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PROBABILISTIC ANALYSIS OF THE CAPACITATED
TRANSPORTATION PROBLEM*

REFAEL HASSIN' AND EITAN ZEMEL #§

We consider the capacitated transportation problem defined by sets of supplies a;, i € I,
demands b;, j € J, and capacities ¢;;, i € I, j € J. Assuming that the capacities are random
variables, we prove asymptotic conditions on the supplies and demands which assure that a
feasible solution exists almost surely. The proof is constructive and supplies an algorithm
whose running time is O(|7{]J]). We then apply the results to the maximum flow problem.

1. Introduction. Probabilistic analysis of combinatorial problems is the subject of
many recent investigations (cf. the survey by Karp, Lenstra, McDiarmid and Rinnooy
Kan 1984). Some of these papers deal with conditions that assure with high probability
the existence of feasible solutions to such problems. For example, Shamir and Upfal
(1981) prove such results for f-factors, Frieze (1984a) for perfect matchings, Posa
(1976), Komlds and Szemerédi (1983), Fenner and Frieze (1983), Bollobas (1983), and
Frieze (1984b) for Hamiltonian cycles, Loulou (1982) and Karmarkar (1982) for
perfect packings and Vercellis (1984) and Hochbaum (1985a) for set covers.

In this paper we consider another fundamental, combinatorial problem, the capaci-
tated transportation problem (CTP). In the version studied below, we seek to find a
feasible solution (or to prove that none exists) to the following set of equations:

Exij=bj, JE€J,

iel
Zx,j=ai, iel,

jeJ

0<x;<g¢y, iel, jelJ.

It is well known that

Y a,= ij

iel jeJ

is a necessary condition for feasibility which is also sufficient if the supplies, a, and the
demands, b, are relatively “small” compared to the capacities C. But how small is
“small enough?” For a given cost matrix, the question can be answered by applying
Gale’s (1957) theorem even for a general (not necessarily bipartite) network. Doulliez
and Jamoulle (1972) consider a general network with independent discrete random arc
capacities and flow supplies and demands at its nodes. They present an elegant
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- algorithm which computes the probability that a feasible solution exists by sequentially
generating feasible and nonfeasible subsets of the capacity state space. A related family
of problems, the Capacitated Routing Problems, are treated in Haimovich and
Rinnooy Kan (1984).

In this paper we consider the asymptotic behavior of CTP where the elements ¢;; are
random. Surprisingly, it turns out that under very general conditions on the distribu-
tion of C, a and b can be “ very large” provided they are “evenly spread.” Our proof
is constructive and provides an algorithm whose running time is linear in the number
of elements of the capacity matrix C and which almost surely produces a feasible
solution whenever the conditions stated in the theorem hold. The algorithm employs a
novel method for scanning the rows and columns of the transportation matrix.

We then apply our results to analyze the maximum flow problem in a complete or
random graph with random capacities. This problem was considered earlier by Frank
and Hakimi (1965, 1967, 1968), and by Frank and Frisch (1971). There, both the
problems of testing hypotheses on this value and of computing its distribution are
considered. It is found that exact computation of the probability distribution of the
max flow value is a formidable task. However, Karp (1979), Grimmett and Welsh
(1982), and Grimmett and Suen (1982) obtained very strong asymptotic results for
complete graphs with i.i.d. capacities. In particular, they have shown that the minimum
cut is almost surely either the star emanating from the source or the star entering the
sink. This result, for a much more general probabilistic model, is an immediate
byproduct of our theorem on CTP. Moreover, our approach for the proof is different
since it works directly on the maximum flow rather than on the minimum cut. Thus, it
can be used constructively to generate in quadratic time an exact maximum flow. (As
pointed out by Picard and Queryranne 1982, there is an-algorithmic asymmetry
between minimum cuts and maximum flows. Given a maximum flow, a minimal cut
can be easily identified but the availability of a minimum cut does not seem to help if
one seeks the maximum flow.)

The structure of the paper is as follows. The problem and our main theorem are
stated in §2. §3 contains the algorithm and an outline of the proof of the theorem. §4
addresses the maximum flow problem. Finally, in §5, we give the necessary details to
complete the proof of the theorem. :

2. The capacitated transportation problem. Let n be a parameter describing the
size of problem CTP. Let a, 8, v, 8, € be constants and consider problem instances of
CTP which satisfy, for n = 2,3,..., the following five conditions:

@M 0<a,<n il

(b) 0< b, <nf, jel,
(© Liesa; = Liesb=n,
@ || < n’,

(e) |I] < n-.

A set C= {c,: k€ K} of nonnegative random variables is called proper with
constant ¢ > 0 if, for each y > 0 and each k € K,

Pric, <y: Sl < ¢y

where the conditioning event S is any event concerning the random variables ¢, # k.
A collection of sets {C"}, n=1,2,... is called proper if all its members are proper
with the same constant c. A typical example of a proper collection of random matrices
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is where for each n, all c,."j are ii.d. random variables with a common continuous
probability distribution F which does not depend on n and which satisfies F'(0) < oo
(cf. Frieze 1985, Frieze and Grimmette 1985, Hassin and Zemel 1984). However, the
concept of properness is much more general. In particular, it allows for variables which
are not independent, which are not identically distributed, and where distributions are
not independent of n. All that is required is that the random variables involved will not
be “too small” with too high a probability. For instance, any collection of positive
random variables whose support is uniformly bounded away from zero is proper.
Let x = max{0, 3¢,(B + €)/2).

THEOREM 1. Assume that y > a + B + x, a, B > 0 and that the matrices (c[;) form
a proper collection. Then CTP is feasible almost surely. .

REMARK 1. We point out that the randomness presented in our formulation is
limited to the capacities C only. In particular, the supplies and demands (a and b) are
treated as given constants. This allows for extra flexibility which is useful in the
analysis of §3.

REMARK 2. The reader may observe that the proof of Theorem 1 holds with trivial
modifications to cases where only a part of the matrix C is proper. In particular, we
mention the cases where the underlying graph is random where each edge exists
independently with probability p > 0. The requirement in this case is that the set of
capacities associated with existing edges be proper. Another interesting case is where
for each pair {i, j} only one edge (i, j) or (j,i) exists and the choice is made
randomly and independently with probability 0 < p < 1. This case is used in the
analysis of the maximum flow problem on randomly directed graphs.

We devote the next section to an outline of a proof of Theorem 1. In fact, we
describe an algorithm which, under the conditions stated, almost surely finds a feasible
solution for CTP.

3. The algorithm. The basic step of the algorithm is a column or row scan. For
any two nonnegative vectors g = (q,: k € K), r = (r,: kK € K) and two constants
s > t > 0, we define the following procedure:

Scan (g, r, s, t)

begin Scan
for ke K
x =min{q,, r,, s — t}
Qe = qx — X
re=r,—Xx
s=5s—x
end for
end Scan.

A scan is called successful if it terminates with s = ¢. Obviously, a necessary and
sufficient condition for success is that

s—t< ) min{g,r}.
kekK

A naive approach for solving CTP is the “northwest corner” method, adapted in the
obvious way to account for capacities:
NW (C, a, b)
begin NW
for j€J,
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Scan (a, ¢; 5 bj, 0) :scan the jth column of C
end for:
end NW

This may work well for the first several columns, but eventually, as the row supplies
are being depleted, the procedure is likely to fail. The procedure we develop below is a
modification of this method which is designed to allocate “sufficient” supplies to
enable a successful scan of the “last” columns of the matrix C. It is based on the
following trivial observation:

LEMMA 1. Assume that b; < min{c,;: i €I} for every j € J. Then procedure NW
yields a feasible solution for C TP.

Matrices which satisfy the stipulations of Theorem 1 do not necessarily satisfy the
stipulations of Lemma 1. To overcome this difficulty, we partition the rows of C into
two subsets I, and I,, denoting the two resulting submatrices by C; and C, respec-
tively. We first scan the columns of C, “setting aside” a certain portion b; < b; of each
column demand so that Lemma 1 holds for C,. Specifically, Lemma 1 is applicable to
G, if we let I_)j = min{ b, {minc,;: i € I,}}. Since the supply and demand of C, are
generally not balanced, it is possible that the supplies of C; have not been depleted. In
this case we scan this matrix again, this time going over it row by row, allowing the use
of some of the portions b; set aside. Finally, we apply NW to C,. The trick is to choose
I, and I, so that the row and column scans of C, are almost surely successful. Before
showing how this can be done, we summarize our algorithm as procedure Solve below:

Solve (C, a, b, 1}, 1,)

begin Solve
for jeJ
1) b, = min{b;, min{c,;: i € I,}} :Set aside demands for C,
end for ‘
for jeJ B
2) Scan (a,, ¢ ;, b;, b)), :Scan column j of C,
end for
fori e I
3) Scan (b, ¢; ;, a;,0) :Scan row i of C,
end for
4) NW (G, a,, b) :Scan the columns of C,
end Solve

We now examine the partition of 7 into (I, 1,) so that steps (2) and (3) of Solve are
likely to succeed. As mentioned previously, our choice of b; in (1) is such that step (4)
(if reached successfully) is guaranteed to succeed by Lemma 1. The conditions of
Theorem 1 imply the existence of a constant ¢ satisfying the stipulations of the
following lemma and therefore this lemma constitutes a proof of Theorem 1.

LEMMA 2. Let I, be the set of induces of the n* largest elements of a. Assume that ¢
satisfies conditions (1)—(v).

) é<(yv—a-p)/2,

(i) §<vy—a-2B,

(i) §>a+B+e—v,

(iv) é<y—-—a-p,

(v) £&> -8

Then procedure Solve succeeds almost surely.

OUTLINE OF PROOF. As the algorithm progresses, shipments x;; are allocated to
routes. Denote the residual supplies, demands, and capacities by a’, b and C’,
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respectively. We use the standard order notation to compare the asymptotic growth of
functions, e.g., f(n) = Q(g(n)) if there exists a constant ¢ > 0 such that f(n) > cg(n)
for every n > 1. .

We have to show that steps (2) and (3) of Solve are successful. Below we consider
each of these steps.

Step 2: Scan of column j of C,. This scan is successful if

Y min{aj, ¢} > b —b;. (5)

il
First note that a; = a, for i € I, and thus

Sa+ Ya=Ya=Yt> T}

iel) i€l, iel JjEJ JE€J
so that

2 a;> ZEj_Zai' (6)

iel jeJ iel,

We estimate the magnitude of each term in the right side of (6) separately. First
consider

Yy Bj: Y min{bj",min{cij: I € 12}}'

jeJ JjEJ

Min{c,: i € I,} is almost surely at least of order n~% Since the properness
assumption implies that for small positive values the distribution of c,; stochastically
dominates the uniform distribution with density ¢, the worst case for 3. e _,bj is when
b, = n® for n"~# columns and zero elsewhere. This yields

Y b= (nr75%) ™)

JjEeJ

with high probability (detailed proof is given in §5). For the second term, observe that
a; < n® and that |I,| = n®. Thus,

Y a, < ntte
i€l

Since y — B — £ > £ + a (condition (1)), (6) yields

2 oap=Q(n 8.

i€l

Consider now the left-hand side of (5). The worst case is where a; = n® for
Q(nY~B~¢=%) rows and zero elsewhere. This yields with high probability

Y min{aj,c;} = Q(n A7), (8)

iel
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Since y — 8 — £ — a > B (condition (ii)), the right-hand side of this expression is

more than n? which in turn is more than b, — b;. Therefore, (5) holds with high
probability.

Step 3: Scan of row i of C,. This scan is successful if:

Y. min{b},¢c};} > aj. 9)

JjeJ

We want to use similar techniques to those of Step 2. However, c;;, having been
depleted, are no longer proper. To overcome this, let x;; be the shipment in route
(i, j). Add x;; to each of the terms in (9) to get an equivalent expression:

3 ’ ’ 4
Y min{b + x, ¢/, + x,;} >a;,+ X x,.
JEJ JjE€J

But ¢/, + x,; = ¢;;, and a] + ¥, ;x;; = a;. Therefore, (9) is implied by the stronger
requirement:

>, min{b},c;;} > a,.. (10)
jeJ

Expression (10) involves the original matrix C which is proper. As for the b, j € J,
these satisfy

) b; > 2 a; > nttre

JjE€J i€l

where the second inequality follows since I, contains the n® largest values a;. The
worst case for the left side of (10) is when &) = n® for n**Y~<"# columns and 0
elsewhere. Thus

Y. min{b}, ¢} = Q(nér7F), (11)
JjeJ

By condition (iii) this is more than n® so that (10) holds with high probability. This
completes the outline of the proof. A detailed proof is given in §5.

4. Maximum flows. We now consider the application of Theorem 1 to the
maximum s — ¢ flow problem in a directed or undirected, complete or random
network G, on a set of n + 2 vertices V,, = (s, 1,..., n, t) with random edge capacities.
For the undirected complete problem, Grimmett and Welsh (1982) have considered the
case where each arc capacity ¢,;, i €V, j €V is drawn independently from a
probability distribution which does not vary with n. Their main result is that
lim, ,  X,/(n + 1) - p almost surely where X, is the maximum s — ¢ flow on G,
and p 1s the expected value of c;;. Their proof uses the fact that the minimum s — ¢
cut in G, is one of the two stars rooted at s or ¢. There, and in Grimmett and Suen
(1982), a similar result is proved for a directed complete version in which each arc is
oriented with probability p from the lower to the higher indexed node, and with
probability (1 — p) in the opposite way. The case of 0-1 capacities is handled in
Hochbaum (1985b). For random graphs with average degree of at least log(n), a
sublinear algorithm for both the maximum flow and the minimum cost is provided.

Theorem 1 enables us to analyze the problem even if the capacities are not i.i.d., and
even if their joint distribution depends on n, as long as the matrix C is proper.
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Furthermore, the theorem can be used to produce an O(n?) algorithm which constructs
the optimum s — ¢ flow almost surely. As it turns out, the optimum flow produced by
the algorithm uses paths of at most three edges. To demonstrate the generality of the
conditions which could be handled, we mention here the following cases:

Case 1. Let G, be an undirected complete graph on V,. Define cy; = |c,; — ¢;,| and
assume that {¢;;: 0 <i<j < n} is proper, and that c;, c,; are uniformly bounded
from above for j =1,..., n.

Case 2. Let G, be a directed complete graph on V,,, i.e., both (i, j) and (J, i) exist.
Assume that {C,;: i # j} is proper and that c;,, ¢;; are uniformly bounded from above
for j=1,...,n.

Case 3. Let G, be the directed graph obtained from the complete undirected graph
on V, as follows. For each pair {i, j} i <jeither (i, j) or (J, i) are in G, but not both,
and the probability that (i, j) is in G,, denoted by 0 < p < 1, is independent of n (for
this case we may assume that s = 0 and ¢ = o0). Assume that the sets of capacities
associated with the arcs of G, form a proper collection and that c,, ¢, are uniformly
bounded from above for j=1,..., n.

Case 4. In any of the above cases the underlying graph may be random, where the
probability of selecting an arc is independent of n (in Case 3 this means randomly
directing the arcs of a random graph).

In all cases let

n
F=Yc, F=Xc
j=1

THEOREM 2. Let F_,,, denote the maximum s.t. flow in G. Then:

(a) F,,, = min{F,, F,}, almost surely.

(b) A max flow in G can be almost surely found in O(|E|) time, where E is the set of
edges of G.

PrOOF. Without loss of generality, assume F, < F,. Arbitrarily reduce the capaci-
ties ¢;, i = 1,..., n, until F, = F,. We show that a flow of value F, almost surely exists
in the new network. The cases of directed graphs follow easily from Theorem 1 as
follows. Let x; = c;, x;, = ¢;,, and let x,;, i, j € {1,..., n} be the solution to CTP
with a; = c,;, b; = c;,, and capacities c;;. Note that this problem almost surely satisfies
the stipulation of Theorem 1 with @ = B8 =0, y = 8 = ¢ = 1. For the undirected case
we cannot use this argument since with the condition ¢;; = ¢;; the collection {c;;:

i # j}) is not necessarily proper. To overcome this difficulty let
I={itc,>c,}, J={iic,;<c}.

Let x,; = ¢,;, x;,, = ¢; and x;; be the solution to the CTP with a,=¢;, —¢,, i €[,
bj=c,—c¢; J€ J, and capacities ¢;;, i €1, j&J. Note that the condition of
properness with respect to co; in this case implies that y = 1 almost surely so that
Theorem 1 can be used again. O

We note that Case 3 stipulates 0 < p < 1. The case of p = 0 was considered by
Grimmett and Welsh (1982) and Grimmett and Suen (1982). They proved that, for this
case too, F, . ~ (n + 1)pp. This case is not covered by our theorem. Indeed, it is not
true that F,,, = min{F,, F,} almost surely. In fact, since no edge (n, j) exists for
j # t then the event c,, > c,, implies F,, < F,. Similarly, since no edge (i,1) exists
for i # s then the event ¢, < ¢, implies F,, < F, Thus, if both events occur then
Fmax < min{‘F;’ Ft}

We conclude this section with another example demonstrating the necessity of the
condition that C be proper. Let the capacities of G, be i.i.d. with Pr¢c;; = 11 =1/n,
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Prlc;; = 0] = 1 — 1/n. Then, with probability 1 ~ (1 — 1/n)" = 1 — 1/e there exists
an edge (s, i), i # ¢, such that c¢,; = 1. Therefore, with probability at least (1 — 1/e)/e
= (e — 1)/e? the star rooted at s is not minimal. A similar argument applies to the
other star. Thus, the probability that F,, < min{F,, F,} is at least (e — 1)?/e*.

5. Proof of Lemma 2. We now complete the necessary details for the proof of
Lemma 2. In preparation for the proof, we need the following lemmas:

LEMMA 3 (Renyi 1970). Ler 0<p<1,g=1-p, x < 3y/n/pq. Then

Y (P)rar < 2exp(-x%/4). O
|r—np|> x,/npq

LEMMA 4 (Hoeffding 1963). Lety,,..., y, be independent random variables such that
O<y;<lfori=1,...,n Thenfor 0 <e<1

Pr[ Yy, < (1 - e)p] < e @r?

where p is the expected value of L(y,).

LEMMA 5.  Let r be a vector of nonnegative constants with M = ¥, . xr,. Let Q = q,,

I=1,..., L, k € K be a proper matrix with constant c. Define
S = Y min{r,min{q,:/=1,...,L}}
kekK

and let t be large enough to satisfy t > max{r,;: k € K}  and t > jcL. Then
Pr[S < M/16cLt] < 2exp(—M/32t). (12)

PrROOF. Let K, ={k€K: r,> 3cL}, K, = K\ K,. Also, call index k€K a
success if

cL.

(S

Min >
1=1,.1..,L{q”‘}

L)t > 1. Let

(S

Clearly the probability of success is at least (1 —

M= Y r, My=M-M,.
kek;

Casel. M, > M/2. Let

Sy = Y min{r,min{q,:/=1,...,L}}.
ke K,

- Let N; be the number of successes in K;. Note that |K,| > M /2t so that we get from
Lemma 3 (with n = M/2t, p = 1/2)

Pr[N, < M/8t] < 2exp{—M/32t)}

since § > §; and since each success contributes at least 3cL to S;, we obtain (12).
Case 2. M, > M/2. Let

S,= » min{r,min{q,:/=1,...,L}}.
kek,
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Then

S>8,>T=Yr: k€K, kisasuccess.
k

Note that T stochastically dominates ¥, s x,7, where the x, are independent
Bernoulli random variables with Pr{x, = 1] = 1/2. Apply Lemma 4 with ¢ = 1/2,
Vi =2cLlx,r, p=cL, ¥, cxr. = 3¢cLM to obtain

Pr[S < —184-] < Pr[ Z yk < %] < e"(CLM/lG). (13)
kek,

We can now combine Cases 1 and 2. The stipulation ¢ > 1cL implies

M < M
16cLt 8
and
M < McL
32t 16
so that (12) holds in both cases. O

PrROOF OF LEMMA 2. We have to show that the inequalities (7), (8) and (11) of the
outline hold simultaneously almost surely for all i € I, j € J. To prove (7) use Lemma
Swithr=5b,0=C,, L=n*,t=nP, M= ¥, e sb; = n" to obtain

_ nY B¢ nY B
Pr Z b > 6o | = 1- 2exp(——3-2—).
jeJ

Since y > B, (7) occurs almost surely. To prove (8) for column j use Lemma 5 with
r=(aji€l), L=10=(c;:i€I), M>0n""F ¢ for some constant § (6 = &c
will almost surely do as per (7)), and ¢ = n® to obtain

Pr[ z min{aj, ¢;;} > 0:ny“"“lf—£] >1— 2exp(—g;7 k)

iel

where 6’ = 6/16¢ and 8” = 6 /32. Since the number of columns satisfies |J| < n®, (8)
holds simultaneously for all j € J almost surely. Finally, to prove (11) for row i € I,"
apply Lemma 5 with t=n?, L=1, Q=(c,;: j€J), r=b and M=%, ;b >
Ticp,a; = n**77¢ to obtain :
: ’ 0+y—€e—B n£+y—<—B
Pr[me{b. c;;} = 0n°*Y ];1—2exp(———§2———).

iy
JEJ

By condition (iii), § — y — € — 8 > 0. Thus, since |],| < |I| < n%, (11) holds simulta-
neously for all i € I; almost surely. This concludes the proof of the lemma. a
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