 + N lnρ for all ρ 6= 1, the derivative of N/(ρ−N − 1) with respect to N

is negative and hence, the sign of the derivative of pn with respect to N is positive. When ρ = 1,

pn = 1/(n−N/2+1.5) which is increasing in N .

To prove that W is increasing in N , one can directly take the derivative of the expression of W

in (EC.5) (with n∗ replaced by n) with respect to N and show that it is positive, which is very

tedious. Here, we provide a simple and direct argument that the average queue length is increasing

in N , based on stochastic coupling.
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Figure EC.1 Sample path of M/M/1/ne queue with N -policy

Figure EC.1 shows a sample path of a queue length process (denoted by L(t)) of the M/M/1/n

queue with a threshold N +1; that is, the server starts service from idleness when the queue reaches

N + 1. Suppose that the process starts from N + 1. [0, i0] is the busy period and [i0, i5] is the idle

period. b1 is the first passage time for the queue to reach N starting from N +1 and i4 is the first

passage time for the queue length to increase from N to N +1 when the server is idle. Other time

notations have similar meanings.

Graphically, the truncated sample path in [b1, i4] can be exactly treated as the sample path

for the same system but with a threshold N . That is, the (N + 1)-policy queue has extra parts

on [0, b1] and [i4, i5], compared with the sample path of the N -policy queue. Now, if we cut the

sample path in [i4, i5] and connect it to the left side of the part in [0, b1], we obtain a sample path

which represents a stochastic process that is stochastically larger than the one represented by the

sample path in [b1, b2]. The former process represents a queue which stays at N for an exponential

period with rate Λ, then jumps up to N + 1 and continues until it reaches N again. The latter

represents a process which is either identical to the former one, or a process which stays at N for

an exponential period with rate µ and jumps down to N − 1. Therefore, the mean queue length in

the combined period [0, b1]∪ [i4, i5] is always larger than the mean queue length in period [b1, b2],

which in turn, can be similarly shown to be greater than the one in period [b2, b3] and any other
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period. Consequently, the addition of sample paths in the combined period [0, b1] ∪ [i4, i5] makes

the average queue length greater.

According to Little’s formula, W = L
Λ(1−pn)

. Since both L and pn are increasing in N , W is

increasing in N . �


