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Queueing systems with scheduled arrivals, i.e., appointment systems, are typical for frontal service systems,
e.g., health clinics. An aspect of customer behavior that influences the overall efficiency of such systems is

the phenomenon of no-shows. The consequences of no-shows cannot be underestimated; e.g., British surveys
reveal that in the United Kingdom alone more than 12 million general practitioner (GP) appointments are missed
every year, costing the British health service an estimated £250 million annually. In this study we answer the
following key questions: How should the schedule be computed when there are no-shows? Is it sufficiently
accurate to use a schedule designed for the same expected number of customers without no-shows? How
important is it to invest in efforts that reduce no-shows—i.e., given that we apply a schedule that takes no-shows
into consideration, is the existence of no-shows still costly to the server and customers?
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1. Introduction
Queueing systems with scheduled arrivals are known
as appointment systems. A better-designed appoint-
ment system can reduce waiting time for customers
and increase the utilization of expensive personnel
and other resources. An important aspect of cus-
tomer behavior that influences the overall efficiency
of such systems is the phenomenon of no-shows.
Appointment systems of all kinds experience “dis-
appointments” incidences on a regular basis. Empir-
ical studies of no-shows cited by Cayirli and Veral
(2003) indicate that in many health clinics the vol-
ume of no-shows strongly affects the system’s per-
formance. Some medical websites (Medical News
Today 2004) quote figures of up to about 40% of
no-shows. A British survey published in 2003 (BBC
News 2003) reveals that in the United Kingdom alone
more than 12 million general practitioner (GP) (family
doctor) appointments are missed every year, costing
the British health services an estimated £250 mil-
lion annually. A survey performed by KPMG Con-
sulting supports these figures (New Health Network
2002). A survey published in 2006 (Developing Patient
Partnerships 2006, Guardian Unlimited 2006) reveals
that these figures have not decreased over the years,
and over 11 million GP appointments, and just over
5 million practice nurse appointments, are missed
every year just in the United Kingdom. Sources in the
American Air Force are also found to complain about
no-shows (see American Air Force 2006). The above is

just a drop in the ocean of practical evidence that no-
shows are a crucial factor in the efficient performance
of appointment systems, and specifically in the per-
formance of national health services (NHS) all over
the world. Nevertheless, despite the extensive work
done on appointment systems, the issue of no-shows
has been studied very little.
The first to present an extensive work dealing with

appointment scheduling of outpatient services was
Bailey (1952). A literature review on appointment
policies can be found in the work of Mondschein
and Weintraub (2003). Cayirli and Veral (2003) pro-
vide a comprehensive survey of research on appoint-
ment scheduling in outpatient services. They classify
works by the research methodology used: analytical,
simulation-based, and case study. A more general bib-
liography of queues in health care was provided by
Preater (2001).
As a base point for our study, we use an analytical

model for scheduling arrivals to queues where all cus-
tomers show up (Pegden and Rosenshine 1990). We
also refer to Stein and Cote (1994), who based their
study on Pegden and Rosenshine (1990). They use the
base model to study larger systems and also to study
and compare the results obtained when adding a con-
straint of equally spaced scheduled appointments.
The first to address appointment systems with no-

shows in an analytic approach was Mercer, who
studies the nonequilibrium distribution of the queue
length and also gives the results for the equilibrium

565

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Hassin and Mendel: Scheduling Arrivals to Queues: A Single-Server Model with No-Shows
566 Management Science 54(3), pp. 565–572, © 2008 INFORMS

distribution (see Mercer 1960, 1973). More recent are
the works of Hutzschenreuter (2005) and of Kaandorp
and Koole (2006). The former compares the perfor-
mance of a selection of appointment-scheduling rules
under D + noise/M/1 models, using simulation for
solving instances of them. Kaandorp and Koole (2006)
define a local search scheduling algorithm and prove
that it converges to the optimal schedule with respect
to a weighted sum of the average expected waiting
times of customers, idle time of server, and tardiness
in schedule. The algorithm is flexible and can incor-
porate no-shows.
This paper analyzes the scheduling of finite

appointment systems with no-shows by providing a
mathematical formulation of such a model with a sin-
gle server and analyzing the effect of no-shows on
the performance of the system. We aim to answer the
following key questions:
• How should the (optimal) schedule be computed

when there are no-shows?
• How is the efficiency of the system affected if the

scheduled arrivals are restricted to be equally spaced?
• How important is it to reduce no-shows, i.e.,

given that we apply a solution that takes no-shows
into consideration, is the existence of no-shows still
costly to the server and customers?
Our results indicate that no-shows greatly affect

the schedule and should be taken into account when
designing an appointment system.
We study two types of appointment systems: In §2,

time intervals between scheduled arrivals are not nec-
essarily equal. A customer can be scheduled to arrive
at any time after, or even at the same time, as the cus-
tomer scheduled to arrive before her. In §3, we study
systems with equal time intervals between scheduled
arrivals. We study each type of system separately, and
also compare the results obtained for each type. Fur-
ther results and details can be found in Mendel (2006).

2. General Model
We assume that each customer has a probability of p
of showing up, and if he shows up he does so exactly
at his scheduled arrival time. The objective is to deter-
mine a schedule for a fixed number of customers,
minimizing the sum of expected customers’ waiting
costs and expected server’s availability cost. There is
a single server to provide a Markovian service who
remains available until the last customer leaves the
system. The server has no prior knowledge of which
customers will show up; hence, he has to remain
available at least until the time the last customer is
scheduled to arrive. Customers are served in the order
of their scheduled appointments. Denote the sched-
uled arrival of the kth customer by tk, then if ti = tj ,
i < j , and both customers i and j show up, customer i
is served before customer j .

We assume that service times follow an exponen-
tial distribution and are identically distributed. For
appointment systems in health services this identical
distribution assumption is often reasonable because
the extent of the ailment is not known at the time the
appointment is made. A possible extension for fur-
ther research may be multiple class models, where
appointments are drawn from different distributions.
Such an extension should involve a different solu-
tion method, because there is a sequencing problem
involved.

2.1. Notation
n: Number of customers to be scheduled.
cw: Customer’s waiting cost per unit of time.
cs : Server’s availability cost per unit of time.
�: Relative cost measure � = cs/cs + cw�.
1/�: Mean service time (service exponentially dis-

tributed).
xi: Time interval between the scheduled arrival

times of the ith and the i+ 1�st customers.
x̄: A vector of intervals between scheduled arrivals

x̄= x1�x2� � � � � xn−1�.
ti: Time of the ith scheduled arrival. t1 = 0 and ti =∑i−1
j=1 xj , i= 2� � � � �n.
ws

i : Expected waiting time in the queue of the ith
customer if he shows up. ws

1 = 0.
p: Probability of a customer to show up.
Nti�: Number of customers in the system just prior

to the time of the ith scheduled arrival.
Sn�p�/M/1: A queueing system with n scheduled

independent customers, each showing up with prob-
ability p according to a specified schedule Sn�p�, and
a single Markovian server.

2.2. Objective Function
The objective is to determine a vector x̄ minimizing
the sum of the expected customer waiting costs and
server availability cost:

�1x̄� = cwp
n∑

i=1
ws

i +cs

(n−1∑
i=1

xi+E�server’s time after tn�
)

= cwp
n∑

i=1
ws

i +cs

[n−1∑
i=1

xi+ws
n+

p

�

]
� (1)

In this expression we use the fact that the expected
server’s time after tn is the sum of the time he has to
serve customers who showed up before tn and are still
in the system at tn, which is the amount of time the
last customer would have waited if he had showed
up, and the expected service time of the last customer
if he shows up. The objective function can be simpli-
fied by omitting the constant cs · p/�. We also divide
by cs + cwp� to obtain that the objective to be mini-
mized is

�x̄�= 1− �� �
n−1∑
i=2

ws
i + ��

n−1∑
i=1

xi +ws
n� (2)
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where �� = cs/cs + cwp� is the relative server’s availabil-
ity cost, or obtained by using the relative cost measure
�� = �/�+ p · 1−���.
To evaluate the effect of no-shows only on the vari-

able costs, i.e., isolating the expected service time
from the objective because it is “inevitable” and more-
over a constant that does not depend on the sched-
ule, we define �∗x̄� as the expected total cost of
waiting in the system. It consists of the sum of the
expected cost of customers waiting in the queue and
the idle time of the server. �∗x̄� can be obtained
from the objective function (1) by �∗x̄� = �1x̄� −
E�total service cost� = �1x̄�− cspn/�. Rewriting and
simplifying the equation, we obtain

�∗x̄�=�x̄�− ��pn− 1�
�

� (3)

2.3. Recursive Expression for ws
i

In this section we develop a general expression for ws
i

as a function of x̄. The expected waiting time in the
queue for a customer who shows up depends upon
the number of customers he encounters upon arrival:
ws

i ≡
∑i−1

j=1 j/� ·Pr�N ti�= j�. The probability that there
are j customers in the system at ti depends upon
whether or not the i− 1�th customer shows up. For
1≤ j < i and i≥ 2,

Pr�N ti�= j� = p ·
i−j−1∑
k=0

Pr�N ti−1�= j + k− 1�

·Pr�k departures between ti−1 and ti�

+ 1− p� ·
i−j−2∑
k=0

Pr�N ti−1�= j + k�

·Pr�k departures between ti−1 and ti��

Because the service is Markovian, the probability of k
departures between the i−1�st and the ith scheduled
arrivals (assuming there are at least k customers in the
system at ti−1) is the probability of exactly k events in
a Poisson process with the rate of �. Thus,

Pr�N ti�= j�

= p ·
i−j−1∑
k=0

Pr�N ti−1�= j + k− 1� · �xi−1�k

k! e−�xi−1

+ 1− p� ·
i−j−2∑
k=0

Pr�N ti−1�= j + k� · �xi−1�k

k! e−�xi−1

=
i−j−1∑
k=1

Pr�N ti−1�= j + k− 1� · �xi−1�k−1

k− 1�! e−�xi−1

·
(p�xi−1

k
+ 1− p

)
+ p ·Pr�N ti−1�= j − 1� · e−�xi−1

1≤ j < i� i≥ 2�

Similarly, the probability that the system is empty just
prior to ti for i≥ 2 is
Pr�N ti�= 0�

= p ·
i−1∑
k=1
Pr�N ti−1�= k− 1�

·Pr�time between ti−1 and ti suffices
for at least k departures�

+ 1− p� ·
i−2∑
k=0
Pr�N ti−1�= k�

·Pr�time between ti−1 and ti suffices
for at least k departures�

= p ·
i−1∑
k=1

(
Pr�N ti−1�= k− 1� ·

∑
l=k

�xi−1�l

l! e−�xi−1
)

+ 1− p� ·
i−2∑
k=0

(
Pr�N ti−1�= k� ·

∑
l=k

�xi−1�l

l! e−�xi−1
)

=
i−2∑
k=0
Pr�N ti−1�= k�

·
(
1−

k−1∑
l=0

�xi−1�l

l! e−�xi−1 − p · �xi−1�k

k! e−�xi−1
)
�

2.4. Solution Method
A closed-form solution for this optimization model
exists only for n= 2 customers, a case of limited prac-
tical interest; for details and results see Mendel (2006).
For larger systems we must obtain a solution numer-
ically. The objective function used by Pegden and
Rosenshine (1990) is believed to be convex despite
the appearance of nonconvex terms, although no one
has been able to prove the convexity. Each member
in the sum that forms the no-shows model objective
function (2) is a linear combination of a member of
Pegden and Rosenshine’s objective function; hence,
(2) is convex if and only if Pegden and Rosenshine’s
objective function is convex. Based on this assump-
tion, we obtain what is believed to be an optimal solu-
tion by applying sequential quadratic programming
(SQP); see Mendel (2006) for details.

2.5. Solution Analysis

2.5.1. Schedule. As p decreases, appointments are
scheduled closer together. From a certain value, some
customers at the beginning of the schedule are sched-
uled to arrive at the same time. The interval width
increases for the first few customers, then stays almost
constant until it decreases for the last few customers.
With no-shows, this phenomenon expands, and as p
decreases and the relative server’s availability cost
increases, not only are the first few customers sched-
uled to arrive together, but so are the last few cus-
tomers. The latter phenomenon occurs for relatively
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Figure 1 Interarrival Times S�10�0�70�/M/1
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low values of p. For example, in a system with 10
customers, we begin to observe this pattern only for
p ≤ 0�30 and � ≥ 0�90. Figures 1 and 2 present the
spacing between scheduled arrivals for various val-
ues of � and 10 customers. The interval numbers are
given on the horizontal axis and the spacings between
scheduled arrivals are given on the vertical axis. Point
i� xi� on a certain � graph in these figures is the value
found for xi in the relevant model, i.e., the scheduled
interarrival time between customer i and customer
i + 1 for a system of S10� p�/M/1, with p and � as
stated in the figure.
The intuitive explanation for these spacings is sim-

ilar to that given by Stein and Cote (1994). The last
few customers are scheduled to arrive closer, or even
together, to avoid the server being idle while only a
few customers remain to arrive. The scheduling of the
first few customers to arrive close or even together fits
what is known as Bailey’s Law (Bailey 1952), which

Figure 2 Interarrival Times S�10�0�30�/M/1
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Figure 3 Expected Waiting Times S�5�0�90�/M/1
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recommends scheduling the first customers together
to later reduce the server’s idle time.

2.5.2. Customers’ Expected Waiting Times. Our
objective function is a combination of expected cus-
tomers’ waiting times and server’s availability time.
However, if the expected waiting times are too
high, the system’s management may consider reeval-
uating the relative cost, so greater consideration
would be given to waiting cost. Figures 3 and 4
present expected waiting times of customers who
show up, for various relative server’s availability
costs. The variance of the expected waiting times
of customers who show up is quite high, and the
expected waiting time of a customer who shows up
increases as his scheduled place in line increases, i.e.,
ws

i+1 >ws
i ∀ i= 1� � � � �n− 1. This could be explained

by the queue’s discipline. As more customers are
scheduled to arrive together, the more they wait if
more than one of them arrives. We also note that the

Figure 4 Expected Waiting Times S�5�0�70�/M/1
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expected waiting time for customers who show up
increases with p, i.e., if fewer customers are expected
to arrive, the customers who show up are less likely to
wait due to service of earlier customers. Nevertheless,
these customers are waiting much longer than they
would if they were served by a system that serves the
same expected number of customers and is designed
and operates as an appointment system where all cus-
tomers show up.

2.5.3. Quantifying the Impact of No-Shows on
Customers’ Expected Waiting Times. Comparing the
expected waiting times for customers who show up
for a Sn�p < 1�0�/M/1 model to the Sn′�1�0�/M/1
model where np = n′, we find that if all customers
who do not show up would have notified in advance
that they were not going to show up, a schedule could
have been designed with smaller expected waiting
times for those who show up.
Figures 5 and 6 each present a comparison be-

tween the expected waiting times for customers
who show up in a Sn�p < 1�00�/M/1 model and
the same expected waiting times of the equivalent
Sn′�1�00�/M/1 model where np= n′. In these graphs
the relative server’s availability cost, �, is given on
the horizontal axis, and the expected waiting times
measures of customers who show up are given on the
vertical axis. The waiting times of the models with no-
shows are drawn in solid lines, whereas the ones of
the models where all customers show up are drawn in
dashed lines. We note that as p decreases, the impact
of the no-shows increases. If a large portion of cus-
tomers do not show up, the expected waiting time
of the customers who do show up is much higher
than the expected waiting time they would have had
if the schedule was originally designed only for them.
The influence of the no-shows phenomenon is greater

Figure 5 Waiting Measures Comparison S�8�0�625�/M/1 and
S�5�1�0�/M/1
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Figure 6 Waiting Measures Comparison S�10�0�50�/M/1 and
S�5�1�0�/M/1
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for smaller relative server’s availability cost, mean-
ing that the impact of no-shows is more severe when
the importance given to customers’ waiting times, to
minimize them, is higher.

2.5.4. Objective Function’s Value. For high �, the
minimum value found for the objective function for
p= 1, where all customers show up, is higher than for
some other showing up probabilities. Assuming the
relative cost � is given and a system’s operating costs
are all represented in (2), the operating costs can be
brought to a lower expected value by manipulating a
specific p portion of the customers to show up.

2.5.5. Operational Costs per Customer. Two
other measures of the system that are of much inter-
est concern operational costs per customer. These
measures are defined with respect to �x̄� and �x̄�
by dividing them by np. �x̄�/np is a measure
for system’s waiting costs per customer, whereas
�x̄�/np also takes into account the service costs.
Figures 7 and 8 present the values of these measures
as a function of p for various values of �. For both
measures, the maximum value they obtain is not
necessarily when all customers show up. When
comparing the behavior of the total costs with those
of the costs per customer, we find that their picks
are not obtained at the same showing-up probability,
and moreover, the picks of the operational measures
graphs are obtained for a lower p. This may imply
that customers who show up “pay” more if many of
the scheduled customers do not show up.

2.5.6. Cost of No-Shows. To evaluate the cost of
no-shows, we compare the costs of systems where
all customers show up to systems with no-shows
with the same expected number of customers who
show up.
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Figure 7 ��x̄� per Showing Customer S�10� p�/M/1� � = 0�70
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Figures 9 and 10 each present a comparison be-
tween the costs of a Sn�p < 1�00�/M/1 model and the
costs of the equivalent Sn′�1�00�/M/1 model where
np = n′. In these graphs the relative server’s avail-
ability cost is given on the horizontal axis, noted by
�, and the costs are given on the vertical axis. The
costs of the models with no-shows are drawn in solid
lines, whereas the costs of the models where all cus-
tomers show up are drawn in dashed lines. We note
that as the probability of customers not showing up
increases, the cost of no-shows increases. The influ-
ence of the phenomenon on the costs is greater on a
smaller relative server’s availability cost. These find-
ings conform with the findings detailed in §2.5.3 for
the expected waiting times. Nevertheless, the impact
of no-shows on the expected waiting times, measured
in percentages, is not as high. Thus, the no-shows also
increase the server’s idle time.

Figure 8 ��x̄� per Showing Customer S�10� p�/M/1� � = 0�30

0
0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.4

0.2

1.0

0.8

0.6

1.8

1.6

1.4

1.2

2.0

p

Ω
(x

)/
np

Figure 9 Costs Comparison S�8�0�625�/M/1 and S�5�1�0�/M/1
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3. The Equally Spaced Model
Following the work of Stein and Cote (1994), we also
consider the case where the customers are sched-
uled to arrive at the system at equally spaced times,
i.e., x1 = x2 = · · · = xn−1. We add to their model the
attribute that each customer shows up with a proba-
bility p ∈ 0�1�.
As stated by Stein and Cote, the equally spaced

model is of interest because it provides a realistic
restriction to the scheduling problem, because in most
appointment systems the appointments are scheduled
using a fixed interval between scheduled arrivals.

3.1. Solution Method
The equations representing our model remain the
same, with the exception that xi = xeq ∀ i. Thus, based
on (2) our objective is to minimize

�eqxeq�= 1− �� �
n−1∑
i=2

ws
i + ��n− 1�xeq +ws

n� (4)

Figure 10 Costs Comparison S�10�0�50�/M/1 and S�5�1�0�/M/1
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The solution methods are similar to those used
in the unrestricted model. Even though we are now
looking for the value of a single variable xeq that opti-
mizes the objective function (4) (as opposed to a vec-
tor of values), there is still no closed-form solution.
Hence, as in the unrestricted model, we obtain the
solution numerically for the simplified case of � = 1
by using SQP methods.

3.2. Analysis of the Equally Spaced Solution
As found by Stein and Cote for the basic model, we
also find that for a system with no-shows, the effect of
adding a constraint to force equally spaced intervals
does not materially change the value of the objective
function for any combination of p and �, and deter-
mines an interval that is approximately the average of
the equivalent unrestricted model. Also, the expected
waiting times in the equally spaced model behave in
a similar manner to the expected waiting times in the
unrestricted model, and have similar values.

3.2.1. Relation Between the Equal Spacing Solu-
tion and the Showing-Up Probability. From a prac-
tical point of view, it is of interest to study the relation
between the equal spacing solution and the showing-
up probability. Assuming a given server’s availabil-
ity relative cost, the equal spacing solution depends
upon the showing-up probability. We find that for a
wide range of relative cost values there seems to be
an almost linear relation between the equal spacing
solution and the showing-up probability. This can be
noted in Figures 11 and 12, which present, for a given
number of customers, the equal spacing solution for
given relative costs as a function of the showing-up
probabilities.

3.2.2. No-Shows’ Impact on the Equal Spacing
Solution. A comparison between the equal spacing
solution of systems where all customers show up

Figure 11 Equal Spacing Solutions S�5� p�/M/1
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Figure 12 Equal Spacing Solutions S�10� p�/M/1
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to systems with no-shows with the same expected
number of showing-up customers, reveals that the
spacing with no-shows is smaller, and it decreases
as the showing probability p decreases. Figures 13
and 14 compare the equal spacing solution of
Sn�p < 1�00�/M/1 models and the corresponding
Sn′�1�00�/M/1 models where np = n′. The relative
server’s availability cost, �, is given on the horizon-
tal axis, and the spacing is given on the vertical axis.
The spacings with no-shows are drawn in solid lines,
whereas those of the models where all customers
show up are in dashed lines. If customers would
have notified in advance that they were not going
to show up, a more spacious schedule could have
been designed for those who do show up. This aligns
with the impact of no-shows on the expected wait-
ing times and costs, as detailed in §§2.5.3 and 2.5.6.
Due to expected no-shows, the schedule is more con-
densed, with longer expected waiting times leading to

Figure 13 xeq np= 8 Comparisons
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Figure 14 xeq np= 3 Comparisons
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higher costs than there would have been if the system
was designed only for the customers who do show
up eventually. We also note that the impact of no-
shows on the spacing is less for extreme relative ser-
vice availability costs, i.e., the impact when � is very
small or very large is not as notable as it is for inter-
mediate values of �. In these extreme cases the sched-
ule is highly influenced by the relative cost; hence, the
impact of no-shows is not as significant.
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